diff --git a/benchmark/benchmark_300K.ipynb b/benchmark/benchmark_300K.ipynb deleted file mode 100644 index 2560ce9..0000000 --- a/benchmark/benchmark_300K.ipynb +++ /dev/null @@ -1,376 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "from matplotlib import pyplot as plt\n", - "\n", - "from utilities import complete_panel, myblue, myred" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [], - "source": [ - "paths = [\"lammps_25part_1.7nm3_300K_NVT/\", \"python_25part_1.7nm3_300K_NVT/\"]\n", - "legends = [\"LAMMPS\", \"Python\"]" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABpoAAAPdCAYAAACa/7sdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9f4wj933nf77Y0yOMdmG5ujWxYY3UkKqTlcY+aWVyFBxOUWBnSAP5NyE1wmJlnB0PCXsX0H2Nb0iPfYckuNNNyF34vgJurZBjB9gI8FczJILd/wyRk81a8d4fGlYmcmTNfDcsaUcaaS2PusvKbjSZ6e66P0qk+KPI5o8ii2Q/HwAxw2rWp95FFlnk513vzyfiuq4rAAAAAAAAAAAAYEQrYQcAAAAAAAAAAACAxUSiCQAAAAAAAAAAAGMh0QQAAAAAAAAAAICxkGgCAAAAAAAAAADAWEg0AQAAAAAAAAAAYCwkmgAAAAAAAAAAADAWEk0AAAAAAAAAAAAYC4kmAAAAAAAAAAAAjIVEEwAAAAAAWHiO48hxnLDDAAAAOHBINAEAAAAAgIVjWZYymYzW1tYUiUS0trbW+n8sFlMqlZJlWWGHCQAAsPQiruu6YQcBAAAAAAAwDMdxdPr0aVUqlaEeH4/HVSwWZZrmlCMDAAA4mEg0AQAAAACAhWDbthKJhGzbHmk9wzB08eJFRaPRKUUGAABwcDF0HgAAAAAAWAiZTKYjyZROp1WtVrW9vS3XdVWv15XP53vWcxxHqVRqlqECAAAcGFQ0AQAAAACAhRCJRCR5w+GVy2UZhuH7ONu2fedoKpfLSiaT0w4TAADgQKGiCQAAAAAAzL1m0igej6tarfZNMkmSaZoql8s9y8+fPz+t8AAAAA4sEk0AAAAAAGDu1Wo1SfIdGs+PaZrKZrMdyxzHCTosAACAA49EEwAAAAAAmHvValWmaSoajQ69TiKR6Lg/qAoKAAAA4yHRBAAAAMyQbdtcUQ8AY4hGo0NXMzWtr6933H/ssceCDAkAAACSIq7rumEHAQAAACwzy7J0/vx5VSoV2batZDLpO3cIACBYpVJJmUxGklfNtL29HXJEAAAAy2c17AAAAMBicBwn8OFmptEmEDbLsnTp0iU1Gg1ZltWaUwTA/prvl/X19db5oVmRMu75ollBuLW11XM/Ho+PHSsWQ7Vabf1/1GoozIbjONra2up434cVg2maB2rbAAAEhUQTAAALynEc1Wo1nT9/vjUUl23bkrzOuPX1dUWjUSUSCcXj8Yl+vDqOo7W1tY5l3R2A3cu7hwbr7uBr2t7eJtmEoeVyOVUqFZmmqVwuN3edxJlMRqVSKewwDqx5Pz7mWaVSaT1nxWIxlBhqtVrPfDrTRHXL8rMsS5VKRZKUzWaVTqdDjgiS93lTrVZ14cIF36Fkm/NwnTp1Sslkciox1Go1FYtFWZbV+v7crrn9dDod+PfUMLfdTyqVUqVS6djeON/x0+n0yOeQQqGgXC7X97dFe/sMygQA84tEEwAAC8ZxHOVyuYGd2Y7jtBJPzQ6WeDyufD4/0gTa+8XR/i8wbZubm60OGdu2Wx0189RxGIvFOpIbtm37diIheItwfMyjUqmkXC7X+iwP83jt7lxctu1hthzHUSqVkuQlmahmCl+lUtHp06f3/e7YPHc2Ex9nzpxRNpudaQyWZcmyLOVyucCOnzC3vZ/m52F7bON8x58kMbbfbwsuTAOA+bYSdgAAAGB4pVJJa2trY1VM1Go1xWIx5XK5kded5g87fjRiGKVSybcDvDnvxrxIp9OqVqutW6PRYCicGViU42NeOI6jQqGgtbU1ZTKZA3vBwDjnQyyGSqWiBx54QLZtq1wuk2SaA4lEQqlUauTPm+YFVpubmxN9VjUTj+0xZLNZ1et1bW9vy3VdNRoNFYvFnvN2oVBQLBYbe/thbntYxWJRruvKdV1tb2+rXq/vW02WTCY79sF13bHea34VUIZhKJ/Pq9FodMQFAJhfEZe6UwAAFkIul1OhUAikrXg83jFnwTAikUgg2+7GVxEMY9CQdPV6PbBKvWnwiz2ZTKpcLocU0fJZ5ONjlizLUrFYHHixwjjnh6DYtq3Nzc2ZbMs0TTUajZlsC9NVKpVUrVa1vr6uS5cuybKs1t8Mw1A8Htdjjz0202HI8DHHcRSLxQKpljRNU/V6fazXsb3qdZh2/M4r0WhU9Xp9obY9qfbYpxFPIpHomctynOH3AADho6IJAIAFUCgUBiaZDMOQaZpD//Cu1Wpzc6X/Qb2S/qAat6NpUOfzvCcR6NicvkU+PqbNcRyVSiVtbm4qFou1Oi9HOWcsIzoxl0exWFSlUlGpVOpIMkne8d+cf+ygV/BJ4QyNefr0ad/tNiuAmxUr29vbqlarA6tobNvW6dOnR44hlUp1zGM6TLKqWCz2xGJZ1sjfn8PcdhD6zXUYxByIqVSqJ8lULBb5fAaABUWiCQCABfDKK6/0LEun0x0/zhuNRmvoimq1uu+8JKVSqefH3TAMw1Cj0VCj0VC9Xm/dmkOFlcvljlvzB2O/20Hu6DxImsN0xWKxsdbvdyV6UHM2YLFxfPSqVCpKJBKtzvVmR2ezYqnRaOjJJ58MOcpO3XMmZbPZjnPbJLf2hGM8Hg+kkxTzwbbtnmHI6vW67zBkpVJpJsOQzZtJz8GT6P6umc/n5bquisWi4vF46zVqVp81vz/2+35YqVR6EoqDFAqF1nylknTu3Lmhv3ueO3euZ1m/oVrnbdtB6Rfv3XffPVG7iUSi47mRpHK5zLyKALDIXAAAMPei0agryZXkGobhNhqNodZrNBquaZqtdbtv0Wh06Bia65imOe5u4ICp1+tuOp12DcMI5PjZ3t52k8mkaxiGa5qmWywWA4x2erLZbM97L5lMhh3W0lnU42MaGo2G7zHXfe7wOzbj8XhIUXuv4TTiqFarHfs47DkUyyGdTk/0/WdRBX0OHkf7e9o0Tbder4+0bnvs7bd0Oj3y9sfd/3HP4WFuO0j5fN73NZjkHBuPxzvaMgxjpGMDADCfVidPVQEAgGlrv3rx4sWLPVfo9tOcg6Lf+OqWZcm27aHbkxgGDMPzu3J6lGOtm2EYzGuEvjg+PtZeIZBOp3XmzJmF++wOcoioXC7X+n86nZ7ocwiLp1gs9szdZFmWarXaUle2BX0OHkd7NVO1Wh35++a5c+eUSqUGtjvI2bNnO+6P87ly5syZnuGrK5XKvt+fw9z2POuek6k5nOCi7g8A4GMMnQcAwAJoDvGSTCbHmm9k0MTuow6f1z20EdCPX8f2onV2A4uqOYxYPp9fyPddUHNr1Wq1jgRDPp8PpF0sFr/XfdkT0/NwDm5+/0wmk2MlEpLJpG8ycGtra991HcfpSdIMmv+pH8MwfD+Puod9m5dtz7NYLNbxu8M0Tb3xxhskmQBgSZBoAgBgzrVXIp05c2asNkzT7Dvm+aAkFDAJv6QknQnAbASVqJml9s7joD4r2quZstnsQibdMLl4PN7z2l+6dCmcYGZkHs7Bzef41KlTY7fhVwk0zBxb3RdSGYYx9v77JbtGuYhrltueR47jKBaLdST9o9Go6vU6n8kAsERINAEAMOeaiSbTNCfqOOw3ZMeoE2LzgxCTmHTyaADLq3k+Cuo8017NZBgG1UwHXHdH/6jff5bBrM/BzfffONU8TX4JmmG+D58/f77j/okTJ8aOIZFI9CwbNCJAmNueN47j6OTJkx1JpmQySZIJAJYQiSYAAOZcM9E06TwC/X6UDzP8SDuGzsOw5mHYHgCLJ6iqi/YLLEgyofu4WvYK27DPwbZtKxqNKpvNTtSOX8zDvHbdyZhJLtbqlyhqT57My7bniV8lUzqdXvphKwHgoCLRBADAAohGo76TIY/K78c6iSPMEscbgEEMw5jo6v+mUqnUURHcb/hYHBzd559FHF5yUrM8B5umqXq9PnGS16/yrF+VfpNlWT3rbW5ujh1DvwRd+/DW87DtedJMMrXHmc/nVSwWQ4wKADBNq2EHAAAABkun04F1kK2vr/f8+B31il4qUmbDtm05jqOtrS2tr69PNL7/sBzHGfj6NmOaRSzD2i/mSc3jPmN40z4+EKxoNKrt7e1A2mqfm4mOzU6L+L5wHEe5XE75fH7s2Ls75ieZNygIYZznF1H3XFrRaHTfKn+/+bcmTbJFo9GeKiK/ZE+Y254XfkmmYrFIwh8AlhwVTQAAHCB+w+SNepXlIs+x4ziOSqWSEomEYrFY38fVajVlMhklEgltbm4qEolobW1NsVhMqVRKlUol8LkdHMdRoVBQLBZTJBLR5uamYrFYK9ZmHIlEQpVKJbDtVioVpVIpRSIRnT592vcxuVxOa2trrZg2Nze1trYWWifHMDGPq/naN5/v9n1u3s/lcnPTwdM8plOpVCvG5m1zc1OpVEqlUimQ49WyLOVyOSUSCa2trXVsq/n+SCQSKhQKoc4fEcTx0d5Gv2pSx3E6jpXm8xD0847R5XK51nM/TKf0NMzbMdR+jllbW+t7Hun+POk+942yvebnRXdbuVxurGG/SqWSSqXSyOs1tScAotHozCuawjrPL7ruRPG5c+f2Xader/csmzSJ55cseuWVV+Zq2/PAtm098MADHd+TqtUqSSYAOAhcAABwYEjqudXr9X3X297ebj0+n8/3/L1YLLrJZNI1TdM1DMOV5BqG4UajUTedTrvlcnkauzOURqPhFotFNx6Pd+y3aZo9j93e3naj0ajv8+R3S6fT7vb29kTxbW9vu9lsduhtNm/RaHTkbW9vb7vVatXN5/NuMpnsaTOZTHY8vtFouKZp9o2h0WgM3J7fc1mtVqca87jy+fzAffW7JZPJfZ8D13V9X99J4240Gr7Px6BbNpsda1vlcnnk56b5GRDU69NPEMfHOG3k8/mpP++z4HdsxuPxsMOaSKPRGPkcN6l5PIYajYZbLpfdbDbr+1ncfV6uVqtDvc8Nw9j3c3zYfYvH4yOdx+LxuO+5exj1en3mx0XTLM/z7YI4B4etXC53xO/3HdRP93c+af/vLPtJp9NDfV6Gue1p6Pd+LhaLPY9tNBqt3wHNz4tZvtcAAOEi0QQAwAHR3cnS/AE4jPZEU/OH5fb2tu8P30G3YTsIJtFoNNx0Or1vwqi7s6r7x/Eot3ETacVicext+u3DpNtp7wzd3t7ed51BHWD9tplMJt1sNuum02k3nU67yWTSjcfjbjQadaPRaCuGcWIO4zVIp9P7biPIRJPf+y6ZTLrVarXVkbW9ve2Wy2Xfzi7TNEfq8OruNE+n0z3bqtfrbrFY7NtJPQ1BHB/jtjFqgk+avMN4WpYx0dT++kw70TmPx9Cwbbeft7o780ddf5J9Mwxj6M+kZof3ON8l2r8TzDL5O6vz/LDbHfYcPA+6v4cMc75t8jsfTfoZ7Pd5GY1G52rb0zBsoqn7e/So3zcAAIuPRBMAAAeE349Uv6sR/XQnmsa5MndWPzyLxeLInTf1en2ijqBRO64ajUZHp1c0GnWr1WpHR0T7FfKDrjIfZrvZbHbkztBhrmzv1rxqO4jEzbBJzHE7xbpfA8Mw3Gw22/E6bG9v962IG+U9FFSiqVwuj9yJ49dBNGzHbvs+D7tOtVrtiXEagjg+Rm3Dr+LRMIyOSs5Bt3lM4CxboqlarXbsy7Q7OefxGBq2rWaiyO8zwjTNoc4B3dUx/ZLb+7U17OdE+wUzo1RJtCfSZpVkmvV5vtleUOfgedCetBz1dfPbt0mTPf3eK/O07WkYJtHU/T3aNM25vLgCADBdJJoAADggujseRvmB2j0UURC3aQ3f0uy4qVarrWGDBnVstXdMmqbZSjY0Go1WoqFarbrZbHbfzrJhr7Juj2nY12HQUESj6u6Mbd6anaH9kiqDtjvKMFCjPofb29t9E4jjJGy6kyHJZHKoDpF6vd7z3AzT2RlEoqn7+R0lGeDXGb7fcde9vVHer+0dTrO44jqI42O/NtqHkTQMw83n8z3HzPb29r7vg2GT+7OybImm9s/oWQ9ZOK/HUL9kWPdFI9Fo1LdKadDFG83Pke4EWjKZ7Pls3K8KetjXa9RzbhhJJted/Xl+mufgWetO0o3zuTnOc7gfv/fCsImmWW17GvZLNHUnmRb5HAIAmAyJJgAADgC/YXFG6Tjul2hqJmaKxaJbLpfdYrHo5vP5oRIVowyXMym/oXxM02w9L4ZhDN2Rsd8wOMM8r+0dUKMMu9fvx/44Q/f5DS2YTCZbHYHN56TZEVqv1zuex+5hF5uve7ONfgm+ZDLp5vP5vrdBx0S/mEfR3VkzTsdj+/MwjEkTTd2vu2EYI18p7HfMDupQ7N7eqJrP86yG9nHdYI4PvzbaK0SGOV4GzW02q47BYS1Toqn9fTLOeyQo83YMtVckd7fTfK72O4f0uzhB8ipgmm1Fo9Gxqiybt2Fes+7npXku764Uah8+1DTNmc9NNOvz/CzOwUFrXtTTvJXL5Z7va35Jy/30O+Yn5Zfs6T4/hrntaRmUaPIblnveLqgAAMwOiSYAAA6A7o6ZUYdG6f4haZrmvj/8h5nDaVad0IOuyB4n4TVpJ2CzA2icTme/7Y4z1M2g12bQXCDN2Id57fySG5N09vnFPEoiofs4Hvf4a+90HcYkiSa/Dt5xrjj3i6FfJ1V3YnqcxEOzs22WSYtJj49+bYzTedavs1Ga/nBuo1iWRFP3xRBhVmXM4zHU7+KIUc5/+w1LO8px0+9ilGESMqPMDdkcEjUM83CeD/ocHKRByct+t2GTTtNK9vhdtDWrRNMw256WfommQfOxkWwCgINpRQAAYKkVCgXZtt26b5qmisXiSG1sbW21/p9MJtVoNBSNRgeuYxiGisWi6vV638dYlqVarTZSLONYX1/3XW4Yhur1ukzTHKk90zRVrVZ9/2bbtkql0sD17777bklSLpcbabv91rl06dLI7RiG0fdvFy9e7Pv3fD6veDw+8nMWhEEx78dxHJ08ebJj2blz58Zqq7nvk8QzrEwm07MsnU6P3M6pU6d6ljmO4/v+6z6229//w5rFczONbQ467kd53g3DUD6f9/3bLD7zDpr294lpmspms6HFMo/HUL9z4Cjnv3Q63XffBp0T/fTbr2HaKBaL2t7eVrlcVjqdVjQabcVlGIai0ajS6bSq1aq2t7f7bmva5uE8P89GOV6aKpWKYrGYEolEx/fabuOcs8bV/d4Kc9uzVqlU+v4tk8moUCjMMBoAwDwg0QQAwBKzbbujw8IwjLF+3Ddls1mVy+WR1olGowOTTWF1AjW3PW7CxDTNvrHvl8jLZrPa3t4eK2EQj8d7lg3qcBlVPp/ft8O+Wq2OfByE7fTp03Icp3XfNM19k6X9NI+ZaXfyWJbV89q2d6qOot+++r2O3R1llmWNvD3JO5b8EmWLxjCMsRIX/dYZ9HmI0VUqlY7ES5jnlH7m8RhKp9Mjn//6nbNGfc6j0ajvtoc9lxmGoWQy2bqYZXt7W67rant7W/V6XcVi0fdcOUvzfJ6fB83zSjMp2Gg05Hoj7qjRaAx8DWu1mmKxWN9zU/u5ftbC3PasJZPJgcd3LpcbK9EKAFhcJJoAAFhiqVSq4/7FixfHSqzE43G5rjt2B140Gp3Lq/vH6QBql81mfTv9Lcvat7Nh3OoLv9cvyI6NSZ+TeeQ4Ts+Vt8lkcqI2s9ns1JMofgnLEydOjN3eJB27iURi5O1ls9mJn+d5EPRzPssr3g+C06dPt/5vmuZcHnPzeAzFYrGR19nc3PRdPk7S3m+dZXtvzOt5fh7k83m5rttKKLXvs2marQRUtVr1fR6bVcp+z0u/530az2H3tsLc9qwlEgkVi8WB3xsLhcJSXHACABgOiSYAAJZULpfruNqzXC6PXcERhH5JGSmcZFNQP9CffPJJ3+XTHOZmWp0LhmGE3nExDRcuXOhZ9thjj03UZj6fn/rwXH5xT/L6+K3r17Hr18nZvIL8IA77Nslz7veZu2wdxmHKZDIdz+eow8LOyjweQ+NUZPa7UCWotnhvfGwZz8Xthv0+Go/H+1bwOY7TkWhumuWQct3bCnPbYSkWiwO/D5VKpZ4L3wAAy4lEEwAAS6hSqXSMjV4sFufiKu9+Vz2GMSRMUD/Q+1V6BNVhZlmWSqWSMpmMEomE1tbWfNsOYnuTXHU/z/w6n8NMug7DcRzf19S2bdVqNdm23fcxfu30e4/5re83n5PkHYvNYzCTyahSqSzdcE5BC2Mus4Oi+dnYFI1GQx8ubRrm6RgKMpZ+1VEH0SzP84to0NyilUpl6OclzIq5ZavW65bP5weOelCpVMaqjAYALJbVsAMAAADBsiyr48rBUScgn6ZTp075Tg68yJ0n/RIW43QqOI6jCxcuqF6vt5IJs7SsV1D7zeMwL1cC99Pv+KlUKgMn4B6V32ve7LDvV73kOI5KpZJvJ38ikVjKzv5x3X333WGHsLS6KxnOnTsXUiTTNU/H0Lx/bi6CsM/ziyqdTiuXy/l+X7xw4ULH99xpDV83TAVwmNsOW7Oqqd+8TM3KaOYpBIDlRaIJAIAlYtu2Tp482bqfzWanPrzXKOa9imQc/X7oD9sB0Oy0P3/+fN+JrSXvuTtx4oRisVjfzhb0WtROvGnEbRiGTNPU+vq6TNNULBbrW8VWLpcVi8WGjsOyLFmW1UokJ5NJnTlzZinf8whfoVDo+LyMx+Mca5hbnOeDkU6nfS9WGjZxMY2qomHnOgtz27PUHCa737xMlmUpFovp4sWLS3txEwAcZCSaAABYEo7jKJFItDom0un0wGEswmKaZk/n9TL+2Bwm0ZTL5Xw7TSSvo75ZHdLdVj6fpwNqSP2ep62trbk+7vrFPU6F4jj7aRiG6vW6crlcR+XSsJqVV8lkUuVyeeT1gX4cx+m5Yn4ez3WAxHk+SIlEwve59Lsgwu+75qTPp9/6ft/1wtz2PGh+R9kv2VSv1+f6exgAYHQkmgAAWBInT55s/bBNJpMLNSn6vP5YnsSgfWoOb9jdEWGapvL5/FzMp7UsRpmbaFHMqmPGMAwVi0Xlcjnl83lduHBh5OetUqkwVA4C1T1kHtVMmEec54PX73tVv++V3c/9pJXCjUZjqJjC3Pa8SKfTWl9f7xjKu51t24rFYqpWq3O9HwCA0ayEHQAAAJhcIpFoDceyiBUE/YbvWgR+He+DOpCawxt2dzqk02k1Gg06n2Zk3ofU65dMev/992cbiD6eiH17e1v1el3ZbHakjv32IfWASdRqtZ45yqhmwrzhPD8d/eYI81vul7zwS9aMYth5ksLc9jzZ7/dIM9k079/HAADDI9EEAMCCSyQSqtVqkrwru+c9ydSdmIlGows9dIbfD+R+w4VI6hjesCkej89tBdqi69cRU61WZxzJaPp1qA2a32MWotGo8vm86vW6tre3Va1Wh0o8nT17dkYRYpl1f7ZSzYR5xHl+tvzmKvJbNmlCo3v9eDw+dDyz2va8SSaTA79vOY6jWCwW+ncbAEAwSDQBALDAUqlUK8kUjUbnvvNc6r0q89SpUyFFEozm899kGEbfDoBKpeLb2TDvycFF1i+J2f26zZt+CbJLly7NOJL+msd6e+KpX3WJ4zgLPVwhwpfL5Xo+P7vnagLCxnn+Y0FXqvhV9UjSk08+2bPM7xw66fmze38SiYTv48Lc9jyKx+MkmwDggCDRBADAgspkMq0hhKLRaOBzoNi2HXhnvF9nc3PS4EXV/eN50P74Xc2cTCYXuqJr3pmm6fv82rY918O1GIbhG7fjOHMbt2EYymazfYcImqckGRaLbds9wy9Go9GFuaofBwfnec/a2ppvZc8k/M598Xjc97n1+2yY5IIHv3X7ff6Eue15FY/H9/2dEovF5v4iIADAYCSaAABYQLlcTqVSSZLXkX7x4sVA23ccR5ubm30n8R1X9w/IbDa70J0vjuN07JNhGDpz5kzfx/t1tD/22GNTiQ0f69chM+9zu/SLe9rDLxUKBUUikdZnzKhM0/RNuPYbDhDYj9+5aNAQpUBYOM974vG4HMfpmVNtEn5VMYPO437n0HETGd2vq2EYA4ftDHPb86p5Udyg7/2JRCLQYwYAMFskmgAAWDCFQqF1Zbdpmvv+aBtHc0gsx3F6riKfRPs8LaZpzn1H/366553J5/MDXwu/q1nHmcy53/AxiyCM4dP6Dc9YKpXmtjpI6h93oVCY+2Ho/Ib1mfeJyzEdk77HSqVSz5BKhmEsfDUsltO8n+dnde5onr+CnJ+vOwGRTCYHJlz8EtTnz58fa9vdQx/u9/kT5rbn2TDJplQqNfaFLgCAcJFoAgBggZRKpdacFIZhqFqtTq0iqLmdXC4XSMeEZVkdnYWLPim2ZVkdSbh+VRz7eeWVV0Z6vN8k44sk6M6zYZ6LZDLZt6Mv6Kq9YQ0bd7/3d1hxjysajYZSvRjEe2WR329hqtVqWltb0+bmpiKRyFgVSI7j+M7DtGgdrfN4DI3zWbzIFzmEaZ7O87N6DZsVPZZlBTIcWq1W60haG4ahc+fODVzHb+6mcatlLly40HF/UPV62Nued8NcJJfJZAK90A0AMBskmgAAWBCVSqXVUWcYhur1ekfneXMM9+YcLs1bM8FTq9VUq9VUqVRUqVRUKpVUKpVUKBSUy+V6OvPax72fdMJ1x3E6OsaLxWLo48tPMgdV9/40k3778ftRPUoMqVSq7+OD6DyaRWdoWB2u/arnLMua66RNvw6lWq02cSdMv9fi/fffl6S+cy0No7tjlWHO5pPfMRDEZ4llWT2d5aVSaeT3Wr8LHRa9oxXLi/O8p314t1QqNfF2288hze/A+128YBiGkslkz/JRq2VqtVpH/Ol0eq63HbTmd4Juk7ymwySb/H6bAADmG4kmAAAWQKVS6eiga86hFIlEWre1tbXWbXNzs3WLxWKKxWJKJBJKJBJKpVJKpVLKZDLKZDLK5XIdw/G1a1417jd00bAcx9HJkydbV6IWi8W5uRo9kUiM/KO/e3+i0ajeeOONoYbGOXHiRM8yy7L2jcGyLG1ubqpWqwU2VOIsOpv8npNJKtkmiTmZTPp2+ki976+gTRJ3Npvte2zlcrmxEjiWZSkWi2ltbc337814S6XSWLE7jtNxTEej0Zm85xelemmeqkL8YgniOeg3XFalUhl6KL1+n42DKv3mwTweQ9M+5ubpmA7bPJ3ngz4Hj6p5QVHze9O4UqlU63PD70KrQfwuMhk1edH+eMMwhh72OcxtB2m/i1LGZZrmvt+fC4UCF6oAwAIh0RSS5tXmi2iRYweARVSr1UKruGj/cXfy5MmRK4BqtZpisVgrSTVPSaamTCajRCIx1LmtVqvpgQce6NifUTqE+r2O/YYIsW1bqVRKsVis9YM8Go36/ugftXPTb3/9JjGfhF/nQXOf2uNtVhXFYrGB7U0ac7lc7jufQ6VS0dra2tCJx0qlolgsNtTjJ4170BCZpVJJm5ubQw3J0/48W5albDY7MN5xOwdPnjzZen0Nw+iZX2JagjimZ/G+mJfv0Y7j+B43zUrYSQzax2HbHvR5Oc/m7RhqVjp3q9frI2+332sX1DE9L++NSczTeT7oc/CoNjc3O7axubk58mucSqVan1PNKphR5rzymw+0uyp9kEKh0HHcX7x4cejvfGFuO0j9vvsHMSTiMInDcaphAQAhcTET1WrVTSaTrmmarqSeWzQadfP5vLu9vR12qD0WIfbt7W03n8+78XjcLRaLocUBAEGr1+u+n73Tuvnp/vyPRqNusVh0G42G7+MbjYZbLBbdaDTaWsc0zb6Pn4VyuTzU/jfPaeVy2a3X6269Xner1aqbz+c7nod4PD72ea/9eem+mabpJpPJnvNuPp/vaMNv3WQyOdT2t7e33WKx2DeGdDrtNhqNQM7rg7bjd4vH42PFPMr3kO3tbTcej+8bSzKZdIvFolsul91qteqWy2U3n8+7yWTSNQyj9bhqtTpwW0HF3Wg0OrY7KO5sNtuKvVgsutlstue4M02z77a63/OmabrlcnnfGMvlcse6hmHM5H0fxPMc5GvVLp/PB9peEBqNRs9r1X0zDMMtFotuvV4fK850Ot237WGOiX7P26DjNmzzeAw1Go2+r4VhGG61Wh06pnq93vf8FY1G3Xq9PtJ+9XuumuegRRb2eb4pqHPwuPp9h00mkwOPl+Z7qf2cl06nJ4olm82O/Hx2v/fG7WcIc9vj2t7eduv1uptMJvf9zjHueaJ7e4POSc33zqDvXACA8JFomrJyuTxUp0D7LZvNhh2267qLEXu5XPbtLAr6SzIAhGXUz+FJb378fiB3//Br3rr/ZhhGT+dJGIZNNO13MwxjqA73QUZJHhqG0dMZs729PdR67T/G0+n02MeSYRgTnVf36zho3qLRaMd6k8Q8TLz7HdfD3Pw6iqYZ9/b29r6dPsPc9vu+NuhYSKfTbj6fbyWy8vm8m06ne17nZDI51URKEM/ztI8x1+2fJOh+Xqf5HTrI84hhGENtc3t723e7w+xno9Hou/15u6BsHo+hST7r288b9Xp9orb2SzwNmwQZ9pibJ2Gc5/sZ9xwclP32IR6Pu+l02k2n024ymexJ0o2TxOzH773UfO80LzDyu7ho2Od6Xrc9rEk+z/w+i0a1vb09MEnbfhs16QoAmA0STVPi1xGQzWY7rvZoXvHt9+UvGo2GdpXjvMferF7q/hLU/FIT1BdRAJgHk/7YMwzDNU2z9f/2m986fp/fjUZjqAqQ7m3PQ4KpyS/R1OzgGHafguw4r9fr+3b+9Kua6tcJ2/3atndMDLOfg46RSaoIhtlX0zR79nWcmEeNt9FojJW4MU2z7/E9i7ir1erQnTHt38+GfU92V22NctvvSvWgBPE8D/Pa92tj2E7ZfkmC7jYnvVp/kHFex0G3YbWfO0zTHDpJVK1W+z5X82Yej6FhXsN+MbWfN7pfh2HaGbba03X7J5r82lpEsz7PTxKH3zk4KPl8fuTzVfNcMo0ES6PRGCmeZDIZWIVdmNsexqjfh/q99yc9n/V7jtq3w4XFADCfIq7rukLg2scfbo4lPGg83Uwm0zPGfzQaHWvs7EnNc+yFQqFnAs1oNKozZ870neAbABAMx3FUKpX0yiuvyLbt1px9hmFofX1dpmkqkUgoHo/3nQcnLJVKpWd8d9M01Wg05DiOzp49K8uydOnSpY65ZUzT1IkTJ5TJZKayT6VSSeVyuWO7pmkql8vN3VxWkyqVSioWi61jR/L2NRqN6ty5c6HMO9DkOI5qtZrOnz8v27Y7Ymw/DmKxmOLx+EjzQ0yT4zi6cOGCqtVqR9zNmE3T1GOPPaZkMjlWzJZlqVardbznt7a2WttYX1+XYRiKx+N67LHHFI/HQ30dAWDezMt5fh7OwbVaTeVyWbZta2trqxVL83xlmqZisZiefPLJqcdj27aKxaIsy2qdP5vnzvX1dSUSCaXT6anEEea2AQCYJhJNU9A+YaVhGHrjjTeG+pLQvl5TOp1WsVicRpj7xjBPsTcnKG2fPDQajSqfzysejweyDQDA8hqUaAIAAAAAAMD4VsIOYNkUCoWOhMsoVwedO3euZ1mpVOpIrkzTvMZeKpUUi8U62srn86rX6ySZAAAAAAAAAAAIEYmmADmO0zGsm2maIw3nZhiGstlsz/LuoeKmYV5jz2QyymQyHXE1Gg3fbQEAAAAAAAAAgNki0RSgs2fPdtxvT5AM68yZMz3LKpXK1Kua5jH2VCrVMfdTc96neZkXAQAAAAAAAACAg45EU0Acx1GhUOhYNkpFUJNhGL6TjXfPfxSkeYy9e86nZpKJCTEBAAAAAAAAAJgfJJoCUqvVOu4bhjF25Y3fvEPVanWstoYxb7FnMpmOJJNpmqrX62PFAwAAAAAAAAAApodEU0DOnz/fcf/EiRNjt5VIJHqWdSeDgjRPsZdKpY7h8iSpXC6PHQ8AAAAAAAAAAJgeEk0B6U6m+A0hN6x+iR7LssZuc5B5id227Z65ofL5/ETxAAAAAAAAAACA6SHRFADLsuQ4Tseyzc3NsdvrNw+Rbdtjt9nPPMWeSqV62spms2PHAgAAAAAAAAAApotEUwAuXbrUs2x9fX2iNv2qeKaRaJqX2EulUk/V05kzZyaKAwAAAAAAAAAATBeJpgDU6/WeZaZpTtSmX7LnlVdemahNP/MSey6X61lGNRMAYJq2trbCDgEAAAAAAGDhkWgKgF+1Tr8h5Ibll+zpHuIuCPMQe6FQ6Pl7MpmcKAYAAAAAAAAAADB9JJoC4JesmXT4Ob9kzzSuvJ6H2IvFYs+yU6dOTRQDAADt/M5D07iAAwAAAAAA4KBZDTuAZTCNuZPuvvvunmWzqmia1Cix12o13xj8Kpocx1GtVlO1WtXW1pYcx5Fpmtrc3FQ8HvedGwoAAMl/qFjJO7dMWskLAAAAAABwkJFompJJO63C7PSaZex+1UzdCSPHcZTL5VQqlfbd7pkzZ8aa2+natWu6du3ayOttbGxoY2Nj5PUAANPlOE7rooRLly71PYekUinlcjmZpqn19XWSTgAAAAAAHGD0E4+HRNOEZjnsTtBD581D7LVarWfZiRMnWv8vlUrKZDJDbaOZkCoWi6pWq75zRfn5p//0n+rDDz+U67pDPb7dJz7xCd11110jrwcAmJ5f/vKX+h//438M9dhardZzLjp27Ng0wgIAAAAAAHPugw8+0N///d+PvF4kEtGdd96p//k//+cUopp/JJrm1KTzJIVp2Nht2/ZNdsViMTmOo9OnT6tSqYy8fdu2FYvFVK/X9002Xbt2bewkkyT9/d///VgfPACA+XX9+vWwQwAAAAAAAAvEdV19+OGHunbt2oGsbCLRNKGgq4wGCTr5FHbsftVMTbFYrDV3UzweVyaTUTQalWmachxHtm3r/PnzKpVKvskqx3GUSCTUaDQGxnXt2rWxk0wSFU2L4N1339Xe3p5WVlb0mc98JuxwEJBbt27pF7/4Rev+r/zKr+iOO+4IMSIEifftcuJ9u/x47y4n3rvLjfftcuJ9u/x47y4n3rvLjfft4hi3oknykk0kmjCWWQ4/F7SwY+83MXtzqLx4PK5isdhTlWQYhqLRqKLRqM6cOaNUKuWbtLJtW7lcTvl8fuiY/t2/+3d65JFHhn78QR97cxHce++9un79uj7zmc/o7bffDjscBOSv/uqv9MQTT7Tu//mf/7l+4zd+I8SIECTet8uJ9+3y4727nHjvLjfet8uJ9+3y4727nHjvLjfet4tj1DmaXn31Vf2rf/WvphjRYiDRNKF+k4Y7jhP4hOKzam9WsTcrlvyk02kVi8Wh2q1Wq0okEr7JplKpNFKi6ZFHHuEkDgAAAAAAAAAHEIUF41kJO4BFN8u5lILeVtix90s0NSuZRlEul32TWY7jqFQqjdQWAAAAAAAAAAAYDommKZnl/EdBm1Xs/bYzSgVSk2EYOnPmjO/fqtXqyO0BAAAAAAAAAID9kWia0KDh5ybhl4TpnqtoUmHH7rcd0zQVjUbH2m46nfZd7jekHgAAAAAAAAAAmByJpimZRlVQLBYLvE0/YcY+STLNMAzF4/Ge5ZMmzgAAAAAAAAAAgL/VsANYBqZp9sw3NGlyo1+1T9DmLfZ+VVbDikajVDChwze/+U198MEHuuuuu8IOBcCQeN8Ci4n3LrB4eN8Ci4n3LrB4eN9i2ZFoCoBfsqb7/qgajYbvdoIWZuyGYQRebfTYY4/5LnccZ+IkFhbTN7/5zbBDADAi3rfAYuK9Cywe3rfAYuK9Cywe3rdYdgydFwC/JIpfsmUUs5ijqV+bs4p9fX29Z9mkiad+ySSSTAAAAAAAAAAABI9EUwD85h+atCqoe32/uYeCEGbs00ic+SHJBAAAAAAAAADAdJBoCoBfwuTSpUsTtdmdrEkkEhO110+YsfstnzTJ5VcRdeLEiYnaBAAAAAAAAAAA/kg0BcCvYsdxnLGHgfNbd1oVTWHGHo1Ge5ZNmmjyG7ZvWkk6AAAAAAAAAAAOutWwA1gW8XhctVqtY1mtVlMymRy5re6KIsMwfJMyQQkr9n6VRrZtjz2sXr1e71k2aD82Njb0iU98Qn//93+vT3ziE9rY2BhruwBma2NjQ3/wB3/QcR/AfON9Cywm3rvA4uF9Cywm3rvAYqJ/2RNxXdcNO4hlUCqVlMlkOpYlk0mVy+WR28pkMiqVSq372WxW+Xx+6PVHTdSEGXsqlVKlUulYViwWlU6nR9625M05ZVlW6340GvVNPrW79957df36dR07dkxvv/32WNsFAAAAAAAAABw89C+TaAqM4zhaW1vrWT7O07u2ttYx/Nz29rYMw9h3vVqtplQq1Vo3nU6rWCzuu16YsddqtZ6h7eLxuKrV6sjbtm1bm5ubHcuq1eq+ww7yQQAAAAAAAAAAGAf9y8zRFBjDMHyHaGuv7hlGrVbrSNSk0+mhkkyWZSmRSHSsWyqVlEql9l03zNjj8XjP0Hq1Wm2suZq6k2rRaHRqc1sBAAAAAAAAAAAqmgLlV1FjGIa2t7eHbqN96DfDMPTGG28MlWjyG4KuqdFo7DuUXpixW5alWCzWsWzUofu64x9l+2ScAQAAAAAAAADjoH+ZiqZAmabZMx+R4zhDVRVJUqFQ6Jhf6OLFi0MlSiQNrABqb7OfMGOPRqPKZrMdyyqVykgVVd1xlsvlobcPAAAAAAAAAADGQ6IpYNls1jdpsl/CplAoKJfLte4Xi8WeIeUGOXHiRN+/DdtOWLFLUj6fVzqd7liWyWRUKBQGrmfbdkcllTTcvEwAAAAAAAAAAGByDJ03Jd3JF8kbzi2dTuuxxx6TaZra2tqSZVkqFoutiiTDMFQul0dOlDiOowceeKBjjiTJSx51VyrNW+ztcrlcT3IpGo0qk8koHo9rfX1dknTp0iWVy+WOqqdoNKpyubzvMIHdKG0EAAAAAAAAAIyD/mUSTVNl27ZSqdRQQ9dJ3rxE+Xx+5ERJ+/YymYxqtZpM01Qul+upEhqlrVnG3s6yLJ0+fXrobRuGoXPnzimZTI61PT4IAAAAAAAAAADjoH+ZRNNM2LatYrEoy7Jk27Zs25ZhGDJNU+vr60okEkqn03M5p1CYsfttW/LmkzIMQ/F4XKdOnRp5mL5ufBAAAAAAAAAAAMZB/zKJJoAPAgAAAAAAAADAWOhfllbCDgAAAAAAAAAAAACLiUQTAAAAAAAAAAAAxkKiCQAAAAAAAAAAAGMh0QQAAAAAAAAAAICxkGgCAAAAAAAAAADAWEg0AQAAAAAAAAAAYCwkmgAAAAAAAAAAADAWEk0AAAAAAAAAAAAYC4kmAAAAAAAAAAAAjIVEEwAAAAAAAAAAAMZCogkAAAAAAAAAAABjIdEEAAAAAAAAAACAsZBoAgAAAAAAAAAAwFhINAEAAAAAAAAAAGAsJJoAAAAAAAAAAAAwFhJNAAAAAAAAAAAAGAuJJgAAAAAAAAAAAIyFRBMAAAAAAAAAAADGQqIJAAAAAAAAAAAAYyHRBAAAAAAAAAAAgLGQaAIAAAAAAAAAAMBYSDQBAAAAAAAAwJwplUqKRCKKxWJhhwL0ZVmWCoWCEomENjc3tba2pkgkokgkorW1NSUSCWUyGVUqFTmOE3a4mJKI67pu2EEAYbr33nt1/fp1HTt2TG+//XbY4QAAAAAAAGBEsVhMlmXJMAxJ0vr6+r7rbG1tSZIcx1GxWFQ6nZ5miCPb3NyUbduSpEajIdM0A2vbcRytra31fb7an5t0Oq1isRjYtoex3+u5tbUlx3FkmqYajcbS7Y8kJRIJ1Wo1SWqt17Tf8d3cX0kdyR3DMGSapk6cOKFYLDb2Me84jkqlks6ePTty8igajSqTyejJJ5/s2a9FRf8yiSaADwIAAAAAAIAFl8vlWp3ytm0P1fltmqYMw9D6+rpyuZzi8fiUoxxerVZTIpFo3Q86OeI4jlKpVCvB0Uxo9RN0omsQy7L2reJqvnYnTpxQsVhcuv2RvGPasizZtr3v/kwinU4rn88PnfSpVCo6ffp0x3ssGo0qHo9rc3NT6+vrsm1b77//vizLar0v/ZTLZSWTyQn3IHz0L5NoAvggAAAAAAAAWDKWZenkyZO+Cad4PK5qtTr7oEaQSqVUqVQ6lm1vb0+1AsRvm02zrAJqr+Tpls1mlc/nh2pn2fanUqkolUr5/i2ZTOqxxx5TNBrV+vp6x3Fi27Ysy1K1Wh2Y9KlWq/smWzOZjEqlUut+NBrVuXPnFI1G+67jOI4uXLigfD7fkzAbZpuLgP5lEk0AHwQAAAAAAABLqLtTvKlerw/sGA9bcxi4bvl8XtlsdmrbtW1bm5ubff8+7USXtH/1zyhd2cu2P5J/8swwDG1vbw+1vuM4On36dN8E3KDET/f7aZzjsbuNWbwGs0D/srQSdgAAAAAAAAAAELR+HfzznGSS5JsckzT1Cpz9hpI7e/bsVLe/3zZGfd2WbX8kdQynOA7DMFQul/tWUaVSKd8qwEKh0HFcZrPZsZKexWKx43VZhiQTPCSaAAAAAAAAACyd9fX1sEMYS7/khG3bA4c+C8Kgjv9CoTDU3Ffjsm27b6WNNN7ruWz7E9Qxnc1mfedGchynJ9HpOI5yuVzrvmmaQw/35yeTybTawfIg0QQAAAAAAAAAc6BSqbSSH34d8ZN08I+iX7XNNKuA2pMZQVe6LNv+BKHfsXT+/PmO+6dPn+6430wUjat5XM/jc4LxkWgCAAAAAAAAlsW1a5JlBXe7di3sPRqbX0f2vHduNxMfpmn6DpVXq9Vk2/bUtt+smDFNU+l0uufv/Yb1m5TjOK3qn37bHsey7U+Qx69pmr4JOMuyOu53V2X5VUKNul1pcSsO4Y9EEwAAAAAAALAMrl2THnxQisWCuz344EInmxaJZVmtTv5cLqd4PB5qVZPfdhzHUaFQCHxb7dU/09q/ZdufIJw4cWLg3/2G/pt0yDuGzFtOJJoAAAAAAACAZXDjhnTzZrBt3rzptYupa1YzGYbRqoBpT1g0TasKp5thGL7VK0EPN9c+L5BpmhNXzPSzbPsThP0qpKZRPWcYhlzXVbVaDbxthIdEEwAAAAAAAACEqH2otfZh1voNuTarZFO/KqAgt9+e6Jl29c+y7c80tFccNRqNnr835xAD2pFoAgAAAAAAAIAQtScnMplMx9/8kk2zSmCYpql4PN6z3K/SahztQ9fNovpn2fZnUn5Jo/aYt7a2ev5eq9WmGRIWFIkmAAAAAAAAAAhRs6LGb14mvySIbdsz6/CfZhVQexthzz21qPszCb9j6NSpU63/r6+v9/w96KEGsRxINAEAAAAAAABASEqlUquyxC+p1K8KZ1aJjGg0qmg0OpXtN5MWs6z+Wbb9GZdt2z1zMMXj8Y7nZnNzs2c9y7ICqwDD8iDRBAAAAAAAAAAhaSY4+iWUpN7h9CSvGqU7UTAtfkkY27Zb80qNo1AoDEywTdOy7c84/I6pYrHYcb/f8VgoFBSLxWRZ1lRiw+Ih0QR85N1339W9997re/vud78bdngAAAAAAABYMu3JokHJiWQyKcMwepZ3JwamxW9IP2myhEqz+scwDN95qKZp2fZnVKVSqWfYvHK53POc9Kv+krzKplgsps3NTeVyOVUqlZklPsPw3e9+t2/f8bvvvht2eKEj0QR8ZG9vT9evX/e9ffDBB2GHBwAAAAAAgCXTXlmzX3LizJkzPcuCmFdoWEHOFdU+XKDffs3Csu3PsAqFQk81U7lc7jvU37lz5wa2Z9u2CoWCUqmUNjc3FYlEtLm5qVQqtVQJqA8++KBv3/He3l7Y4YWORBPwkZWVFR07dsz3dtddd4UdHgAAAAAAAJZIe1JjmAoYv8c4jjOzZFM6nfatqhqnCmiUBNu0LNv+NPVL6lQqFcVisY79M01T9Xp94HxS0WhU5XJ55BgqlUpHAmptbU2pVGqi4QnDdNddd/XtO15ZIc3CMwB85DOf+Yzefvtt39s3v/nNsMMDAAAAAADAEmlPTgyT3DAMwzch4Dff0LT4VetYljVSFVB7hUs2m/VN9szKsu2PJCUSCa2trWlzc7M1tF0kElEqlWrNqWSaporFohqNRt+h8dolk8mhH9uP4ziqVCpKpVJaW1sbq3IsTN/85jf79h1/5jOfCTu80JFoAgAAAAAAAIAZaq9E6jdfkB+/xIht260EwrT1S6SMUgXU/tiwh5lbtv2RpEwmo/X19dZxsbW1JdM0FY/Hlc/nVa/X1Wg0Rq68alY/1et1pdPpoY9ZP47jKJFITDQnFuYLiSYAAAAAAAAAmKH24e6658sZJBqN+laVnD17NpC4huGXoLAsa6hkV61Wa1X/9Bu6btaWbX+y2awajYZc15Xrutre3laj0VC1WlU2m52oKknyjsFmNdT29rbK5bLy+bySyeTIbRcKhZnOM4bpIdEEAAAAAAAAADPUTAz1Gw5vEL/EVKVSkeM4QYS2r35VO8NUp7Q/Zl6qWZZtf2apefxms1mVy2XV63W5rqtGo6FyuTxU5VMmk5nZsYvpIdEEAAAAAAAAADPSnhQaZ6i1fpUzs6pqMgzDtwqoVqsNrAJq/3symZxo6LUgLdv+zAPTNJVMJluVT9VqdeDzc+HChRlGh2kg0QQAAAAAAAAAM9KeEMrlcopEIiPf/CpAZjkEWb/qnUHJrnw+7/v/ebBs+zNv4vG4Go1G3+q9arU644gQNBJNAAAAAAAAADADw879Mw7HcVSpVKbSdrdmxUq3SqXSmrOonWVZqtVqkrykw7xV/yzb/syrcrns+1wxdN7iWw07AAAAAAAAAAA4CNorZPp1uo/SVndi6ezZsyPP+TSufD7vm9jK5XIql8s9cbWvN4+WbX/mVT6fVyqV6li2tbUVUjQICokmAAAAAAAAAJiy9oqjaDQ6cULozJkzPYmRZsVUNBqdqO1hmKapeDzequxpalYBNZNotm137PcsYhvHsu3PvPI77qkIW3wMnQcAAAAAAAAAU9ZeBXPmzJmJ24tGo74d9IPmFQpav7mN2qt82h8z79U/y7Y/88owjI77JJoWH4kmAAAAAAAAYBkcPSodORJsm0eOeO2ih2VZKhQKvnP4+CmVSpK8TvaghrfzS4xUKpWZzXkTj8d9K3pKpZIcx+mo/mlWDM2zZdufIBQKhdaxOy2PPfbYVNvH9DF0HgAAAAAAALAMNjakq1elGzeCa/PoUa9d9CgWiyqVSn0ri9o1ExWSlE6nA4vhySefVCaT8d1eNpsNbDuDnDlzpmfOHcmrrGpPeC1K9c+y7c+kmhVyQR633YnQWc0rhukh0QQAAAAAAAAsi40NEkMz0pzLZ5hhv9qTEn6JoXE1q6O652o6e/bszBJNyWRSpmn2VHYVCoXW/03TXJhkwrLtTxCCrJCzLKvj/kF6HpcZQ+cBAAAAAAAAwAiaw6hJ0vr6+sDH1mq11mOHqX4ald98T47j9CSfhrG1tTVWDP3mNhr279OybPvjl/CZ1TCJww4RuZ9isdhx/6BUhi07Ek0AAAAAAAAAls40O+Cb1UySV1U0yLSqmZr6Ja+aQ56NY9TnLp1O930eDMMIdNi1cSzb/sxS87nrrkQah2VZHfM95fP5wBOvCAeJJgAAAAAAAABLJ6gKDD/nz5+XtP+webZtdySlnnzyyanE45fAsiyrY9vDmCQ551dZJY03t49fHONUJy3b/oxboRWESau4HMfRyZMnW/fj8fjMhnfE9JFoAgAAAAAAALB0Go3GVNptH5Zuv0RTewLIMIx9q5/G1W+em1EqqNoTc5cuXRo5hmw267t//RI2w8bSNGpFzbLtjyTV6/Wh2w9Ce4LMtm1tbm6OFbdlWYrFYq324vG4qtVqQFFiHpBoAgAAAAAAALBUbNvuGKKryXEcpVIpFQoFlUolVSoV31upVFKpVFKhUFAul1Mmk1EikdDm5qbW1tZa7Q1KNGUymY6KIsdxRq4wGla/zn/btodONrVXrDiOo0KhMHIc3dU+yWRy5ORapVLp+zyNEtOy7Y9lWbpw4YLv36Y1Z1R3BZVt24rFYkqlUkPNAdY8/mKxWCsZls1mSTItoYjrum7YQQBhuvfee3X9+nUdO3ZMb7/9dtjhAAAAAAAAYEyO4+js2bNjJRXGkc/nW8N/NZNYW1tb+1Z9mKYp0zSVyWT6ViMNkslkZNv2UNuSvGoq0zQVj8eVz+c7YnUcZ2BFTDNWwzBULpcHbsdxnI5EXLVaVTweH7hOMxkx7L40YzIMQ+vr6yoWi1pfX1+q/TFNU7lcTpZlaWtrS7ZtDzUMYHs7uVxu31j3U6vVlEgkBj4mHo+3tnv33Xfr/fffl23bsiyr43UwTVPlclnRaHSimOYR/cvSatgBAAAAAAAAAEAQLly4MLMkk6SOTvOtra2+lSvdVTC2bcu2bUWj0bESTRcuXBiYeOjenuM4PUmPQdVV7es3Yx2mkscwDKXTaZVKpVZiaz/DVnq1b7+ZfGmuv76+vlT7I3mvz7CJqmZb7e2kUqmh1h0kHo+rXq+rWCz2Peb229d4PB5I0gvzjYomHHhknAEAAAAAAJaD4zja2trS+vp6IPMhtbfXblpzLS2D5lw+xWKxZ+i5RbRs+zMJy7JUq9X0yiuvtKqtmsmnZiWVaZqKRqNKJBI6ceLEgXiv0L9MognggwAAAAAAAAAAMBb6l6WVsAMAAAAAAAAAAADAYiLRBAAAAAAAAAAAgLGQaAIAAAAAAAAAAMBYSDQBAAAAAAAAAABgLCSaAAAAAAAAAAAAMBYSTQAAAAAAAAAAABgLiSYAAAAAAAAAAACMhUQTAAAAAAAAAAAAxkKiCQAAAAAAAAAAAGMh0QQAAAAAAAAAAICxkGgCAAAAAAAAAADAWEg0AQAAAAAAAAAAYCwkmgAAAAAAAAAAADAWEk0AAAAAAAAAAAAYC4kmAAAAAAAAAAAAjIVEEwAAAAAAAAAAAMZCogkAAAAAAAAAAABjIdEEAAAAAAAAAACAsZBoConjOLJtO+wwxjKN2B3HCbS9abUJAAAAAAAAAAA+thp2AAdFrVZTsViUZVm+SZpoNKpTp04pnU7LMIzZBzjAtGN3HEdra2sdy5rtrK+v+y7vTiJtbW35Lt/e3p675xMAAAAAAAAAgGURcV3XDTuIZVapVHT69OmRqmuy2azy+fz0ghrSrGL3SzQFZZhE07333qvr16/r2LFjevvtt6cSBwAAWEDXrkk3bgTX3tGj0sZGcO0BAAAAAEJH/zKJpqlxHEenT59WpVJpLctmszp16pRM05RhGLJtW7VaTfl8vqdSKBqN6uLFi6FU44QReyQSCSr8DsMc3nwQAACAHteuSQ8+KN28GVybR45IV6+SbAIAAACAJUL/Mommqdnc3GwlYEzTVL1eH5h4yWQyKpVKHcui0ajq9fo0w/QVRuwkmgAAwFyxLCkWC77del2KRoNvFwAAAAAQCvqXpZWwA1hGqVSqlagxDGPfRI0kFYtFJZPJjmWWZSmTyUwrTF+LHLufUYb9AwAAAAAAAAAAo6GiKWCFQkG5XK51v1wu9yRh+uk3V1Gj0ZBpmoHF2E+YsTcrmprJrWabTVtbWz3L2pf3k06n9902GWcAANCDiiYAAAAAwBDoXybRFKjuZItpmmo0GiO1kcvlVCgUOpYlk0mVy+VAYuwn7NibiaZxtjspPggAAEAPEk0AAAAAgCHQv8zQeYE6e/Zsx/1xho47c+ZMz7JKpdIazm5a5iX2/YbpAwAAAAAAAAAA84NEU0Acx/Gt5hmVYRiK+lzlWqlUxo5tP/MU+/r6+sjbBQAAAAAAAAAA4SDRFJBardZx3zCMsedVisfjPcuq1epYbQ1jkWMHAAAAAAAAAADhIdEUkPPnz3fcP3HixNhtJRKJnmXdyaAgzVPsDJ0HAAAAAAAAzB/HccIOAcCcItEUkO5kit8QcsPql+ixLGvsNgeZp9gZOg8AAAAAAACYD47jqFQqKZFIaG1trWf6DQCQpNWwA1gGlmX1ZPQ3NzfHbq9fVY9t2xMlgfwscuwAAABL5do16caN4No7elTa2AiuPQAAACw127ZlWZZeeeUV2batWq1GFROAoZBoCsClS5d6lk1amRONRnuqgGzbnqhNP/MWO0PnAQCAA+naNenBB6WbN4Nr88gR6epVkk0AAOBASCQSrVF7uvuX9uvr2traav2/PbHSnMf8xIkTisViSqfTgcU7j/L5vEqlUthhAFhAJJoCUK/Xe5aZpjlRm34nwFdeeWWiNv3MW+x33333RNsGAABYSDduBJtkkrz2btwg0QQAAA6E5kg6tm33XPA8blWO4ziyLKt1QXUmk1E6nVY+n1/Ki6VzuZxSqZQkb9/Pnj07tak8ACwXEk0B8KvWmfRk45fsmUap6jzEvt9+lUolVatVWZalra0tOY7TcUVJIpFQMpmcKGYAAAAAAAAsrnw+33G/Uqm0kibdksmkHnvsMUWjUa2vr3f0hTWHj6tWqz3zmkteP1Wzryoejwe6D2EzTbOjX88wDCUSiRAjArAoSDQFwC9ZM+nwc37JnvYy3qDMW+zNdR3HUS6X61uu235FSfMx+Xxe2Wx2rJgBAAAAAACwPJLJpJLJpCqVSsdywzBULpf7rmeapuLxuLLZrBzH0enTp3vakLyh+pYx2dRu0lGPABwcK2EHsAymMXeS3xBys6pomtSksedyOa2trY08Jmwul9Pm5uZU9gkAAAAAAACLZdJqnGZSqrtaqimVSk2lvy5olmUpkUioUCiEHQqAJUWiaUomHX4uzHFeZx17e7VTJpOZ6KRn27Y2Nzd9S5sBAAAAAABwcEw6ak9TNpv1nbbBcZyRL5SepUqlokQioVgsplqtpvfffz/skAAsKYbOm9Asr1oIeui8eY/dNE0lk0ltbm5qfX29NT9TvzFy26VSKdXr9ZFKfG/duqW/+qu/GinGjY0NbTDBNgAAAAAAwFLL5/O+Q+idP39+LqdySKVSPfH6jUIEoNO1a9d07dq1kda5devWlKJZHCSa5lRQV1yEYdTYuxNepmmqXC4rGo36Pr45Ru5+czg1k03D+sUvfqEnnnhi6MdL0h/8wR/oD//wD0daBwAAAAAAYNZcV3r1mnT5TenKO9LN29KRw9JD90iP3i89siFFImFHGawgRwwyTVPRaFSWZXUs774/L/z655hzCdjfn/7pn+qP/uiPwg5j4ZBomlDQVUaDBJ18mpfY2+NIJpMDJ2RsMgxDxWJRmUxGsVjM9zGWZalWqy31pIwAAAAAAACD3N6RXnhZKtYk+z0pImn1kJd4ikSknV3JlWR+SsrEpaefkA7TY+jrxIkTc5tY6uaXZCPRBGBamKNpQosw4V8/8xZ7NpsdKsnULhqNDqxa6jdZIwAAwEBHj0pHjgTb5pEjXrsAAAAz8vp1KfGs9K0fSm+85y1zJd3elXb2vH/djx77xnve4xLPeuuhV5hzqgdh0eMHML+4PmFC/T6gHccJ/MN7Vu3NOvZ4PC7Xdfv+fT/RaFT5fF65XK7nb/vN5dTuV37lV/Tnf/7nI22b+ZkAAFhSGxvS1avSjRvBtXn0qNcuAADADPzkqvTUc53JpEGaj7nyjvSlZ6UXn5Eef3CaES6Hea0SYj4mYDxf/epXRx4h63d+53f0i1/8YkoRLQYSTROa5VxKQW9rkWPvls1mdfbsWd8qrWGHz7vjjjv0G7/xG1OIDgAALKSNDRJDAABgIb1+3Usy3dqR9ka8tnd3zxtW76nnpJe+Ix0/Np0YF5Ffv1MymZx9IGNa5DnhgVnZ2NgYubjgjjvumFI0i4NE05RsbW0tbDnqosaeTqdVKBR6ltu2HUI0AAAAAAAAs3d7R/r6971KplGTTE17rrf+N34gvfRt5mxq8hs559SpU5K8JNSlS5ckfZzQ6e5fayaqmvOVm6bpWxFl27Zs2x7YTrONeZib3HEc5XI51Wq1Vj+cYRgyTVPxeFynTp1SNBoNbHu2batSqaharcq2bW1tbbVGaGo+p6dOnVI8Hp+oj9OyLBWLRV24cEFnzpxRNpvt+Pus9xuYZ5wmJjRo+LlJNE8W7YIuxV3k2P2cOnXKN9E0b3NRAQAAAAAATMsLL0s/e3u44fIG2d2TXnvLa++rXwwktIXWTP60i8fjrURCrVZTKpUaqc18Pt+TvGi2lclkhmpje3t76GTKNC4sL5VKvrE6jiPLsmRZlgqFguLxuMrl8kQx1Go15XI5WZbVWmYYhtbX1+U4Tsc2K5WKJO/C9Hw+P9R2LcvSpUuXVK/XdeHChYF9irPcb2ARkGiaEr9ky6RisVjgbfpZ1Ni5QgAAAAAAABxkrisVh5+ueiili9JXviBFIsG2u2j8kgrFYrH1/2ZCoVqtqlQq9W0nnU4rkUjIMAydOHHC9zFPPvmkTNOUbdsql8s9lVTRaFSZTEamafomMCzL0vnz53uWNy/Qfv/99zuqohzHUSqVUjqd7hu3n0wmM3Bf29VqNT3wwAOq1+tjXZCeSCRaz4NhGMrn83ryySc79r9ZgdQeU6lUUqlUUrFY7Lt/uVzO9+L1fma538CiINEUgOYHf7tJq2j81p/Gh9Eix+7Hb3+4YgAAAAAAABwEr16T7PeCa8+V1Pi59NO3pEcO8NSVpVKpJ9lTLpc7+rsMw1AymVQymVQikfCtbkqn0x3JqX4Mw2gNiZdOpxWLxVpVPNFoVPV63Xe9Wq2mfD7vO8Sf5CVU+hm1Gqs98ROPx2WapmKxmOr1ui5dutRRddTkOI4SiYQajcbQ27FtW4lEotXfF4/HVa1WfR8bjUZVLBaVyWR08uTJjj7KTCajer3u+/zffffdrefbr3ItjP0GFg2JpgD4JTcmnRfI74NnVommRYndj19SiasFAAAAAADAQXD5TSmiyYfNaxf5qN2DmmgqFAo9CZpyuaxkMtl3nWQyqXg83pPwGXcUofaESblc9n1MewJkHMP2nzUajVbiK5lMKp/P+65rWZZSqZRvv2OlUhn4/DU1EzTNNqLRaN8kU7tmMm5zc7NjealU0ubmZs9whdlstmOZX8XSLPcbWEQkmgLg96EyaYZ6VvMcLXLsw+pXhgwAAILnut6VtJfflK68I928LR05LD10j/To/V4HxUEfdgUAAGBarrwjrR6Sbu8G1+bqIa/dZWXbtm+/VaVS0dmzZzsqVEzTVLlcHmr6hlwu15P4GScR1F5hk81m+/axZTKZ1vB+hmGoWCy25ilqqlarWl9f911/2CkpmgmY/ZJt0WhUjUZDm5ubPUmXYrE4VMKlO2Fz7ty5oWKUvNeqWq0qkUh0LM/lcopGo60Kpn7b7U40zXK/gUVEoikAfvMPTVoV5De54DQscux+uofti0ajDJ0HAMAM3N7xJoou1rzhWiLyOiVc10ss7ex6V9aan5IycenpJ6TDfBMFAAAI1M3b3vevILmu9OGtYNucJ4lEQltbW1pfX5dhGHIcp6dvyzRN5XK5keYwag6r1t6W4ziq1Woj9ZW1D/V25syZvo/rTmD4VT4F1Ue3X7KlXT6f7xmWb5iEW6VS6XhcNBodeX72eDzuW1mWyWQGXmjfL5k3i/0GFtVK2AEsA78Pn0uXLk3UZvcJrTv7HpRFjt1PdzXVqVOnZrZtAAAOqtevS4lnpW/9UHrjozkBXHlX0u7sef82+zveeM97XOJZbz0AAAAE58jh4KvHIxHpzjuCbXOeZDIZra+vy7ZtWZalra0tmaapeDyufD6ver2uRqMxUpKpve1uw8zR1K5ZSZNOp+fiYup4PD5SVU4ymfTtf9zvQvfu4QrH7ePL5/O+2+6u9trPrPYbWFQkmgLgdzWA4zg91TXD8lt3WlVBYcVu23bgWXy/bY/zJQAAAAzvJ1elLz3rDafiav/5AJqPufKOt95Prk4/xoVw9Kh05EiwbR454rULAAAOjIfu8SrJg7Sz67W7rLLZrBqNhlzXleu62t7eVqPRULVaVTabHbmKpp1fv1SlUhm63639sd2Jl7CM83z063/sp1arBTZiUjQa9U34jJrwm8V+A4uMAUsC4leGWavVxhp3s7uiyDCMiU5q+5l17I7jaHNzU4ZhaHt7e/SA++jeh2w2OxdXegAAsKxevy499Zx0a0faG3GIlt09bxiWp56TXvqOdPzYdGJcGBsb0tWr0o0bwbV59KjXLgAAODAevX//C39G5X7ULkZnGIbS6XTPfD8XLlwY6uLos2fPSupfHROGu+++e+R1Njc3e5b5zfHe5Dfs3yT7n8lkehJ1o14AP4v9BhYZFU0B6R5zU5LOnz8/VlvdH6ajVuWMWoI569gNw1A8HpfjOCoUCmNtx0/z5Ct5Jx+/0lgAABCM2zvS17/vDYs3apKpac/11v/GD7z2DryNDSkaDe5GkgkAgAPnkQ1vTsygRs+LSNr8tPTwfQE1eACNO3xecyg/afDcTItg1CSRXxJokovJ+1VDNZ/faZmX5CAwCySaAvLkk0/2LBt1rM+mCxcudNwf9mRSq9W0tramzc1NRSIR3xOZnzBib15FkMvlAikZtSyr4+QwavkrAAAYzQsvSz9726tMmsTunvTaW157AAAAmEwkImUCnn0hfTL4eZ8Okmg02jPaj2VZ+14o3ryA2m/9Zdf93Ew6YlG/54/qIiA4JJoCYhiG71Bz3aWx+6nVah2Jl2En+rMsS4lEomPdUqnkW63ULYzY4/F462+TjjHrOE7HfhaLxanNaQUAALwh74rBTrWo0kWvXQAAAEzm6Sekz94rHZqw1+/QivS5+6Qv/2YwcR1kfhdi73eRdLNfbtGrmUY1rTmM/PooRx0VCkB/JJoC5DdU26hJlPbHG4Yx9PBv7cPGtatUKkN9aIYRe3NYvVKpNHapquM4OnnyZGsfi8XiyEMNAgCA0bx6TbLfC278f1dS4+fST98KqEEAAIAD7PCq9PzXpMOHpJUxK5FWIt763/s9afVQsPEdRMlksifRMegC7+bf+l0cvsz8+jGDSD6tr68PtQzAeEg0BchvXqDuaptBCoVCR8Ll4sWLQ5eGDkomDZPECSP29qH9Tp48OfIkfLVaTbFYrLVdkkwAAMzG5TeDG/e/KfJRuwAAAJjc8WPSi89Id6yOXtl0aMVb78VnvHYQjO4+K8dx+k5d0ax2op8rOH79lJMOyQfgYySaApbNZpXNZjuWVSqVfRM2hUKhoyKoWCyONP7qiRMn+v5t2HZmHbtpmq1J8RzHUSKRUCwWU6lU6ps4s21bpVJJsVhMiURCtm3LNE01Gg1OvgAAzMiVd4K/snX1kNcuAAAAgvH4g9JL3/GSRRHtf6FQ8zHHj3nrPf7g9GM8SPzmUvcbPq99HvKDNmyepFZfYbdxR0MaZ1sARrcadgDLKJ/P6+677+5IvlQqFa2trSmdTuuxxx6TaZra2tqSZVkqFoutxIphGCqXyyPPMZTP53XhwoWeUtJsNjvSh+asY08mkyoUCq37lmV1nHjbY/ebCPDMmTM9yTEAADBdN28HP5+S60of3gq2TQAAgIPu+DHppW9LL7zszbFpv+clk1YPed+/IhFpZ9cbytj8tJQ+6c3xdJgew8CZpql4PN4xok9zvvP2yppm8slvuL2DoN8+X7p0aaSL8rt195kahkGiCQgQp40pyWazSiaTSqVSrYy74zgdSZVuyWRS+Xx+rA85wzBUr9eVyWRUq9VkmqZyudxYVT6zjD2TyciyrL7D5vlVNpFgAgAgXEcOe50SQYpEpDvvCLZNAAAAeEmjr35R+soXvDkxL7/pVZJ/eMv7/vXQPdKj90sP3xf8dzx0yuVyPX1gpVKp1cflOE5rfqaDWM3UFI1GeyqY6vX6RG1ubW113B/1In8Ag5FomiLTNFWv12XbtorFoizLkm3bsm27lTVfX19XIpFQOp2e+CoF0zRVrVYXKvZmzM0T6SuvvCLbtuU4Tmtb6+vrMk1TiURC8Xh8oqsXAADA5B66x7vyNUg7u167AAAAmI5IRHpkw7shHPF4XKZpdlxYffbs2Vai6cKFC5K8RMtB7v+Kx+M9iaYLFy74DjU4DMdxeiqaTp06NW54AHyQaJoB0zSVz+fDDmMss4rdMAwqlAAAWBCP3u8NrxIk96N2AQAAgKB0Jxf6LZulTCbTMWVFcxShbDbb6oObVjVT9zB98+rUqVM9Iys5jqNarTZWJVJ3FVk0GlUymZwoRgCdVsIOAAAAAIvlkQ3J/NT+E0oPKyJp89PecC0AAADAMvOb5uLs2bOq1Wqt0X2mlQTpHj5uHO+//34AkQxO+PWr6GpP0I2iuxJqnIvqZ7HfwCIj0QQAAICRRCJSJuAhzdMnmRMAAAAAwQoisRI0v0SS4zhKJBKSgqtm8qtc8psLfV75JYMsy2rNYTWs7rnh0+k08zMBU0CiCQAAACN7+gnps/dKhyb8NnloRfrcfdKXfzOYuAAAAICmer3uuzzshMugZJJfxdM4Njc3e5b5JW9s2+4ZWq79b92CqsjZLwkYj8d9p9nIZDI98zcNcvr06Y42h5nnKcz9BhYViSYAAACM7PCq9PzXpMOHpJUxK5FWIt763/s9afVQsPEBAADgYLMsSxcuXPD927hDsAUlGo3KNM2e5el0OrA5lPzar9Vq2tzcVC6XUy6XUyKR0ObmpjKZjG8b5XK5Z9mFCxcCSbr4td0tn8/7Vh+dPHlSlUpl3/VTqVQrKZVMJlWtVseObZb7DSyiiOu6Qc/lDCyUe++9V9evX9exY8f09ttvhx0OAAAL5SdXpaeek27vSrt7w693aMVLMr34jPT4g9OLDwAAAAdDLpeTZVna2tqSbdtDJQVM05RhGFpfX1cul5vpkGqlUqknwdNoNHwTROOKxWL7Vv8YhqF6vS7TNFUoFFStVod6Dk3TbD1/+yVPKpWKUqmU79+i0ajW19eVSqX6VnNlMhnfIfOSyaQymUzP61apVJTL5VqVScVicWCl2LzuNxYH/cvSatgBAAAAYHE9/qD00nekb/xAeu0tb9mgq5iaxU/Hj3mVTMePTTtCAAAAHAS1Wm3oIdWaVUPNxIKkvgmBaXnyySc7Ek3xeDzQJJMknTt3TidPnhyYOLl48WJru6+88krfYfSkznmf2p+7cTTbsm1blmUN3PdisahUKtVKJjZVKpVWZVNz/faYstmszpw5s2+V2LzuN7BIqGjCgUfGGQCAyd3ekV54WSrWJPs9L6G0ekhyXSkSkXZ2vQTU5qel9ElvjqfDo1zydO2adONGcAEfPSptbIy1qutKr16TLr8pXXlHunlbOnJYeuge6dH7pUc2vH0GAAAABkmlUq1ESbVanVpFVS6XU61Wa1XrGIYh0zT7Dk03zyzL0vnz5zv2R/q4Oi0ejyuRSCzcfmGx0b9MognggwAAgAC5rvTTtz5Ownx4S7rzjo+TMA/fN0YS5to16cEHpZs3gwv0yBHp6tWRkk3DJtPMT0mZ+BjJNAAAABwohUJBuVxOpmmq0WiEHQ6AMdG/zNB5AAAACFAk4lX0PDJesZC/GzeCTTJJXns3bgydaHr9uvT170s/a/vN4Mqbm6rbG+9J3/qh9Gc/lp7/GsMDAgAAwN/58+cleRVHALDIVsIOAAAAAJhnP7kqfelZr0LL1eA5qKSPH3PlHW+9n1ydfowAAABYLM05eiQpnU6HHA0ATIZEEwAAANDH69elp56Tbu1Iu3ujrbu756331HNeOwAAAEBTsViURJIJwHIg0QQAAAD4uL3jDZd3e1faG3NW0z3XW/8bP/DaAwAAACSpVCpJYtg8AMuBRBMAAADg44WXvTmZRq1k6ra7J732ltceAAAAUCqV5DiO4vG4TNMMOxwAmBiJJgAAAKCL60rFWrBtli567QIAAOBgy+fzkqhmArA8SDQBAAAAXV69JtnvSUHlhVxJjZ9LP30roAYBAACwkAqFgmzblmmaisfjYYcDAIEg0QQAAAB0ufymFAm4zchH7QIAAOBgsm27VcXUrGoCgGVAogkAAADocuUdafVQsG2uHvLaBQAAwHKzLKtnmeM4SiQSkiTTNJVMJmcdFgBMDYkmAAAAoMvN28HPp+S60oe3gm0TAAAA86VUKikWiymTyciyLDmOo0qlogceeEC2bUuSisViyFECQLBWww4AAAAAmDdHDkuRgMfOi0SkO+8Its1pcV1vnqrLb3pVWDdve8/JQ/dIj94vPbIR/PMDAACwDJpJpFKppFKp1PP3dDrN3EwAlg6JJgAAAKDLQ/dIO7vBtrmz67U7z27vSC+8LBVrkv2eN6/U6iEv8RSJePvgSjI/JWXi0tNPSIcX9BcFyTQAABA0x3F8h81risfjVDMBWEoL+rMQAAAAmJ5H7/cSKkFyP2p3Xr1+Xfr696Wfvf3xMlfSbZ+E2xvvSd/6ofRnP5ae/5p0/NjMwpzYQUqmAQCA2bpw4ULfv+XzeWWz2RlGAwCzw08mAAAAoMsjG16i4Y33gkk4RSSZn5Yevi+AxqbgJ1elp57zkkrD7G/zMVfekb70rPTiM9LjD04zwmAclGQaAAAIRzqd1vr6uqrVqra2trS+vq5YLKYnn3xShmGEHR4ATA2JJgAAAKBLJOJVs3zrh8G1mT45n0OxvX7dSzLd2pH2Rsyq7e55lUBPPSe99J35TsYclGQaAAAIVzKZVDKZDDsMAJiplbADAAAAAObR009In71XOjThN+ZDK9Ln7pO+/JvBxBWk2ztehc/t3dGTTE17rrf+N37gtTeP2pNpu3ujrbu756331HNeOwAAAACATiSaAAAAAB+HV70h0w4fklbGrERaiXjrf+/3vHmA5s0LL3vDyI2afOm2uye99pbX3rw5KMk0AAAAAAgLiSYAAACgj+PHvCHT7lgdvbLp0Iq33ovPzOeQcq4rFWvBtlm66LU7Tw5CMg0AAAAAwkSiCQAAABjg8Qc/nn8oIu82SPMxx495683rvD6vXpPs94abr2gYrqTGz6WfvhVQgwE4KMk0AAAAAAgTiSYAAADMt6NHpSNHgm3zyBGv3SEdPya99G3pj/+F9MCnvGURecPira54/zYTUOanvce99O35rGRquvzm/kmzUUU+andeHIRkGgAAAACEbTXsAAAAAICBNjakq1elGzeCa/PoUa/dERxelb76RekrX/ASDZfflK68I314S7rzDumhe6RH75cevk+KBJ3BmYIr73jzRt3eDa7N1UNeu/OimUwLsgCpmUx7ZLTDBwAAAACWFokmAACAJeW6XkVHMyFy87Z05PDHCZFHNhYjISLJSwqNmBialkjEe+4WPdFw83bwQ8C5rpd4mxcHIZkGAAAAAGEj0QQAALBkbu9IL7zszU1jv+dVYKwe8pIAkYi0s+tVeJifkjJx6eknvGodHCxHDgefaIxEvOqueXEQkmkAAAAAEDa6FAAAAJbI69elr39f+tnbHy9z5V/R8cZ70rd+KP3Zj6Xnvzbf8wkheA/d4yUdg7Sz67U7Lw5CMg0AAAAAwrYSdgAAAAAIxk+uSl961hvWy9X+89I0H3PlHW+9n1ydfoyYH4/eH+zcRZLX3qP3B9zoBA5CMg0AAAAAwkaiCQAAYAm8fl166jnp1o60uzfaurt73npPPee1g4PhkQ1v+MSgCn4ikjY/LT18X0ANBuAgJNMAAAAAIGwkmgAAABbc7R1vuLzbu9LemL3qe663/jd+4LWH5ReJeHN0BSl9Mvih6iZxEJJpAAAAABA2Ek0AAAAL7oWXvTmZRq1k6ra7J732ltceDoann5A+e690aMJfBYdWpM/dJ335N4OJKygHIZkGAAAAAGEj0QQAALDAXFcq1oJts3TRaxfL7/Cq9PzXpMOHpJUxkycrEW/97/2etHoo2PiCsOzJNAAAAAAIG4kmAACABfbqNcl+L7h5aFxJjZ9LP30roAYx944fk158RrpjdfRkzKEVb70Xn/HamUcHIZkGAAAAAGEi0QR85N1339W9997re/vud78bdngAAPi6/GZw8880RT5qFwfH4w9KL33HSxZFtP8x1XzM8WPeeo8/OP0YJ7HsyTQAAAAA0/Xd7363b9/xu+++G3Z4oVsNOwBgXuzt7en69eu+f/vggw9mHA0AAMO58o5XYXF7N7g2Vw957Q507Zp040ZwGz16VNrYCK49jOz4Memlb3tzdBVrXqVcRN7x4LrevEQ7u17Vm/lpb66ip5/wKoYWQTOZ9o0feHORSYMrAZvJtuPHvEomkkwAAADAwfXBBx/07TsGiSagZWVlRZ/5zGd8/3bXXXfNOBoAAIZz83bw8ym5rvThrQEPuHZNevBB6ebN4DZ65Ih09SrJppAdXpW++kXpK1/whk+8/KaXdPzwlnTnHdJD90iP3i89fJ+XeFo0y55MAwAAADAdd911l44d87/67N1339Xe3t6MI5ov/GQCPvKZz3xGb7/9dthhAAAwkiOHg+/wj0S8pEJfN24Em2SSvPZu3CDRNCciEemRDe+2bJY9mQYAAAAgeN/85jf1zW9+0/dv995774GvdiLRBAAAsMAeuserwAjSzq7XLrDMljmZBgAAAACzNOJUuAAAAJgnj94/eJ6ZcbgftQsAAAAAALAfEk0AAAAL7JENyfyUN89MECKSNj/tDRsGAAAAAACwHxJNAAAACywSkTLxYNtMn2RuGgAAAAAAMBwSTQAAAAvu6Sekz94rHZrwm92hFelz90lf/s1g4gIAAAAAAMtvNewAAAAAMJnDq9LzX5O+9KzkutLeGJM2rUSkw4ek7/2etHoo+Bgxp65dk27cCK69o0eljY3g2gMAAAAAzD0STQAAAEvg+DHpxWekp56Tbu9Ku3vDr3toxUsyvfiM1w7mi+tKr16TLr8pXXlHunlbOnJYeuge6dH7vXm6xhrq8No16cEHpZs3gwv2yBHp6tWxkk1T208AAAAAwFSRaAIAAFgSjz8ovfQd6Rs/kF57y1s2qLip2Wd//JhXyUSSab7c3pFeeFkq1iT7Pe/1Wj3kJWQiEWln13t9zU9583Q9/YRX3Ta0GzeCTTJJXns3boyUaJr6fgIAAAAApoqfaAAAAEvk+DHppW8P2XH/aSl9ko77efT6denr35d+9vbHy1x51Wrd3nhP+tYPpT/7sTeE4iIlDA/KfgIAAADAMqNLAQAAYMkcXpW++kXpK1+QfvrWx0ORfXhLuvOOj4cie/g+hiKbRz+5+vEQiMNMt9V8zJV3vHm6XnzGq26bdwdlPwEAAABg2ZFoAgAAWFKRiDevzSOjT5eDkLx+3Uu+3NqR9obJvrTZ3fOq1p56zhtCcZ4rfg7KfgIAAADAQbASdgAAAAAAvLmKvv59r8Jn1ORL057rrf+NH3jtzaODsp8AAAAAcFCQaAIAAADmwAsve3MV7e5N1s7unvTaW1578+ig7CcAAAAAHBQMnQcAADADriu9eu3j+ZJu3paOHP54vqRHNiaYL+naNenGjeCCPXpU2mC8vVlyXalYC7bN0kVvnq55mofroOwnAAAAABwkJJoAAACm6PaOV3FRrEn2e1JE0uohr8M9EpF2diVXkvkpKROXnn5COjzKN7Rr16QHH5Ru3gwu6CNHpKtXSTbN0KvXvOMjKK6kxs+ln741X3N0HZT9BAAAAICDhKHzAAAApuT161LiWelbP5Te+Khz3ZU3t8zOnvdvc4qaN97zHpd41ltvaDduBJtkkrz2gqyQwr4uv+klIYMU+ajdeXJQ9hMAAAAADhISTQAAAFPwk6vSl571hslz9XFCqZ/mY6684633k6vTjxHz48o7XqVbkFYPee3Ok4OynwAAAABwkJBoAgAACNjr16WnnpNu7Ui7e6Otu7vnrffUcyNWNmGh3bztDacYJNeVPrwVbJuTOij7CQAAAAAHCYkmAACAAN3ekb7+fW9YvL0xO9T3XG/9b/zAa2/uHD3qzeMUpCNHvHYPqCOHvTm7ghSJSHfeEWybkzoo+wkAAAAAB8koU00DAABgHy+8LP3s7f2HytvP7p702ltee1/9YiChBWdjQ7p6Ndh5nI4e9do9oB66R9rZDbbNnV2v3XlyUPYTAAAAAA4SEk0AAAABcV2pWAu2zdJF6StfCL4KZGIbGwc6MRS0R++fPDnZzf2o3XlyUPYTAAAAAA4Shs4DAAAIyKvXJPu94DrSXUmNn0s/fSugBjG3HtmQzE9JQeUTI5I2Py09fF9ADQbkoOwnAAAAABwkJJoAAAACcvnN4DrQmyIftYvlFolImXiwbaZPzl8l3EHZTwAAAAA4SEg0AQAABOTKO9LqSrADg62uuLryTqBNYk49/YT02XulQxN+Qz+0In3uPunLvxlMXEE7KPsJAAAAAAcFiSYAAICA3Nz+H3J3dgJt0925rQ+3/kegbWI+HV6Vnv+adPiQtDJmhc5KxFv/e78nrR4KNr6gHJT9BAAAAICDgkQTAABAQI7s/IMibrAVTRFXunPnHwJtE/Pr+DHpxWekO1ZHr/g5tOKt9+IzXjvz7KDsJwAAAAAcBCSaAAAAAvLQ2k3trKwG2ubOyqoeWv8w0DYx3x5/UHrpO14SJaL95/1qPub4MW+9xx8cckNHj0pHjkwUa48jR7x2hzCz/QQAAAAATFWwPSEAAAAH2KOf+p9yI8Fex+NGVvTor1DRdNAcPya99G3phZelYk2y3/OSLKuHJNeVIhFpZ1dyJZmfltInvbmPDo/y7X5jQ7p6VbpxI7jAjx712h3STPYTAAAAADBV/EQDAAAIyCNHP5T5y/9Db9z1q4EknCLunsxf/lc9fJSKpoPo8Kr01S9KX/mC9NO3pMtvSlfekT68Jd15h/TQPdKj90sP3+clZMaysTFSYmgaZrKfAAAAAICpIdEEAAAQkEhEyvzt/6Zv/V/+v4G1mX7tOUUiXwusPSyeSER6ZMO7LbODsp8AAAAAsGyYowkAACBAT185p89uvapDe7cnaufQ3m19butv9OUrpYAiAwAAAAAACB6JJgAAgAAddnf0/F/+Sx3eu62Vvd2x2ljZ29Xhvdv63l8+rVV3vDYAAAAAAABmgUQTAABAwI5vv6YXf/TbumPvH0eubDq0d1t37P2jXvzRb+v49mtTihAAAAAAACAYzNEEAAAwBY//9x/rpf/46/rGF17Qa+v/XJLkRvpf4xNx9yRJx7f/Vt/7y6dJMmF5Xbsm3bgRXHtHj0obTOwEAAAAAGEh0QQAADAlx7df00v/4df1wkOnVfw//d9kf/KfKeLuaXVvR66kiKSdlVW5kRWZv/yvSr/2nJ6+ck6H3Z3hN3L0qHTkiHTzZnCBHznitQsE7do16cEHgz9er14l2QQAAAAAISHRBAAAMEWH3R199fXn9ZXXn9dP735Ul48+pitrn9OHq/9Ed+78gx7afk2P3nhFD79/WZFxNrCx4XWyUyGCRXDjRrBJJslr78YNjlkAAAAACAmJJgAAgBmISHrk/ct65P3LwTe+sUEnOwAAAAAACAWJJgAAsNyYDwYAAAAAAGBqSDSFxHEcbW1tyTTNsEMZ2SLHDgA4YJgPBgAAAAAAYKpWwg7goKjVakqlUtrc3FQkEtHa2lrr/5FIRLFYTIVCQY7jhB1qj3mPvVKpKJFIaG1tLZTtAwDm2DTngwEAAAAAAAAVTdNWqVR0+vTpfZMwlmXJsizlcjlls1nl8/nZBDjAPMdu27by+bwuXLgwl8k5AAAAzAmGzwQAAACAqSLRNCWO4+j06dOqVCqtZdlsVqdOnZJpmjIMQ7Ztq1arKZ/Py7bt1uMKhYJqtZouXrwowzCI3UcqlZJlWR3LwniuAAAAMMcYPhMAAAAApo6h86YkFou1EjWmaWp7e1v5fF7RaLSVEDFNU+l0Wo1GQ+l0umN9y7J08uTJWYctaf5jL5VKPUkmSVpfX5/aNgEAALCAGD4TAAAAAKaORNMUpFKpVpWPYRiq1+v7VtsUi0Ulk8mOZZZlKZPJTCtMX/Meu+M4yuVyvn+jogkAAAAAAAAAgNki0RSwQqHQMeTcuXPnhk6AnDt3rmdZqVTqGJpumhYh9lwux5xMAID5dfSoN6xWkI4c8doFAAAAAACYQ8zRFKDuahvTNHsqfQYxDEPZbFaFQqFjeS6XU7lcDixOP4sQu2VZKpVKkqRoNNozfB5D5wEAQrex4c3dEuSwWkePMhcMAAAAAACYWySaAnT27NmO++MMHXfmzJmeZE2lUpFt2zJNc6L4BlmE2E+fPi1JymazchzHd54mAABCt7FBYggAAAAAABwYDJ0XEMdxepIso1QENRmGoWg02rO8fUi7oC1C7KVSSZZlyTAM5fP5idsDAADLwXWlv/lv0r//z9KZ/136X/7M+/ff/2dvueuGHSEAAAAAAMuNiqaA1Gq1jvuGYYxdxROPx3uqdarVqrLZ7NjxDTLvsTuO06qwmvYQggAAYDHc3pFeeFkq1iT7PSkiafWQl1iKRKSdXcmVZH5KysSlp5+QDvPNFwAAAACAwFHRFJDz58933D9x4sTYbSUSiZ5l3cmgIM177M0h8+LxuOLxeN/HGYYx0XYAAMBieP26lHhW+tYPpTfe85a5km7vSjt73r/NQqY33vMel3jWWw8AAAAAAASLRFNAupMpfkPIDatfomdacxLNc+y1Wq019F6xWBw7LgAAsBx+clX60rPSlXe8ZNJ+I+M1H3PlHW+9n1ydfowAAAAAABwkJJoCYFmWHMfpWLa5uTl2e/0qc2zbHrvNfuY99uaQefl8fuzh/AAAwHJ4/br01HPSrR1pd2+0dXf3vPWeeo7KJgAAAAAAgkSiKQCXLl3qWba+vj5Rm35VRdNINM1z7IVCQbZtyzTNqc1PBQAAFsPtHenr3/eGxdvbr4ypjz3XW/8bP/DaAwAAAAAAkyPRFIB6vd6zbNLqG79kzyuvvDJRm37mNXbbtpXL5SQxZB4AAJBeeFn62dujVzJ1292TXnvLaw8AAAAAAEyORFMA/Kp1+g0hNyy/ZE/3EHdBmNfYm0PmJZNJxePxieIBAACLzXWlYm3/x42idNFrFzN29Kh05EiwbR454rULAAAAAAjFatgBLAO/ZM2kw8/5JXu2trYmatPPPMZeqVRUq3m9SefOnZsoFgAAsPhevSbZ7wXXniup8XPpp29Jj2wE1y6GsLEhXb0q3bgRXJtHj3rtwpfreu+hy29KV96Rbt6WjhyWHrpHevR+7z0QiYQdJQAAAIBFRqIpANOYO+nuu+/uWTariqZJTRr76dOnJXlD5k1aXQUAABbf5TeliLwEUVAiH7VLoikEGxskhmbg9o43RGSx5iVqI5JWD3mJp0hE2tn13lPmp6RMXHr6Cekwvw4BAAAAjIGfElMyaYIkzARLmLHncjk5jqNoNKp0Oj1RHAAAYDlcecfrIL+9G1ybq4e8doFl9Pp16evf9+Y1a3Ll/x564z3pWz+U/uzH0vNfk44fm1mYAAAAAJYEiaYJTaPKqJ+gh86bt9ht21ahUJAUzpB5t27d0l/91V+NtM7GxoY2uCIXAOZXcz6YmzeDa5P5YGbu5u3g51NyXenDW8G2CcyDn1yVnnrOSyoN87ZpPubKO9KXnpVefEZ6/MFpRggAAADMr2vXrunatWsjrXPrFj8uSTTNqUnnSQrTuLGnUilJUjqdVjQaDTKkofziF7/QE088MdI6f/AHf6A//MM/nE5AAIDJMR/MUjhyOPg5ZCIR6c47gm0TCNvr170k060daW/E5OzunpeAfeo56aXvUNkEAACAg+lP//RP9Ud/9Edhh7FwSDRNKOgqo0GCTj7NU+yVSkWWZckwDOXz+RlFBQA4EJgPZuE9dI83n0yQdna9doFlcXvHGy7v9u7oSaamPddb/xs/kF76NnM2AQAAABjOStgBLLpZDj8XtHmJ3XEcnT59WpKUz+dDnZ8KAADMn0fvH24IsFG4H7WLJdccPjNIczp85gsve3My7e5N1s7unvTaW157AAAAADAMrlGbUL+kiOM4gSdMZtXerGPP5XJyHEfRaFTpdDrQ7Y7iV37lV/Tnf/7nI63D/EwAAEzfIxuS+SnpjfeCSThFJJmflh6+L4DGMN8OyPCZrisVa8G2WboofeULwQ9bCQAAAMyzr371q4rH4yOt8zu/8zv6xS9+MaWIFgOJpgnNci6loLc1D7FblqVSqSRJKpfLM4vHzx133KHf+I3fCDUGAADQKxKRMnHpWz8Mrs30STrQD4wDMHzmq9ck+73g2nMlNX4u/fQtL9ELAAAAHBQbGxsjFxfccQcTADN03pTMcv6joM0y9uaQedlsVqZpzmy7AABgsTz9hPTZe6VDE357PbQife4+6cu/GUxcwDy4/KZXqRekyEftAgAAAMB+qGia0KDh5ybhl+wJOhETduylUkmWZckwDOXz+Ym2CQDAqFzXqwK4/KZ05R3p5m3pyGHpoXu8uXse2aDiZZ4cXpWe/5r0pWe9125vjDH0ViLS4UPS935PWj0UfIxAWK684x3Tt3eDa3P1kNcuAAAAAOyHRNOUTKMqKBaLBd6mn1nE7jiOcrmcJOncuXOBb697W0HPOQUAWFy3d7xJ7os1b6ipiLwOVdf1Eks7u96wUeanvOHann7CS3IgfMePSS8+Iz31nNehvrs3/LqHVrwk04vPeO0Ay+Tmbe8zLEiuK314K9g2AQAAACwnhs4LgF+1zqRVQX7rT2NoubBiP336dOtxqVRKkUhkpFtzXqd2lUrF97Fra2uqVCoT7RMAYDm8fl1KPOvN9fPGR/OZuPKSFjt73r/Nvto33vMel3jWWw/z4fEHpZe+4yWLItp/uLDmY44f89Z7/MHpxwjM2pHDwVdgRiLSnQw1DwAAAGAIJJoC4JessW17ojYbjcZQ25lUGLFblkXiBwAwcz+56g27duUdL5m038X/zcdcecdb7ydXpx8jhnP8mPTSt6U//hfSA5/ylkXkVSytflS51OxzNz/tPe6lb1PJhOX10D1eNWaQdna9dgEAAABgPwwEEwC/ZI1fsmUUs5ijqV+b0469OWQeAACz8vp1b7i1Wzujz+2zu+cNIfXUcx9X0iB8h1elr35R+soXpJ++9fFcWx/e8qowmnNtPXwfc21h+T16//7J81G5H7ULAAAAAPsh0RQAv7mTJq0K6l4/Ho9P1F4/YcSeSqVUq9Um2gYAAMO6vSN9/fvesHijJpma9lxv/W/8wKuMYc6m+RGJSI9seDfgoHpkw5tX7o33gkk4ReRVAz58XwCNAQAAAFh6DJ0XAL+qoEuXLk3UZneyJpFITNReP2HEnk6n5bruRLd0Ot2z3WQy2fO47e1tNRqNqSXqAADz74WXpZ+97VUmTWJ3T3rtLa89AJgnkYiUCfjrbvok1YAAAAAAhkOiKQB+SQzHceQ4zljt+a07rUTJIsc+DMMwZJqmDMMILQYAQHhcVyoGXERbuui1CwDz5OknpM/eKx2a8BfeoRXpc/dJX/7NYOICAAAAsPxINAXEL5ky7vBw3RVFhmEoGo2