A Python package for creating and rendering SVG charts, including line charts, axes, legends, and text labels. This package supports both simple and complex chart structures and is highly customisable for various types of visualisations.
This project is designed to produce charts that are easily embedded into python web applications (or other web applications) with minimum fuss.
Many charting libraries for the web rely on JavaScript-driven client-side rendering, often requiring an intermediate canvas before producing a polished visual. On the other hand, popular python based charting libraries focus on image-based rendering. Such images are rigid and intractable once embedded into web applications and detailed customisation is impossible. Although some libraries do generate resolution independent output it is very difficult to customise.
This package takes a different approach: it generates clean, standalone SVG charts entirely within Python that can be immediately embedded into a web application. By leveraging SVG’s inherent scalability and styling flexibility, it eliminates the need for JavaScript dependencies, client-side rendering, or post-processing steps. The result is a lightweight, backend-friendly solution for producing high-quality, resolution-independent charts without sacrificing control or maintainability.
Every chart element is designed to be easily modified, giving developers precise control over appearance and structure. As such, all of the lower level elements are accessible via properties of the charts.
pip install pysvgchartAlternatively, you can clone this repository and install it locally:
git clone https://github.com/arowley-ai/py-svg-chart.git
cd py-svg-chart
pip install .Usage depends on which chart you had in mind but each one follows similar principles.
A simple donut chart:
import pysvgchart as psc
values = [11.3, 20, 30, 40]
donut_chart = psc.DonutChart(values)
svg_string = donut_chart.render()The donut is nice but a little boring. To make it a bit more interesting, lets add interactive hover effects. These effects can be added to any base elements but I thought you'd mostly use it for data labels.
def hover_modifier(position, name, value, chart_total):
text_styles = {'alignment-baseline': 'middle', 'text-anchor': 'middle'}
return [
psc.Text(x=position.x, y=position.y-10, content=name, styles=text_styles),
psc.Text(x=position.x, y=position.y+10, content="{:.2%}".format(value/chart_total), styles=text_styles)
]
values = [11.3, 20, 30, 40]
names = ['Apples', 'Bananas', 'Cherries', 'Durians']
donut_chart = psc.DonutChart(values, names)
donut_chart.add_hover_modifier(hover_modifier)
donut_chart.render_with_all_styles()Here is the output of this code. In order to get the hover modifiers to display successfully you will need to either render the svg with styles or include the relevant css separately
Create a simple line chart:
import pysvgchart as psc
x_values = list(range(100))
y_values = [4000]
for i in range(99):
y_values.append(y_values[-1] + 100 * random.randint(0, 1))
line_chart = psc.SimpleLineChart(
x_values=x_values,
y_values=[y_values, [1000 + y for y in y_values]],
y_names=['predicted', 'actual'],
x_max_ticks=20,
y_zero=True,
)
line_chart.add_grids(minor_y_ticks=4, minor_x_ticks=4)
line_chart.add_legend()
svg_string = line_chart.render()Here's a heavily customised line chart example
import pysvgchart as psc
def y_labels(num):
num = float('{:.3g}'.format(num))
magnitude = 0
while abs(num) >= 1000:
magnitude += 1
num /= 1000.0
rtn = '{}{}'.format('{:f}'.format(num).rstrip('0').rstrip('.'), ['', 'K', 'M', 'B', 'T'][magnitude])
return rtn.replace('.00', '').replace('.0', '')
def x_labels(date):
return date.strftime('%b')
dates = [dt.date.today() - dt.timedelta(days=i) for i in range(500) if (dt.date.today() + dt.timedelta(days=i)).weekday() == 0][::-1]
actual = [(1 + math.sin(d.timetuple().tm_yday / 183 * math.pi)) * 50000 + 1000 * i + random.randint(-10000, 10000) for i, d in enumerate(dates)]
expected = [a + random.randint(-10000, 10000) for a in actual]
line_chart = psc.SimpleLineChart(x_values=dates, y_values=[actual, expected], y_names=['Actual sales', 'Predicted sales'], x_max_ticks=30, x_label_format=x_labels, y_label_format=y_labels, width=1200)
line_chart.series['Actual sales'].styles = {'stroke': "#DB7D33", 'stroke-width': '3'}
line_chart.series['Predicted sales'].styles = {'stroke': '#2D2D2D', 'stroke-width': '3', 'stroke-dasharray': '4,4'}
line_chart.add_legend(x=700, element_x=200, line_length=35, line_text_gap=20)
line_chart.add_y_grid(minor_ticks=0, major_grid_style={'stroke': '#E9E9DE'})
line_chart.x_axis.tick_lines, line_chart.y_axis.tick_lines = [], []
line_chart.x_axis.axis_line = None
line_chart.y_axis.axis_line.styles['stroke'] = '#E9E9DE'
line_end = line_chart.legend.lines[0].end
act_styles = {'fill': '#FFFFFF', 'stroke': '#DB7D33', 'stroke-width': '3'}
line_chart.add_custom_element(psc.Circle(x=line_end.x, y=line_end.y, radius=4, styles=act_styles))
line_end = line_chart.legend.lines[1].end
pred_styles = {'fill': '#2D2D2D', 'stroke': '#2D2D2D', 'stroke-width': '3'}
line_chart.add_custom_element(psc.Circle(x=line_end.x, y=line_end.y, radius=4, styles=pred_styles))
for limit, tick in zip(line_chart.x_axis.scale.ticks, line_chart.x_axis.tick_texts):
if tick.content == 'Jan':
line_chart.add_custom_element(psc.Text(x=tick.position.x, y=tick.position.y + 15, content=str(limit.year), styles=tick.styles))
def hover_modifier(position, x_value, y_value, series_name, styles):
text_styles = {'alignment-baseline': 'middle', 'text-anchor': 'middle'}
params = {'styles': text_styles, 'classes': ['psc-hover-data']}
return [
psc.Circle(x=position.x, y=position.y, radius=3, classes=['psc-hover-data'], styles=styles),
psc.Text(x=position.x, y=position.y - 10, content=str(x_value), **params),
psc.Text(x=position.x, y=position.y - 30, content="{:,.0f}".format(y_value), **params),
psc.Text(x=position.x, y=position.y - 50, content=series_name, **params)
]
line_chart.add_hover_modifier(hover_modifier, radius=5)
line_chart.render_with_all_styles()View with hover effects
All chart types with their parameters and usage patterns.
Standard line chart with vertical values and horizontal categories.
psc.LineChart(
x_values=['Jan', 'Feb', 'Mar'], # Categories on X-axis (horizontal)
y_values=[[10, 20, 15], [12, 18, 14]], # Values on Y-axis (vertical)
y_names=['Sales', 'Costs'], # Series names
x_zero=False, y_zero=True, # Include zero on axes
x_max_ticks=12, y_max_ticks=10, # Maximum ticks
x_label_format=str, y_label_format=str, # Label formatters
x_axis_title='Month', y_axis_title='Amount',
width=800, height=600,
)Simplified line chart with minimal configuration.
psc.SimpleLineChart(
x_values=[1, 2, 3, 4, 5],
y_values=[[10, 20, 30, 25, 35]],
y_names=['Data'],
)Vertical bar chart (bars grow upward).
psc.BarChart(
x_values=['A', 'B', 'C'], # Categories on X-axis
y_values=[[10, 20, 30], [15, 25, 35]], # Values on Y-axis
y_names=['Q1', 'Q2'],
y_zero=True, # Start Y-axis at zero
bar_width=40, bar_gap=2, # Bar sizing
width=800, height=600,
)Horizontal bar chart (bars grow rightward). Note: parameters are swapped compared to vertical charts.
psc.HorizontalBarChart(
x_values=[[10, 20, 30], [15, 25, 35]], # Values on X-axis (horizontal)
y_values=['A', 'B', 'C'], # Categories on Y-axis (vertical)
x_names=['Q1', 'Q2'],
x_zero=True, # Start X-axis at zero
bar_width=40, bar_gap=2, # Bar thickness and gap
y_axis_title='Products',
x_axis_title='Sales',
width=800, height=600,
left_margin=200, # Extra margin for long labels
)Stacked bar chart normalised to 100%.
psc.NormalisedBarChart(
x_values=['A', 'B', 'C'],
y_values=[[10, 20, 30], [5, 10, 15]],
y_names=['Part 1', 'Part 2'],
bar_width=40,
width=800, height=600,
)Scatter plot with individual data points.
psc.ScatterChart(
x_values=[1, 2, 3, 4, 5],
y_values=[[10, 20, 15, 25, 30]],
y_names=['Data Points'],
x_zero=True, y_zero=True,
width=800, height=600,
)Donut/pie chart for proportional data.
psc.DonutChart(
values=[25, 30, 20, 25], # Segment sizes
names=['Q1', 'Q2', 'Q3', 'Q4'], # Segment labels
width=400, height=400,
inner_radius=80, # Hole size
outer_radius=150, # Outer edge
colours=['red', 'blue', 'green', 'yellow'],
)Most charts share these parameters:
Axis Configuration:
x_min,x_max,y_min,y_max: Set axis rangesx_zero,y_zero: Force zero to appear on axisx_max_ticks,y_max_ticks: Maximum number of tick marksx_label_format,y_label_format: Functions to format axis labelsx_axis_title,y_axis_title: Axis titlesx_shift,y_shift: Shift data relative to axis
Canvas Settings:
width,height: Chart dimensions in pixelsleft_margin,right_margin: Horizontal marginsy_margin,x_margin: Vertical margins (varies by chart orientation)
Styling:
colours: List of colours for seriesbar_width,bar_gap: Bar chart specific (bar thickness and spacing)
All charts support these methods:
# Rendering
svg_string = chart.render() # Basic SVG output
svg_string = chart.render_with_all_styles() # With inline CSS (for hovers)
chart.save('output.svg') # Save to file
# Legends
chart.add_legend(x_position=700, y_position=200)
# Grids
chart.add_grids(minor_x_ticks=4, minor_y_ticks=4)
chart.add_y_grid(minor_ticks=5)
chart.add_x_grid(minor_ticks=5)
# Hover effects (requires render_with_all_styles)
def hover_fn(position, x_value, y_value, series_name, styles):
return [psc.Text(x=position.x, y=position.y, content=str(y_value))]
chart.add_hover_modifier(hover_fn, radius=5)
# Custom elements
chart.add_custom_element(psc.Circle(x=100, y=100, radius=5))
chart.add_custom_element(psc.Line(x=50, y=50, width=100, height=0))
chart.add_custom_element(psc.Text(x=200, y=200, content='Label'))
# Direct series styling
chart.series['Series Name'].styles = {'stroke': 'red', 'stroke-width': '3'}
# Modify all series
chart.modify_series(lambda s: s)We welcome contributions! If you’d like to contribute to the project, please follow these steps:
- Fork this repository.
- Optionally, create a new branch (eg. git checkout -b feature-branch).
- Commit your changes (git commit -am ‘Add feature’).
- Push to the branch (eg. git push origin feature-branch).
- Open a pull request.
All of the charts in the showcase folder are generated by pytest. If you create something neat that you'd like to share then see if it can be added to the test suite and it will be generated alongside other showcase examples.
This project is licensed under the MIT License - see the LICENSE file for details.