Skip to content
/ nson Public

NSON is a lightweight data-interchange format like JSON or BSON

License

Notifications You must be signed in to change notification settings

danclive/nson

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

70 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

nson

crates.io docs.rs crates.io

NSON is short for Network Serialization Object Notation, a binary encoded serialization of JSON-like documents. Similar to JSON, NSON supports embedding maps and arrays within other maps and arrays. Unlike JSON, NSON also includes comprehensive integer types (i8/u8, i16/u16, i32/u32, i64/u64), floating-point types (f32/f64), binary, timestamp, and id types.

NSON borrows from BSON and can be thought of as a streamlined version of BSON, removing some of the less common or mongodb-proprietary types. NSON provides fine-grained integer types (8-bit, 16-bit, 32-bit, and 64-bit, both signed and unsigned) to optimize storage space and bandwidth usage - especially useful for IoT devices and embedded systems.

Key features:

  • 🚀 Type-rich: Comprehensive integer types from 8-bit to 64-bit
  • 📦 Space-efficient: Choose the smallest type for your data range
  • 🎯 Type-safe: Type-safe getter methods for all types
  • 🔧 Convenient: Easy-to-use macros for JSON-like syntax
  • 🪶 Lightweight: no_std support for embedded systems
  • Fast: Zero-copy parsing and efficient encoding

Table of Contents

Quick Start

use nson::{m, a};

fn main() {
    // Create a map with nested structures
    let mut document = m!{
        "code": 200,
        "success": true,
        "payload": {
            "items": ["apple", "banana", "orange"],
            "count": 3u8
        }
    };

    println!("{:?}", document);
    // Map{"code": I32(200), "success": Bool(true), "payload": Map{...}}

    // Type-safe access
    let code = document.get_i32("code").unwrap();
    println!("Status code: {}", code);

    // Add new data
    document.insert("tags", ["rust", "nson", "binary"]);

    // Encode to bytes
    let bytes = document.to_bytes().unwrap();

    // Decode from bytes
    let decoded = nson::Map::from_bytes(&bytes).unwrap();
    assert_eq!(document, decoded);
}

Macros

NSON provides convenient macros for creating data structures with JSON-like syntax:

Basic Macro Usage

use nson::{m, a};

// Create a Map
let config = m! {
    "name": "device1",
    "enabled": true,
    "count": 42
};

// Create an Array
let numbers = a![1, 2, 3, 4, 5];
let mixed = a!["hello", 42, true, null];

Auto-Detection Feature

Key feature: Macros automatically detect nested [...] and {...} syntax, so you don't need to explicitly nest macros!

use nson::m;

// ✅ Recommended: Simple and clean (auto-detection)
let document = m! {
    "users": [
        {"id": 1, "name": "Alice"},
        {"id": 2, "name": "Bob"}
    ],
    "settings": {
        "theme": "dark",
        "notifications": true
    }
};

// Also works: Explicit macro usage
use nson::a;
let document2 = m! {
    "users": a![
        m!{"id": 1, "name": "Alice"},
        m!{"id": 2, "name": "Bob"}
    ],
    "settings": m!{
        "theme": "dark",
        "notifications": true
    }
};

// Both are equivalent!
assert_eq!(document, document2);

The auto-detection works at all nesting levels:

// Complex nested structure - all automatic!
let gateway = m! {
    "name": "IoT Gateway",
    "devices": [
        {
            "id": 1,
            "readings": [23.5, 24.1, 23.8],
            "metadata": {
                "location": "room1",
                "active": true
            }
        }
    ]
};

Data Types

NSON supports a comprehensive set of data types optimized for different use cases:

Type Rust Type Bytes Range Use Cases
I8 i8 1 -128 to 127 Temperature offset, signal strength
U8 u8 1 0 to 255 Percentages, brightness, small counts
I16 i16 2 -32,768 to 32,767 Temperature×100, coordinates
U16 u16 2 0 to 65,535 Port numbers, product IDs, color temp
I32 i32 4 -2³¹ to 2³¹-1 Standard integers, counters
U32 u32 4 0 to 2³²-1 Unsigned counts, IDs
I64 i64 8 -2⁶³ to 2⁶³-1 Large integers, Unix timestamps
U64 u64 8 0 to 2⁶⁴-1 Large unsigned numbers
F32 f32 4 IEEE 754 General floating-point
F64 f64 8 IEEE 754 High-precision floating-point
Bool bool 1 true/false Boolean values
String String 4+len UTF-8 Text data
Binary Vec<u8> 4+len Byte array Binary data
Array Array 4+data+1 Ordered list Collections
Map Map 4+data+1 Key-value pairs Objects/dictionaries
TimeStamp TimeStamp 8 Unix timestamp Timestamps
Id Id 12 12-byte ID Unique identifiers
Null - 0 null Null value

Usage Examples

Working with Different Integer Types

use nson::m;

// Use appropriate integer types to save space
let device_config = m! {
    "vendor_id": 0x1234u16,      // 16-bit is enough for vendor ID
    "product_id": 0x5678u16,     // 16-bit for product ID
    "brightness": 128u8,         // 8-bit for 0-255 range
    "temperature": 2350i16,      // 16-bit for temperature × 100 (23.50°C)
    "humidity": 65u8,            // 8-bit for percentage
    "offset": -10i8,             // 8-bit for small offsets
};

// Type-safe access with getter methods
let brightness = device_config.get_u8("brightness").unwrap();
let temp = device_config.get_i16("temperature").unwrap();
println!("Brightness: {}, Temperature: {:.2}°C", brightness, temp as f32 / 100.0);

Encoding and Decoding

use nson::Map;

// Create data
let data = m! {
    "name": "sensor-01",
    "value": 42u8,
    "enabled": true,
};

// Encode to bytes
let bytes = data.to_bytes().unwrap();
println!("Encoded size: {} bytes", bytes.len());

// Decode from bytes
let decoded = Map::from_bytes(&bytes).unwrap();
assert_eq!(data, decoded);

// Access values
let value = decoded.get_u8("value").unwrap();
let name = decoded.get_str("name").unwrap();

Using Serde

use serde::{Deserialize, Serialize};

#[derive(Serialize, Deserialize, Debug)]
struct DeviceConfig {
    vendor_id: u16,
    product_id: u16,
    brightness: u8,
    temperature: i16,
    enabled: bool,
}

let config = DeviceConfig {
    vendor_id: 0x1234,
    product_id: 0x5678,
    brightness: 128,
    temperature: 2350,
    enabled: true,
};

// Serialize
let bytes = nson::encode::to_bytes(&config).unwrap();

// Deserialize
let decoded: DeviceConfig = nson::decode::from_bytes(&bytes).unwrap();
assert_eq!(config.vendor_id, decoded.vendor_id);

Type Selection Guide

Choose the Smallest Appropriate Type

Choosing the right data type significantly reduces storage space and bandwidth:

use nson::m;

// ✅ Good: Using appropriate types
let efficient = m! {
    "age": 25u8,              // 0-255 range
    "percentage": 75u8,       // 0-100 range
    "port": 8080u16,          // 0-65535 range
    "temperature": 2350i16,   // Temperature × 100
};

// ❌ Bad: Using oversized types
let inefficient = m! {
    "age": 25u32,             // Wastes 3 bytes
    "percentage": 75u32,      // Wastes 3 bytes
    "port": 8080u32,          // Wastes 2 bytes
    "temperature": 23.5f32,   // Wastes space
};

println!("Efficient: {} bytes", efficient.to_bytes().unwrap().len());
println!("Inefficient: {} bytes", inefficient.to_bytes().unwrap().len());
// Output: Efficient: ~20 bytes, Inefficient: ~35 bytes (57% larger!)

Type Selection Rules

Data Range Recommended Type Examples
0-100 u8 Percentages, battery level
0-255 u8 RGB colors, brightness
-100 to +100 i8 Small offsets, signal strength (dBm)
0-1,000 u16 Small port numbers, small IDs
-1,000 to +1,000 i16 Fixed-point × 100
0-65,535 u16 Port numbers, product IDs
Other small integers i32/u32 Standard integers
Large numbers i64/u64 Timestamps, large counts

Fixed-Point vs Floating-Point

For fixed-precision values (temperature, prices), use fixed-point arithmetic:

// ✅ Fixed-point: 2 bytes, exact
let temp_fixed = m! {
    "temperature": 2345i16,  // 23.45°C (value × 100)
};

// ❌ Floating-point: 4 bytes, precision issues
let temp_float = m! {
    "temperature": 23.45f32,
};

// Helper functions for fixed-point
fn celsius_to_i16(celsius: f64) -> i16 {
    (celsius * 100.0) as i16
}

fn i16_to_celsius(value: i16) -> f64 {
    value as f64 / 100.0
}

IoT Applications

Temperature and Humidity Sensor

use nson::{m, Id, TimeStamp};

let sensor_reading = m! {
    "device_id": Id::new(),
    "timestamp": TimeStamp::from(1732694400u64),
    "temperature": 2345i16,      // 23.45°C (× 100)
    "humidity": 65u8,            // 65%
    "battery": 87u8,             // 87%
    "signal_strength": -45i8,    // -45 dBm
};

// Encode for transmission
let bytes = sensor_reading.to_bytes().unwrap();
println!("Packet size: {} bytes", bytes.len());  // Very compact!

