A collection of init notebooks for quickly starting any Machine Learning project. These templates include structured steps and essential boilerplate code so you donβt have to rewrite everything from scratch.
ml-project-templates/
β
βββ init_classification.ipynb # Template for classification problems
βββ init_regression.ipynb # Template for regression problems
βββ init_clustering.ipynb # Template for clustering (unsupervised learning)
βββ README.md
- Data loading & exploration
- Train/test split
- Baseline models (Logistic Regression, RandomForest, XGBoost)
- Evaluation metrics: Accuracy, Precision, Recall, F1, ROC-AUC
- Confusion Matrix & ROC curve visualization
- Data loading & exploration
- Train/test split
- Baseline models (Linear Regression, RandomForest, XGBoost)
- Evaluation metrics: RMSE, MAE, RΒ²
- Residual plots
- Data loading & exploration
- Preprocessing (scaling, optional PCA)
- Algorithms: KMeans, Agglomerative, DBSCAN
- Evaluation metrics: Silhouette Score, Davies-Bouldin Index
- 2D visualization with PCA
-
Clone the repo:
git clone https://github.com/ysfa7md/ml-project-templates.git cd ml-project-templates -
Open any notebook in Jupyter / Colab / VSCode.
-
Replace data.csv with your dataset.
-
Run step by step.