Skip to content

ysfa7md/ml-project-templates

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

2 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

πŸš€ ML Project Templates

A collection of init notebooks for quickly starting any Machine Learning project. These templates include structured steps and essential boilerplate code so you don’t have to rewrite everything from scratch.


πŸ“‚ Repository Structure

ml-project-templates/
β”‚
β”œβ”€β”€ init_classification.ipynb # Template for classification problems
β”œβ”€β”€ init_regression.ipynb # Template for regression problems
β”œβ”€β”€ init_clustering.ipynb # Template for clustering (unsupervised learning)
└── README.md

πŸ“˜ Templates Overview

1. Classification

  • Data loading & exploration
  • Train/test split
  • Baseline models (Logistic Regression, RandomForest, XGBoost)
  • Evaluation metrics: Accuracy, Precision, Recall, F1, ROC-AUC
  • Confusion Matrix & ROC curve visualization

2. Regression

  • Data loading & exploration
  • Train/test split
  • Baseline models (Linear Regression, RandomForest, XGBoost)
  • Evaluation metrics: RMSE, MAE, RΒ²
  • Residual plots

3. Clustering

  • Data loading & exploration
  • Preprocessing (scaling, optional PCA)
  • Algorithms: KMeans, Agglomerative, DBSCAN
  • Evaluation metrics: Silhouette Score, Davies-Bouldin Index
  • 2D visualization with PCA

πŸš€ Usage

  1. Clone the repo:

    git clone https://github.com/ysfa7md/ml-project-templates.git
    cd ml-project-templates
  2. Open any notebook in Jupyter / Colab / VSCode.

  3. Replace data.csv with your dataset.

  4. Run step by step.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published