// Decode on receiver
let decoded = nson::Map::from_bytes(&bytes).unwrap();
let temp = decoded.get_i16("temperature").unwrap() as f32 / 100.0;
let humidity = decoded.get_u8("humidity").unwrap();
println!("Temp: {:.2}°C, Humidity: {}%", temp, humidity);

Smart Light Control

use nson::m;

let light_command = m! {
    "device_id": 42u16,
    "command": "set_state",
    "on": true,
    "brightness": 192u8,       // 0-255
    "color_temp": 4000u16,     // 2700-6500K
    "transition": 500u16,      // 500ms transition
};

let bytes = light_command.to_bytes().unwrap();
println!("Command size: {} bytes", bytes.len());

Matter Protocol Device Attributes

use nson::m;

let device_attrs = m! {
    "VendorID": 0x1234u16,
    "ProductID": 0x5678u16,
    "HardwareVersion": 2u8,
    "SoftwareVersion": 0x00020100u32,  // v2.1.0
    "OnOff": true,
    "CurrentLevel": 128u8,              // 0-254
    "ColorTemperatureMireds": 250u16,
};

Batch Processing

use nson::{a, m};

// Collect multiple sensor readings
let batch = a![
    {"id": 1, "temp": 2345i16, "humidity": 65u8},
    {"id": 2, "temp": 2367i16, "humidity": 68u8},
    {"id": 3, "temp": 2312i16, "humidity": 62u8},
];

let bytes = batch.to_bytes().unwrap();
println!("Batch of 3 readings: {} bytes", bytes.len());

API Reference

Map Methods

use nson::Map;

// Create
let mut map = Map::new();
let map = Map::with_capacity(10);  // Pre-allocate

// Insert
map.insert("key", value);
map.insert("number", 42u8);

// Get (generic)
let value = map.get("key");         // Option<&Value>

// Type-safe getters
let num = map.get_u8("num").unwrap();       // u8
let num = map.get_i8("num").unwrap();       // i8
let num = map.get_u16("num").unwrap();      // u16
let num = map.get_i16("num").unwrap();      // i16
let num = map.get_u32("num").unwrap();      // u32
let num = map.get_i32("num").unwrap();      // i32
let num = map.get_u64("num").unwrap();      // u64
let num = map.get_i64("num").unwrap();      // i64
let num = map.get_f32("num").unwrap();      // f32
let num = map.get_f64("num").unwrap();      // f64
let text = map.get_str("text").unwrap();    // &str
let flag = map.get_bool("flag").unwrap();   // bool
let bin = map.get_binary("data").unwrap();  // &Binary

// Check
map.contains_key("key");            // bool
map.is_null("key");                 // bool
map.len();                          // usize
map.is_empty();                     // bool

// Iterate
for (key, value) in &map { }
for key in map.keys() { }
for value in map.values() { }

// Encode/Decode
let bytes = map.to_bytes().unwrap();
let map = Map::from_bytes(&bytes).unwrap();

Array Methods

use nson::Array;

// Create
let arr = Array::new();
let arr = Array::from_vec(vec![value1, value2]);

// Access
let value = arr.get(0);             // Option<&Value>
let len = arr.len();

// Iterate
for value in &arr { }

// Encode/Decode
let bytes = arr.to_bytes().unwrap();
let arr = Array::from_bytes(&bytes).unwrap();

Performance Tips

  1. Pre-allocate capacity: Use Map::with_capacity(n) when you know the size
let mut map = Map::with_capacity(100);  // Avoid reallocations
  1. Use smaller types: u8 instead of u32 saves 75% space
m! { "value": 100u8 }  // 1 byte vs 4 bytes
  1. Fixed-point arithmetic: i16 instead of f32 saves 50% space
m! { "temp": 2345i16 }  // 2 bytes vs 4 bytes
  1. Batch operations: Process multiple items together
let batch: Vec<Map> = sensors.iter()
    .map(|s| create_reading(s))
    .collect();
  1. Reuse buffers: Reuse Vec for encoding
buffer.clear();
buffer.extend_from_slice(&data.to_bytes()?);

Testing

Run the test suite:

cargo test                      # All tests
cargo test extended_types       # Test new integer types
cargo test integration_test     # Integration tests
cargo test --doc                # Documentation tests

Run examples:

cargo run --example basic_types     # All data types demo
cargo run --example iot_device      # IoT device modeling
cargo run --example performance     # Performance comparison
cargo run --example array_macro     # Array macro examples

Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

License

This project is licensed under the MIT License - see the LICENSE file for details.

More Resources

About

NSON is a lightweight data-interchange format like JSON or BSON

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages