Skip to content

Charting library direct from python to embeddable svg file

License

Notifications You must be signed in to change notification settings

alex-rowley/py-svg-chart

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

124 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Python SVG Chart Generator (pysvgchart)

A Python package for creating and rendering SVG charts, including line charts, axes, legends, and text labels. This package supports both simple and complex chart structures and is highly customisable for various types of visualisations.

Why did I make this project

This project is designed to produce charts that are easily embedded into python web applications (or other web applications) with minimum fuss.

Many charting libraries for the web rely on JavaScript-driven client-side rendering, often requiring an intermediate canvas before producing a polished visual. On the other hand, popular python based charting libraries focus on image-based rendering. Such images are rigid and intractable once embedded into web applications and detailed customisation is impossible. Although some libraries do generate resolution independent output it is very difficult to customise.

This package takes a different approach: it generates clean, standalone SVG charts entirely within Python that can be immediately embedded into a web application. By leveraging SVG’s inherent scalability and styling flexibility, it eliminates the need for JavaScript dependencies, client-side rendering, or post-processing steps. The result is a lightweight, backend-friendly solution for producing high-quality, resolution-independent charts without sacrificing control or maintainability.

Every chart element is designed to be easily modified, giving developers precise control over appearance and structure. As such, all of the lower level elements are accessible via properties of the charts.

Installation

pip install pysvgchart

Alternatively, you can clone this repository and install it locally:

git clone https://github.com/arowley-ai/py-svg-chart.git
cd py-svg-chart
pip install .

Usage

Usage depends on which chart you had in mind but each one follows similar principles.

Simple donut chart

A simple donut chart:

import pysvgchart as psc

values = [11.3, 20, 30, 40]
donut_chart = psc.DonutChart(values)
svg_string = donut_chart.render()

Simple donut chart example

Donut chart hovers

The donut is nice but a little boring. To make it a bit more interesting, lets add interactive hover effects. These effects can be added to any base elements but I thought you'd mostly use it for data labels.

def hover_modifier(position, name, value, chart_total):
    text_styles = {'alignment-baseline': 'middle', 'text-anchor': 'middle'}
    return [
        psc.Text(x=position.x, y=position.y-10, content=name, styles=text_styles),
        psc.Text(x=position.x, y=position.y+10, content="{:.2%}".format(value/chart_total), styles=text_styles)
    ]

values = [11.3, 20, 30, 40]
names = ['Apples', 'Bananas', 'Cherries', 'Durians']
donut_chart = psc.DonutChart(values, names)
donut_chart.add_hover_modifier(hover_modifier)
donut_chart.render_with_all_styles()

Here is the output of this code. In order to get the hover modifiers to display successfully you will need to either render the svg with styles or include the relevant css separately

Simple line chart

Create a simple line chart:

import pysvgchart as psc

 x_values = list(range(100))
 y_values = [4000]
 for i in range(99):
     y_values.append(y_values[-1] + 100 * random.randint(0, 1))

 line_chart = psc.SimpleLineChart(
     x_values=x_values,
     y_values=[y_values, [1000 + y for y in y_values]],
     y_names=['predicted', 'actual'],
     x_max_ticks=20,
     y_zero=True,
 )
 line_chart.add_grids(minor_y_ticks=4, minor_x_ticks=4)
 line_chart.add_legend()

 svg_string = line_chart.render()

Simple line chart example

More stylised example

Here's a heavily customised line chart example

import pysvgchart as psc

def y_labels(num):
    num = float('{:.3g}'.format(num))
    magnitude = 0
    while abs(num) >= 1000:
        magnitude += 1
        num /= 1000.0
    rtn = '{}{}'.format('{:f}'.format(num).rstrip('0').rstrip('.'), ['', 'K', 'M', 'B', 'T'][magnitude])
    return rtn.replace('.00', '').replace('.0', '')

def x_labels(date):
    return date.strftime('%b')

