- TF : Tensorflow
- PT : PyTorch
- SK : Scikit-Learn
| Title | Description | Framework | Link |
|---|---|---|---|
| BindsNET | spiking neural networks | PT | [Link] |
| NengoDL | spiking neural networks | TF | [Link] |
| Title | Description | Framework | Link |
|---|---|---|---|
| learn2learn | software library for meta-learning research | PT | [Link] |
| Title | Description | Framework | Link |
|---|---|---|---|
| Spektral | graph neural networks | TF | [Link] |
| PyTorch geometric | graph neural networks | PT | [Link] |
| Deep Graph Library (DGL) | graph neural networks | - | [Link] |
| Title | Description | Framework | Link |
|---|---|---|---|
| tensorflow-recommenders | recommender system models | TF | [Link] |
| Title | Description | Framework | Link |
|---|---|---|---|
| neural-structured-learning | leveraging structured signals | TF | [Link] |
| Title | Description | Framework | Link |
|---|---|---|---|
| early-stopping-pytorch | Pytorch early-stopping | PT | [Link] |
| pytorch-metric-learning | Many loss and utils | PT | [Link] |
| pytorch-lighting | The lightweight PyTorch wrapper | PT | [Link] |
| Title | Description | Framework | Link |
|---|---|---|---|
| pytorch-optimizer | Many optimizer | PT | [Link] |
| Title | Description | Framework | Link |
|---|---|---|---|
| Bayesian Optimization | Bayesain optimization library | - | [Link] |
| NiaPy | Nature Inspired Algorithms | - | [Link] |
| DEAP | Genetic Algorithms library | - | [Link] |
| Optuna | Random Search, Bayesian Optimization | - | [Link] |
| Hpbandster | HyperBand and BOHB optimization library | - | [Link] |
| NNI | Include many optimization library | - | [Link] |
| Title | Description | Framework | Link |
|---|---|---|---|
| FeatureSelectionGA | FeatureSelection using Genetic Algorithms | - | [Link] |
| Title | Description | Framework | Link |
|---|---|---|---|
| NiaAML | FeatureSelection using AutoML | - | [Link] |
| PyCaret | low-code machine learning library | SK | [Link] |
| AutoKeras | An AutoML system based on Keras | TF | [Link] |