This module contains concrete implementations of POD-based interpolation models that inherit from PODImodelAbstract. These models combine Proper Orthogonal Decomposition with various machine learning techniques for reduced-order modeling of high-dimensional field data.
The models are categorized into two types:
- Direct field models (fields*): Learn direct mapping from parameters to field values
- POD coefficient models (POD*): Learn mapping from parameters to POD coefficients
- fieldsLinear: Direct field prediction using linear regression
- PODLinear: POD coefficient prediction using linear regression
- fieldsRidge: Direct field prediction using Ridge regression
- PODRidge: POD coefficient prediction using Ridge regression
- fieldsGPR: Direct field prediction using Gaussian Process Regression
- PODGPR: POD coefficient prediction using Gaussian Process Regression
- fieldsRidgeGPR: Field prediction with Ridge regularization and GPR
- PODRidgeGPR: POD coefficient prediction with Ridge regularization and GPR
- fieldsRBF: Direct field prediction using Radial Basis Function interpolation
- PODRBF: POD coefficient prediction using Radial Basis Function interpolation
- fieldsRidgeRBF: Field prediction with Ridge regularization and RBF
- PODRidgeRBF: POD coefficient prediction with Ridge regularization and RBF
- PODANN: POD coefficient prediction using Artificial Neural Networks
-
POD with interpolation using GPR
model = PODGPR(rank=15, with_scaler_x=True, with_scaler_y=True) model.fit(parameters, field_snapshots) predictions = model.predict(new_parameters) -
Direct field prediction with RBF
model = fieldsRBF(kernel='thin_plate_spline', degree=2) model.fit(parameters, field_snapshots) field_prediction = model.predict(test_parameters)