Skip to content

Ruansh233/PODImodels

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

41 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

POD-based Interpolation Models Implementation

This module contains concrete implementations of POD-based interpolation models that inherit from PODImodelAbstract. These models combine Proper Orthogonal Decomposition with various machine learning techniques for reduced-order modeling of high-dimensional field data.

The models are categorized into two types:

  1. Direct field models (fields*): Learn direct mapping from parameters to field values
  2. POD coefficient models (POD*): Learn mapping from parameters to POD coefficients

Available Models

Linear Regression Models:

  • fieldsLinear: Direct field prediction using linear regression
  • PODLinear: POD coefficient prediction using linear regression
  • fieldsRidge: Direct field prediction using Ridge regression
  • PODRidge: POD coefficient prediction using Ridge regression

Gaussian Process Regression Models:

  • fieldsGPR: Direct field prediction using Gaussian Process Regression
  • PODGPR: POD coefficient prediction using Gaussian Process Regression
  • fieldsRidgeGPR: Field prediction with Ridge regularization and GPR
  • PODRidgeGPR: POD coefficient prediction with Ridge regularization and GPR

Radial Basis Function Models:

  • fieldsRBF: Direct field prediction using Radial Basis Function interpolation
  • PODRBF: POD coefficient prediction using Radial Basis Function interpolation
  • fieldsRidgeRBF: Field prediction with Ridge regularization and RBF
  • PODRidgeRBF: POD coefficient prediction with Ridge regularization and RBF

Neural Network Models:

  • PODANN: POD coefficient prediction using Artificial Neural Networks

Examples

  1. POD with interpolation using GPR model = PODGPR(rank=15, with_scaler_x=True, with_scaler_y=True) model.fit(parameters, field_snapshots) predictions = model.predict(new_parameters)

  2. Direct field prediction with RBF model = fieldsRBF(kernel='thin_plate_spline', degree=2) model.fit(parameters, field_snapshots) field_prediction = model.predict(test_parameters)

About

This is an ongoing repository about CFD-fields or POD interpolation methods.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages