Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
49 changes: 36 additions & 13 deletions heracles/unmixing.py
Original file line number Diff line number Diff line change
Expand Up @@ -79,10 +79,8 @@ def _natural_unmixing(d, wm, fields, lmax=None):
# Grab metadata
dtype = _d.array.dtype
# pad cls
_d = np.atleast_2d(_d.array)
pad_width = [(0, 0)] * _d.ndim # no padding for other dims
pad_width[-1] = (0, lmax_mask - lmax) # pad only last dim
_d = np.pad(_d, pad_width, mode="constant", constant_values=0)
pad_width = [(0, 0)] * (_d.ndim - 1) + [(0, lmax_mask - lmax)]
_d = np.pad(_d, pad_width)
if (s1 != 0) and (s2 != 0):
__d = np.array(
[
Expand Down Expand Up @@ -113,17 +111,42 @@ def _natural_unmixing(d, wm, fields, lmax=None):
_corr_d[1, 1] = __corr_d[2] # BB like spin-2
_corr_d[0, 1] = -__icorr_d[1] # EB like spin-0
_corr_d[1, 0] = __icorr_d[2] # EB like spin-0
elif (s1 != 0) or (s2 != 0):
__dp = np.array(
[
np.zeros_like(_d[0]),
np.zeros_like(_d[0]),
np.zeros_like(_d[0]),
_d[0]+_d[1], # TE like spin-2
])
__dm = np.array(
[
np.zeros_like(_d[0]),
np.zeros_like(_d[0]),
np.zeros_like(_d[0]),
_d[0]-_d[1], # TE like spin-2
])
# Correct by alpha
wp = cl2corr(__dp.T).T
wm = cl2corr(__dm.T).T
corr_wp = (wp / _wm).real
corr_wm = (wm / _wm).imag
# Transform back to Cl
corr_dp = corr2cl(corr_wp.T).T
corr_dm = corr2cl(corr_wm.T).T
# reorder
_corr_d = np.zeros_like(_d)
_corr_d[0] = 0.5 * (corr_dp[3]+corr_dm[3]) # TE
_corr_d[1] = 0.5 * (corr_dp[3]-corr_dm[3]) # TB
print("shape of _d:", np.zeros_like(_d).shape)
print("shape of corr_d:", np.zeros_like(_corr_d).shape)
print(corr_dp[3].shape, corr_dm[3].shape)
else:
# Treat everything as spin-0
_corr_d = []
for cl in _d:
wd = cl2corr(cl).T
corr_wd = wd / _wm
# Transform back to Cl
__corr_d = corr2cl(corr_wd.T).T
_corr_d.append(__corr_d[0])
# remove extra axis
_corr_d = np.squeeze(_corr_d)
wd = cl2corr(_d).T
corr_wd = wd / _wm
# Transform back to Cl
_corr_d = corr2cl(corr_wd.T).T[0]
# Add metadata back
_corr_d = np.array(list(_corr_d), dtype=dtype)
corr_d[key] = replace(d[key], array=_corr_d)
Expand Down
Loading