dates = [dt.date.today() - dt.timedelta(days=i) for i in range(500) if (dt.date.today() + dt.timedelta(days=i)).weekday() == 0][::-1]
actual = [(1 + math.sin(d.timetuple().tm_yday / 183 * math.pi)) * 50000 + 1000 * i + random.randint(-10000, 10000) for i, d in enumerate(dates)]
expected = [a + random.randint(-10000, 10000) for a in actual]
line_chart = psc.SimpleLineChart(x_values=dates, y_values=[actual, expected], y_names=['Actual sales', 'Predicted sales'], x_max_ticks=30, x_label_format=x_labels, y_label_format=y_labels, width=1200)
line_chart.series['Actual sales'].styles = {'stroke': "#DB7D33", 'stroke-width': '3'}
line_chart.series['Predicted sales'].styles = {'stroke': '#2D2D2D', 'stroke-width': '3', 'stroke-dasharray': '4,4'}
line_chart.add_legend(x=700, element_x=200, line_length=35, line_text_gap=20)
line_chart.add_y_grid(minor_ticks=0, major_grid_style={'stroke': '#E9E9DE'})
line_chart.x_axis.tick_lines, line_chart.y_axis.tick_lines = [], []
line_chart.x_axis.axis_line = None
line_chart.y_axis.axis_line.styles['stroke'] = '#E9E9DE'
line_end = line_chart.legend.lines[0].end
act_styles = {'fill': '#FFFFFF', 'stroke': '#DB7D33', 'stroke-width': '3'}
line_chart.add_custom_element(psc.Circle(x=line_end.x, y=line_end.y, radius=4, styles=act_styles))
line_end = line_chart.legend.lines[1].end
pred_styles = {'fill': '#2D2D2D', 'stroke': '#2D2D2D', 'stroke-width': '3'}
line_chart.add_custom_element(psc.Circle(x=line_end.x, y=line_end.y, radius=4, styles=pred_styles))
for limit, tick in zip(line_chart.x_axis.scale.ticks, line_chart.x_axis.tick_texts):
    if tick.content == 'Jan':
        line_chart.add_custom_element(psc.Text(x=tick.position.x, y=tick.position.y + 15, content=str(limit.year), styles=tick.styles))

def hover_modifier(position, x_value, y_value, series_name, styles):
    text_styles = {'alignment-baseline': 'middle', 'text-anchor': 'middle'}
    params = {'styles': text_styles, 'classes': ['psc-hover-data']}
    return [
        psc.Circle(x=position.x, y=position.y, radius=3, classes=['psc-hover-data'], styles=styles),
        psc.Text(x=position.x, y=position.y - 10, content=str(x_value), **params),
        psc.Text(x=position.x, y=position.y - 30, content="{:,.0f}".format(y_value), **params),
        psc.Text(x=position.x, y=position.y - 50, content=series_name, **params)
    ]

line_chart.add_hover_modifier(hover_modifier, radius=5)
line_chart.render_with_all_styles()

Complex line chart example

View with hover effects

Chart Types Reference

All chart types with their parameters and usage patterns.

LineChart

Standard line chart with vertical values and horizontal categories.

psc.LineChart(
    x_values=['Jan', 'Feb', 'Mar'],      # Categories on X-axis (horizontal)
    y_values=[[10, 20, 15], [12, 18, 14]], # Values on Y-axis (vertical)
    y_names=['Sales', 'Costs'],          # Series names
    x_zero=False, y_zero=True,           # Include zero on axes
    x_max_ticks=12, y_max_ticks=10,      # Maximum ticks
    x_label_format=str, y_label_format=str, # Label formatters
    x_axis_title='Month', y_axis_title='Amount',
    width=800, height=600,
)

SimpleLineChart

Simplified line chart with minimal configuration.

psc.SimpleLineChart(
    x_values=[1, 2, 3, 4, 5],
    y_values=[[10, 20, 30, 25, 35]],
    y_names=['Data'],
)

BarChart

Vertical bar chart (bars grow upward).

psc.BarChart(
    x_values=['A', 'B', 'C'],            # Categories on X-axis
    y_values=[[10, 20, 30], [15, 25, 35]], # Values on Y-axis
    y_names=['Q1', 'Q2'],
    y_zero=True,                         # Start Y-axis at zero
    bar_width=40, bar_gap=2,             # Bar sizing
    width=800, height=600,
)

HorizontalBarChart

Horizontal bar chart (bars grow rightward). Note: parameters are swapped compared to vertical charts.

psc.HorizontalBarChart(
    x_values=[[10, 20, 30], [15, 25, 35]], # Values on X-axis (horizontal)
    y_values=['A', 'B', 'C'],            # Categories on Y-axis (vertical)
    x_names=['Q1', 'Q2'],
    x_zero=True,                         # Start X-axis at zero
    bar_width=40, bar_gap=2,             # Bar thickness and gap
    y_axis_title='Products',
    x_axis_title='Sales',
    width=800, height=600,
    left_margin=200,                     # Extra margin for long labels
)

NormalisedBarChart

Stacked bar chart normalised to 100%.

psc.NormalisedBarChart(
    x_values=['A', 'B', 'C'],
    y_values=[[10, 20, 30], [5, 10, 15]],
    y_names=['Part 1', 'Part 2'],
    bar_width=40,
    width=800, height=600,
)

ScatterChart

Scatter plot with individual data points.

psc.ScatterChart(
    x_values=[1, 2, 3, 4, 5],
    y_values=[[10, 20, 15, 25, 30]],
    y_names=['Data Points'],
    x_zero=True, y_zero=True,
    width=800, height=600,
)

DonutChart

Donut/pie chart for proportional data.

psc.DonutChart(
    values=[25, 30, 20, 25],            # Segment sizes
    names=['Q1', 'Q2', 'Q3', 'Q4'],     # Segment labels
    width=400, height=400,
    inner_radius=80,                     # Hole size
    outer_radius=150,                    # Outer edge
    colours=['red', 'blue', 'green', 'yellow'],
)

Common Parameters

Most charts share these parameters:

Axis Configuration:

  • x_min, x_max, y_min, y_max: Set axis ranges
  • x_zero, y_zero: Force zero to appear on axis
  • x_max_ticks, y_max_ticks: Maximum number of tick marks
  • x_label_format, y_label_format: Functions to format axis labels
  • x_axis_title, y_axis_title: Axis titles
  • x_shift, y_shift: Shift data relative to axis

Canvas Settings:

  • width, height: Chart dimensions in pixels
  • left_margin, right_margin: Horizontal margins
  • y_margin, x_margin: Vertical margins (varies by chart orientation)

Styling:

  • colours: List of colours for series
  • bar_width, bar_gap: Bar chart specific (bar thickness and spacing)

Common Methods

All charts support these methods:

# Rendering
svg_string = chart.render()                    # Basic SVG output
svg_string = chart.render_with_all_styles()    # With inline CSS (for hovers)
chart.save('output.svg')                       # Save to file

# Legends
chart.add_legend(x_position=700, y_position=200)

# Grids
chart.add_grids(minor_x_ticks=4, minor_y_ticks=4)
chart.add_y_grid(minor_ticks=5)
chart.add_x_grid(minor_ticks=5)

# Hover effects (requires render_with_all_styles)
def hover_fn(position, x_value, y_value, series_name, styles):
    return [psc.Text(x=position.x, y=position.y, content=str(y_value))]

chart.add_hover_modifier(hover_fn, radius=5)

# Custom elements
chart.add_custom_element(psc.Circle(x=100, y=100, radius=5))
chart.add_custom_element(psc.Line(x=50, y=50, width=100, height=0))
chart.add_custom_element(psc.Text(x=200, y=200, content='Label'))

# Direct series styling
chart.series['Series Name'].styles = {'stroke': 'red', 'stroke-width': '3'}

# Modify all series
chart.modify_series(lambda s: s)

Contributing

We welcome contributions! If you’d like to contribute to the project, please follow these steps:

  • Fork this repository.
  • Optionally, create a new branch (eg. git checkout -b feature-branch).
  • Commit your changes (git commit -am ‘Add feature’).
  • Push to the branch (eg. git push origin feature-branch).
  • Open a pull request.

Created a neat chart?

All of the charts in the showcase folder are generated by pytest. If you create something neat that you'd like to share then see if it can be added to the test suite and it will be generated alongside other showcase examples.

License

This project is licensed under the MIT License - see the LICENSE file for details.

About

Charting library direct from python to embeddable svg file

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 2

  •  
  •