O1dYwFjl2AAAGefWaZAc0lJTktdP4uTcnEADMk8Or0vNfkw4fklbGrERaiXjrf+/3pNVDwcYHAAAAYHmRaApIKpXqWXb+/Pmx2iqXyx33/YaJG2TUOZbmKXYAAIJ0+U1vrpEgRT5qFwDmzfFj0ovPSHesjl7ZdGjFW+/FZ7x2AAAAAGBYJJoC8uSTT/Ysq1QqY7V14cKFjvtnzpwZar1araa1tTVtbm4qEokok8kMtd48xA4AwDRceSf4q/JXD3ntAsCoXFf6m/8m/fv/LJ3536X/5c+8f//9f/aWBzEs5+MPSi99x0sWRbR/sr35mOPHvPUef3DyGAAAAAAcLKthB7AsDMNQMpnsSdCUSqWRqnpqtVrHHEfpdHqo+YUsy1IikejZ9tbWVk+V0bzFPo6tra2eZePOKwUAWF43bwc/n5LrSh/eCrZNAMvt9o70wsvenHH2e15iZ/WQ93kSiUg7u97QnOanpEzcm2/p8AS/1I4fk1769pDb/LSUPjn5NgEAAAAcXBHXZTrroNi2rc3NzY5lhmFoe3t76DZisZgsy2qt+8YbbwyVrEmlUn2rkBqNhkzTHLh+mLGPo31bTdFoVPV6feS27r33Xl2/fl3Hjh3T22+/HVSIAIA50KwUuL0bXJuHD0n/1y9I/++ngmsTwPJ6/br09e9LP/voa+agH1/N6qPP3uvNtxTEEHau680rd/lNrxrzw1vSnXdID90jPXq/9PB9XuIJAAAAwHjoX2bovECZpql8Pt+xzHEc3zmQ/BQKhY7kycWLF4dO1Ayal6k7IeMnzNhH5TiO7z5ZljXy/FQAgOX20D3eVftB2tn12gWA/fzkqvSlZ70Ej6vBSSbp48dcecdb7ydXJ48hEpEe2ZC+/Jtegvz/82Xv3y//precJBMAAACASZFoClg2m1U2m+1YVqlU9k3YFAoF5XK51v1isahoNDr0dk+cONH3b8O2E1bsw7JtW5VKRbFYrO9jYrGYKpUKCScAgCTvav2gS7fdj9oFgEFevy499Zx0a0fa3Rtt3d09b72nnvPaAQAAAIB5xtB5U9KdfJG84eTS6bQee+wxmaapra0tWZalYrHYSowYhqFyuax4PD7S9hzH0QMPPNAzT1E2m+2pVJq32P3Ytt1KKE0699J+cVHaCADLy3Wl//P/XXrjvWASThF585n8//6fVAEA6O/2jpT4qJJp1CRTu0MrH8+3xPxJAAAAwHyif5lE01TZtq1UKjXU0HWSlEwmlc/n951PadD2MpmMarWaTNNULpdTOp0eu61Zxu63/e45o/rpN0Rfe4KqXC4rmUz6Po4PAgBYbn/6n6Rv/TC4RNMf/wvpq18MoDEASyuUz51r16QbNwLY4keOHpU2NoJrDwAAAFhS9C+TaJoJ27ZVLBZbcwjZti3DMGSaptbX15VIJJROp6c2p9EkFjn2YfFBAADLLejKgup3pNVDwcUHYLmEUkl57Zr04IPSzZsBbPEjR45IV6+SbAIAAAD2Qf+yxAAMM2Ca5sjD182LRY4dAADJG27q+a9JX3rW6wDeG6PndyUiHT4kfe/3SDIBGOzVa5L9XnDtuZIaP5d++pb0SL+cz40bwSaZJK+9GzdINAEAAADY10rYAQAAAEzb8WPSi89Id6x6lUmjOLTirffiM147ADDIZWtLEXeC8kkfEXdPl633A20TAAAAAIJCogkAABwIjz8ovfQdL1kUkXcbpPmY48e89R5/cPoxAlh8V97a0ereTqBtru7t6Mq13UDbBAAAAICgMHQeAAA4MI4fk176tvTCy1Kx5g1vFZE3HJ7revOf7Ox6Q1WZn5bSJ6Wnn/CG3wOAYdzcWZHbdzKl8biSPtzhGkEAAAAA84luEwAAcKAcXpW++kXpK1/w5jy5/KZ05R3pw1vSnXdID90jPXq/9PB9XuIJAEZxZHVPEXeMyeAGiEi6czXY4fgAAAAAICgkmgAAwIEUiUiPbHg3AAjKQ2s3tbMS7M+snZVVPbT+YaBtAgAAAEBQGH8BAAAAAALy6Kf+p9xIsD+z3MiKHv2Vfwi0TQAAAAAICokmAAAAAAjII0c/lPnL/0MRN5ih7iLunjadq3r4KBVNAAAAAOYTiSYAAAAACEgkImX+9n8LtM30a88xZxwAAACAuUWiCQAAAAAC9PSVc/rs1qs6tHd7onYO7d3W57b+Rl++UgooMgAAAAAIHokmAAAAAAjQYXdHz//lv9Thvdta2dsdq42VvV0d3rut7/3l01p1x2sDAAAAAGaBRBMAAAAABOz49mt68Ue/rTv2/nHkyqZDe7d1x94/6sUf/baOb782pQgBAAAAIBgkmgAAAABgCh7/7z/WS//x13V8+28VcfcUcfcGPr75mOPbf6uX/uOv6/H//uMZRQoAAAAA4yPRBAAAAABTcnz7Nb30H35df/xf/rUe+ODvJHkJpcO7t7S6e0uHd2+1ElDmL/+r/vi//Gu99B9+nUomAAAAAAtjNewAAAAAAGCZHXZ39NXXn9dXXn9eP737UV0++piurH1OH67+E9258w96aPs1PXrjFT38/mVFwg4WAAAAAEZEogkAAAAAZiAi6ZH3L+uR9y+HHQoAAAAABIah8wAAAAAAAAAAADAWEk0AAAAAAAAAAAAYC4kmAAAAAAAAAAAAjIU5mgAAQOhcV3r1mnT5TenKO9LN29KRw9JD90iP3i89siFFImFHCQBz6uhR6cgR6ebN4No8csRrFwAAAAD2QaIJAACE5vaO9MLLUrEm2e9JEUmrh7zEUyQi7exKriTzU1ImLj39hHSYby8A0GljQ7p6VbpxI7g2jx712gUAAACAfdBVAwAAQvH6denr35d+9vbHy1xJt3d7H/vGe9K3fij92Y+l578mHT82szABYDRhVRdtbJAYAgAAABAKEk0AAGDmfnJVeuo5L6nkDvH45mOuvCN96VnpxWekxx+cZoQAMCaqiwAAAAAcMCSaAADATL1+3Usy3dqR9obJMrXZ3fOG1XvqOeml71DZBGBOUV0EAAAA4ABZCTsAAABwcNze8YbLu707epKpac/11v/GD7z2AAAAAAAAEB4STQAAYGZeeNmbk2l3b7J2dvek197y2gMAAAAAAEB4SDQBAICZcF2pWAu2zdJFr10AAAAAAACEg0QTAACYiVevSfZ7UlB5IVdS4+fST98KqEEAAAAAAACMbDXsAAAAwMFw+U0pouASTZLX3uU3pUc2AmwUADA21/UuLLj8pnTlHenmbenIYemhe6RH7/c+ryORsKMEAAAAECQSTQAAYCauvCOtHpJu7wbX5uohr10AQLhu73jz5hVrXvVqRN5ntOt6iaWdXe9CA/NTUiYuPf2EdJhfowAAAMBS4Ks9AACYiZu3g59PyXWlD28F2yYAYDSvX5e+/n3pZ29/vMyV/4UFb7wnfeuH0p/9WHr+a9LxYzMLEwAAAMCUhJ5oevPNN2XbtmzbVqPRkOM42trakiQ5jiNJMgxDkrS+vi7DMLS5uSnTNGWapu6///5wAgcAACM5cjj44ZIiEenOO4JtEwAwvJ9clZ56zksqDXMtQfMxV96RvvSs9OIz0uMPTjNCAAAAANM200TTm2++KcuyVK1WVavVZNt2IO2apqloNKpEIqF4PE7yCQCAOfTQPd7QSUHa2fXaBQDM3uvXvSTTrR1pb8SK1d09ryr1qeekl75DZRMAAACwyKaeaPqLv/gLFYtF1Wq1VoWSJLldY+dERrzEuX39RqMh27ZVqVQkeRVQ8XhcmUxGv/VbvzV+8AAAIDCP3j/c1e6jcD9qFwAwW7d3vOHybu+OnmRq2nO99b/xA+mlbzNnEwAAALCoVqbR6AcffKB/+2//rX7t135NiURClUpF29vbPcmldq7rjnQb1M729rYqlYoSiYTuvvtuffvb39abb745hT0FAADDemTDmwQ+qNHzIpI2Py09fF9ADQIAhvbCy96cTLt7k7Wzuye99pbXHgAAAIDFFOg1Y5cvX1Yul1OtVutY3p4Ycl1XhmHoxIkTMk1Tm5ubMgxDpmm25mBaX1+XJH3yk5+UJP3yl7+UpNbcTbZty3Gc1rxOtm3r0qVLPRVTkUhE29vbyufzyufzSiQSyuVy+uIXvxjkbgMAgCFEIlIm7k0CH5T0yeDnfQIADOa6UrG2/+NGUboofeULfKYDAAAAiyiQRNObb76pTCbTSjB1VxxFo1GdOnVK0WhUJ06caCWQhtV8fPPfBx54wPdxv/zlL2Xbtmq1WmseqPZ4qtWqqtWqEomE8vm8/vk//+cjxQEAACbz9BPSn/3YmwR+kqvgD61483l8+TeDiw0AMJxXr0n2e8G150pq/Fz66Vte9SsAAACAxTLx0HlnzpzR5uamarVax7B26XRa5XJZe3t7unTpkn7/939fJ0+eHDnJNIpPfvKT+vznP6/f//3f10svvaS9vT1Vq1X97u/+rqSPh+erVquKRqP6xje+MbVYAABAr8Or0vNfkw4fklbGvGp9JeKt/73fk1YPBRsfAGB/l98MbhjUpshH7QIAAABYPGMnmi5fvqxf+7VfU6FQaCVwotGoisWi9vb29Cd/8ietBE+YTp482Up4XbhwQdFotBVvsVjU0aNH9Z/+038KO0wAAA6M48ekF5+R7lj1KpNGcWjFW+/FZ7x2AACzd+Wd4BP9q4e8dgEAAAAsnrESTf/m3/wbxWIxNRoNua6reDyuer2uS5cu6fTp00HHGJhkMqlLly7p0qVLOnnypFzX1dbWluLxuL797W+HHR5C9u677+ree+/1vX33u98NOzwAWCqPPyi99B0vWRTR/lfGNx9z/Ji33uMPTj9GAIC/m7e9eZqC5LrSh7eCbRMAAAAIyne/+92+fcfvvvtu2OGFbuQ5mk6dOqVKpdKqYDp37pw+//nPTyO2qYlGo6pWq7IsS6dPn9Zf//VfK5/Py7Is/ehHPwo7PIRkb29P169f9/3bBx98MONoAGD5HT8mvfRt6YWXvUnl7fe8ZNLqIa/DMRKRdna9uTvMT0vpk94cT4cDmWESADCuI4e9z+ggRSLSnXcE2yYAAAAQlA8++KBv3zFGSDT98pe/bFUuSVKpVNLXvva1qQU2C9FoVPV6XYVCQd/61rdUrVb1z/7ZP1O9XtcnPvGJsMPDjK2srOgzn/mM79/uuuuuGUcDAAfD4VXpq1+UvvIFbxL4y296Qyd9eMvrcHzoHunR+6WH7wu+UxMAMJ6H7vEuBAjSzq7XLgAAADCP7rrrLh075j+G/7vvvqu9vb0ZRzRfIq473KAHjz32mOr1uqLRqMrlsh544IFpxzZTtm0rlUrpr//6r/Wrv/qrJJsOkHvvvVfXr1/XsWPH9Pbbb4cdDgAAADDX/ua/SfH/V/DtXvx/SI9sBN8uAAAAME30Lw85R1MzyZRKpXTp0qWlSzJJkmmaqtfr+t3f/V393d/9nWKxWNghAQAAAMDceWRDMtdvK6JgJmqKyNXm+m09fF8gzQEAAACYsX0TTV//+tdVr9eVy+V0/vz5WcQUqnK5rN///d/X3/3d3+mpp54KOxwAAAAAmCuRt64p86P/1ZtQLwiuq/SP/ldF3roWTHsAAAAAZmpgoumNN95QsVhUqVTS2bNnZxVT6PL5vP7kT/5EFy5c0F/8xV+EHQ4AAAAAzI8bN/T0T7+nz269qkN7tydq6tDebX1u62/05Z/+O+nGjYACBAAAADBLAxNNDzzwgOr1ur72ta/NKp65kU6n1Wg09Fu/9VthhwIAAAAAc+Wwu6Pn//Jf6vDeba3s7Y7Vxsrerg7v3db3/vJprbrjtQEAAAAgfPsOnff5z39+FnHMpWWciwoAAAAAgnB8+zW9+KPf1h17/zhyZdOhvdu6Y+8f9eKPflvHt1+bUoQAAAAAZmHfRBMAAAAAAH4e/+8/1kv/8dd1fPtvFXH3FHH3Bj6++Zjj23+rl/7jr+vx//7jGUUKAAAAYFpINAEAAAAAxnZ8+zW99B9+XX/8X/61Hvjg7yR5CaXDu7e0untLh3dvtRJQ5i//q/74v/xrvfQffp1KJgAAAGBJrIYdAAAAAABgsR12d/TV15/XV15/Xj+9+1FdPvqYrqx9Th+u/hPdufMPemj7NT164xU9/P5lRcIOFgAAAECgSDQBAAAAAAIRkfTI+5f1yPuXww4FAAAAwIwwdB4AAAAAAAAAAADGQqIJAAAAAAAAAAAAYyHRBAAAAAAAAAAAgLGQaAIAAAAAAAAAAMBYSDQBAAAAAAAAAABgLCSaAAAAAAAAAAAAMJbV/R7wwQcfyLZtbW1tzSKeubG+vi7TNHXXXXeFHQoAAAAAAAAAAMBcGphoeuONN/Srv/qrs4pl7kQiEV26dEmPPvpo2KEAAAAAAAAAAADMnX0rmlzXnUUcc+kg7zsAAAAAAAAAAMB+BiaaHnjgAW1vbx/IofMk6cSJE/rkJz8ZdhgAAAAAAAAAAABzad+Kpk9+8pP6/Oc/P4tYAAAAAAAAgP8/e/8eHFd95/n/r9MXI5EZqyULSLBR7BaLpQiEkGx/9xsPlIklL1Rt/cgmFnFNxdRyUStQU1/YzCIbslszU/sjWJokE76VH56WyVQFpbIGK2z43mBkOUMgzOwXW0KxEZIIajvyhcTIUpvdxIr68vn9cSxhya1Ld5/uVkvPR5XL1ulz3uctitLlvPr9+QAAgDyyYNAEAADgmJERaXTUuXqlpVJZmXP1AAAAAAAAkBSCJgAAkB0jI9LGjdLEhHM1CwqkoSHCJgDIptJS++uv01/PS0udqwcAAAAgawiaAABAdoyOOvtQUrLrjY4SNAFANpWV2SE/E6oAAAAARNAEAAAAAEhWWRnBEAAAAABJkivXDQAAAAAAAAAAACA/ETQBAAAAAAAAAAAgJQRNAAAAAAAAAAAASAlBEwAAAAAAAAAAAFJC0AQAAAAAAAAAAICUeHJx01deeUWhUEjDw8OSJJ/Pp/Lycm3atEk1NTW5aAkAAAAAAAAAAABJymrQ9Morr6ipqUnhcHje8+rr6/WNb3xD/+7f/bvsNAYAAAAAAAAAAICkZS1o+ulPf6r7779fxpirXrMsa8bx7u5udXd3SyJ0AgAAAABIGhmRRkedq1daKpWVOVcPAAAAWKGyFjQ9++yzMsbIsqwZx40xV4VPiUInn8+ntrY2Pfzww1npFwAAAACwRIyMSBs3ShMTztUsKJCGhgibAAAAgDRlLWjq7e2dDpmmgiSfz6f7779fdXV1Kikp0djYmMLhsIaHhxUKhdTd3T197vj4uAKBgPbs2aPW1lYCJwAAAABYKUZH5wyZjKTja+5Q33WbNVhcpQl3oQpil1Qx3q+aj4+q+sK7shJdODFh1yVoAgAAANKStaDpq1/9qn76059Oh03l5eU6duyYioqK5r3u5MmT6u7uVjAYVG9vr8bGxhQIBBQMBnXo0CF9/vOfz0b7AAAAAIAlJGJ51FHRpOCtTyhUdIssE5cnHpWxLFnGKOryyFgu+S9+oOb3vq/dgwfkNdFctw0AAAAsO65s3eiFF16YDpUsy1Jzc/OCIZMkbdiwQU1NTTp27JiGh4e1b98+FRUV6dixY/L7/frud7+b6dYBAAAAAEvIQHGVGr58VHu/+AOdXH2zJMlYLkXcqxR1eRVxr5Kx7F93T66+WXu/+AM1fPmoBoqrctk2AAAAsCxlLWgqKipST0+PVq9eLcleNi9ZGzZsUEtLi8bGxrRv3z6tXr1aLS0tuueee/TJJ5843DEAAAAAYKl5+7N3acd972iwuErGck0HSnOZOmewuEo77ntHb3/2rix1CgAAAKwMWQuaJMnv96unp0dFRUU6dOhQWrVaWlp06tQpfeUrX1FXV5f8fr9+9atfOdQpAAAAAGCpGSiu0q57XtOk6xrFXN6kro25vJp0XaNd97zGZBMAAADgoKwGTdKnYdM//uM/pl1rKrB6+eWXFYvFtH37dsImAAAAAFiGIpZHj277sSIur+Iud0o14i63Ii6vHtvWoYiVtS2LAQAAgGUt60GTZC+B56SdO3eqp6dHsVhMdXV1eRE2hcNhhUKhXLeRklz0PnXPcDic1fsCAAAAWBo6Kpr0fkl10pNMs8VcXvWX3K6OiiaHOgMAAABWtpwETZkwNSn1p3/6p9q+fbt+85vf5LqlGbq7u9XY2Kjy8nJZlqXi4uLpf1uWpbq6OrW1tS3JICUXvXd2dqq5uVnFxcUz7jn1cXl5uRobG9XZ2enYPQEAAAAsTcZIwVufcLRme9XjMsbRkgAAAMCKZBmTnR+tX3nlFY2NjemRRx7J6H06Ozt1//336+abb9YHH3yQ0Xsttp+mpqakQpiWlha1trZmrqlFykXvqdzT5/PpqaeeUktLS0r3XLdunc6ePau1a9fqzJkzKdUAACzCyIi0caM0MeFczYICaWhIKitzriYAYMn51T8OqL6z0vG6R3YOqPrfOF8XAAAAKwfPl7MYNG3atEnvvvuuGhsbdfDgwYzeq6GhQT//+c/V1tamv/zLv8zoveYSDofV1NQ0Y+KmpaVFX/va1+T3++Xz+RQKhdTd3a3W1tarlqKrra3VkSNH5PP5stx57npvaGhQd3d3yn1PTbUle1++EABAFo2MSKOjztUrLSVkAoAV4EcdI3ryF+tkLOcW5bBMXN/ZdloPfP3zjtUEAADAysPz5SwGTW1tbdq7d+/0smeHDh3S7bffnpF7HThwQM3NzbIsS+Pj41q9enVG7jOf8vLy6QBmMQFIc3Oz2tvbZxyrra1VT09PJttMKNu9h8Nh1dXVObLvUyphE18IAAAAgKXtqf/9vH7U51PEvcqxmt7YpP59TVjf/t+ud6wmAAAAVh6eL2dxj6a6urrpf3/44Yeqra3V008/nZF71dfXT//70KFDGbnHfBobG6dDE5/Pt6jgIxgMaufOnTOO9fb2qrm5OVNtJpSL3puamhKGTIFAQIcPH9bw8LCMMRofH9fhw4evuteVQqGQmprY1BcAAABYTiaiLhnLcrSmkXQpOs+vxCMjUm+vc39GRhztHwAAAFgqsjbRdOTIETU0NMiyLO3bt09dXV06cuSIbr75ZgWDQd19990ZuVdtba2OHj3qWO2FtLW1ac+ePdMfHzp0aN5g5ErhcFjFxcVXHR8eHpbf73esx7nkqvfi4uIZezK1trYuuN/SQns59fT0qLa2dsG+JRJnAAAAYKnL+kQT+woCAABgkXi+nMWJpiuNjY3p8OHDampq0ocffqj6+nrdc889+s1vfuNI/d7eXkmSMcaR5dgWKxwOzwhq/H7/ooMayZ4gShSwXFkzU3LVezgcng6Lppa9WyhkkqSdO3fq5MmTc05bBYPBBWsAAAAAyA8VxROKujyO1oy6PKoouZT4xdFRZ0Mmya7n5D6FAAAAwBKRk6BpKlgIBoPat2+fjDE6fPiw/H6/du3apb6+vpRrnzx5Unv27JF1eVmFuSZeMuHZZ5+d8XEqy9499dRTVx3r7OzMeGCWq967u7un/3348OFFTyFJdrh14MCBBesCAAAAyG811/9exnL211djuVRz3R8crQkAAACsRFkLmuYKfFpaWnTs2DGtXr1axhgdOnRIdXV1+lf/6l/pu9/9rk6dOrXoe/z85z/Xpk2bZhxbaH8hp4TDYbW1tc04lsxE0BSfz5cwbOns7Ey5t4XksvfDhw9P3y+V5QF37tw5Y0+uKWNjY0nXAgAAALA0VZdekv/iB7JM3JF6lomrPDyk20rnmGgCAAAAsGhZC5rme/BfW1urU6dOafv27TLGyBij4eFhtbS0qLy8XGvWrNHXvvY1PfXUU/rOd76jV155RT//+c/V19enV155Rd/5zne0efNmNTQ0aHx8XJZlyRgjy7IShhCZMHuCxufzpbyvUqKepwKZTMhl78eOHZMkfe1rX0vpflLi6atsTrIBAAAAyCzLkprf+76jNQP9z+nyQhgAAAAA0uDsItfzuPLBf6Ipo6KiIh0+fFjt7e3au3fv9PnGGI2Pjy840WOMkaTpJfOmJFrOLRNeeumlGR/PnqxKRkNDw1UTRplcCi6XvU/tp5XKBNWURKFYMkvwAQAAAFj6dg8e0IsVAQ0WVynm8qZcxx2PqHL8PT0w2C7pEecaBAAAAFaorE00XbhwYfrfa9asmfO8QCCgkydPqqmp6arwaGraKdGf2edJ0r59+1RTU5OJT+cqs8OUdIKOuYKeqVDGabnqPRQKqba2Vi0tLSnfT0ocXKY6kQUAkIyRfvUb6Ue/kJ76r9J/eNH++0e/sI9f/jYLAEBWeU1U+9/4urzxiFzxWEo1XPGYvPGInn9jtzwmtRoAAAAAZsraRFMoFJr+9/Dw8LznFhUVKRgMqq2tTd/+9rd14MCB6Qmn2RNLsxlj5PP51NraqqamprT7Xoze3t6rlmorLy9Pud5c+0pNBTNOymXvfr9fPT09Kd9rSqJl8hItpwcAmF8kKnW8JQW7pdB5yZLkcdvBkmVJ0ZhkJPmvl5rrpd13St6s/SQBAFjRSkulggJVjvfr4Ov3atc9rykib1KTTe54RN54RAdfv1eV4/1SQYFdFwAAAEBasjbR1NnZOb130mKXgSsqKlJra6vGxsZ0+PBhBQIBbdiwYc6ppqKiIrW0tExPRGXL1D5DVyopKUmrZqJA6cqwzin53PuU2Z9DbW1t1vbmAoDlYuCs1PCMtPcn0snz9jEjKRKTonH776lBppPn7fManrGvAwAg48rKpKEhqadHW//vv1PXn59S5XURWTKyNP+o7dQ5lddF1PXnp7T1//47qafHrldWlqVPAAAAAFi+svY+5O3bt+vIkSOyLEuhUEj/9E//pLvvvjup67dv3z798cmTJxUOhzU2NqaSkhL5/X4VFRVlovUFJZrKSXfptkRhz9GjR9OqmUg+9z4lGAzO+PjAgQMZuxcALCsjI9LoqN4+9yfa9X/drEjcfhS3kKnHeYNnjXb8F6OD//ZDbb3xf9rvCueBHQAgU8rKpr/PVErqunuRk7g3WApsl3bfea28ni/k8jMAAAAAlqWsBU179+7V2NiY3n33XUlSfX29Ghsb9dRTT+n2229Put6GDRucbjFliaZ15lpCbrEShT2JlohLVz73LtmTclfu/9Ta2ur48oIAsCyNjEgbN2qgsFy77ntHky6juCu5QeeYsWQice366Tp1vbpFlZeGeXc4ACBrvB7pobulB7dJJ05LfaekwXPSpUmpcJVUcaNUs1667SY7eAIAAACQGVmdaOrp6dG7776rl156SZ2dnXr55Zd16NAh1dXV6Z133slWK45LFNaku/xcorBnbGwsrZqJ5HPv4XB4xhKJgUBALS0tjt8HAJal0VFF/hjVo/f+WBGXV3GXO6UycZdbEXn12LYOdf1si7yjowRNAICssiypusz+AwAAACD7srZH05Q77rhD+/bt04cffqjx8XG99NJL+tKXvpTtNhyVif2H1qxZc9WxbE00pStbvTc1NU3XbWlpuWoJPQDA/DoqmvR+SXVSG6knEnN51V9yuzoqsrc/IgAAAAAAAJaGrE00JVJUVKSdO3dq586duWwjI9Jdfi7d63N570z3HgqF1NjYOL1kXjAYVCAQSLvu5OSkfvnLXyZ1TVlZmcp45z6APGSMFLz1CUdrtlc9rgfN7xexyxMAAAAAAMDSMzIyopGRkaSumZyczFA3+SOnQdNykKm9hxJxevm5pd57d3f3jP2eent7p5ddnLJz505t2rTJkR4//vhj3XnnnUld81d/9Vf667/+a0fuDwDZdHy0UKGiWxyrZyyXhn0bdWJ0QNWOVQUAAAAAAMief/iHf9Df/M3f5LqNvEPQtESlu09SLjnRe3d3txoaGhY8r7Ozczp42rlzp5566inV1tamfX8AWO76zn9GlonLWM6tomuZuPo+vpagCQAAAAAAYAUhaEqT01NG83E6fFrKvR8+fDjpe0yFTvX19QoGgzOmoQAAMw2OF8gTjyriXuVYTU88qsGxQsfqAQCwFBlJx9fcob7rNmuwuEoT7kIVxC6pYrxfNR8fVfWFd1lGFgAAACsKQVOasrn8nNOWcu9T+y8FAgE1NjbK7/dPB0ehUEjd3d06dOiQuru7r7q2u7tbdXV1OnLkSFLTTdddd51eeeWVpPpkfyYA+Woi6pKxnH0MZiRdijo3IQUAwFISsTzqqGhS8NYnFCq6RZaJyxOPyliWLGMUdXlkLJf8Fz9Q83vf1+7BA/KaaK7bBgAAQBIeeugh1dfXJ3XNV77yFX388ccZ6ig/EDSlyefzJTweDofnfM3pezldbyn03traOmdI5Pf7FQgEFAgE1N3drcbGxqtCs3A4rO3bt+vkyZOLvveqVav0Z3/2Z0n1CQD5qsATl2WMozUtSYWeuKM1AQBYCgaKq/Toth/r/ZJPF4g1livhZPDJ1Tdr7xd/oBcrAtr/xtdVOd6fzVYBAACQhrKysqSHC1atcm61mHzF247TlM29lJy+11LufbGTSPX19erp6Un4WjgcVlNTU1L3BYCVoqJ4QlGXs+83ibo8qii55GhNAABy7e3P3qUd972jweIqGcu14P6GU+cMFldpx33v6O3P3pWlTgEAAIDcIGjKkGzuf+S0fOvd7/crGAwmfK2zs3NJLxEIALlSc/3vF3xQlixjuVRz3R8crQkAQE6UlkoFBRoortKue17TpOsaxVzepErEXF5Nuq7Rrnte00BxlVRQYNcFAAAAlhmCpjTNt/xcOhKFPVN7FDkln3ufLRAIzPn5vPzyyxm9NwDko+rSS/Jf/ECWcWapO8vEVR4e0m2lTDQBAJaBsjJF3h/So4F3FPEWKu5yp1Qm7nIr4i3UY4F3FHl/SGKPVwAAACxDBE0ZkompoLq6OsdrJpKvvQcCgYTH51paDwBWMsuSmt/7vqM1A/3PybIcLQkAQM50nCrT+xeuVcyk980tZiz1X7hWHacImQAAALA8Lbg5wyeffKJQKJR3y6mlq6SkRH6/X6tXr17wXL/fr1AoNONYulNBia7PxFRQPvc+W0NDg9ra2q46PvvzAwDYdg8e0IsVAQ0WVyW9HNCV3PGIKsff0wOD7ZIeca5BAAByxBgp2O1szfYj0oPbxJsyAAAAsOzMGzSdPHlSN998c7Z6WXIsy9KxY8dUU1Mz73mJwpp0w43h4eGE93FaPve+2HvMtaQeAKx0XhPV/je+rh33vSMjV0rLArniMXnjET3/xm55TCwDXQIAkH3HR6TQeefqGUnDv5NOnJaq5xtsGhmRRkedu3FpKcv1AQAAIOMWnGgyxmSjjyVpsZ97ooAjUdiSjGztc5TPvc9WUlKS1HEAgFQ53q+Dr9+rXfe8poi8SU02ueMReeMRHXz9XlWO92ewSwAAsqvvlGTJDoicYl2uO2fQNDIibdwoTUw4d9OCAmmIvaEAAACQWfMGTRs2bND4+PiKXDpPkjZt2qSioqIFz0u0/1C6U0Gzr6+vr0+r3lzyuffFytbeVgCQr7b+9k11vbpFj23rUH/J7ZIkY829jaNl4pKkyvH39PwbuwmZAADLzuA5yeOWIg4O63rcdt05jY46GzJJdr3RUYImAAAAZNSCE01FRUW64447stFL3ko0rXPs2LG0as4OaxoaGtKqN5dc9h4KhRyddJorDL3//vsduwcALFeV4/3q+tkWdVQ0KXjrEwoV3SLLxOWJR2Vkvws76vLIWC75L/5agf7ntHvwgLwmmuvWAQBw3ETE3qfJScZIlyadrQkAAAAsBQsGTVhYoomdcDiscDic0v5AU9cudA8n5Kr34uJiSdL4+HjS95hLokms+vp69mgCgEXymqgeGtivBwf268SaGvWVbtZgcZUuea5VYfQPqhjvV83oUd12oU/sYw4AWM4KvJLl8Dc7y5IKVzlbEwAAAFgK5l4XB0lJFKZ0d3enVGv2RJHP51NtbW1KtRYjF73X19crHA6rs7Mzpfskcvjw4auOtba2OlYfAFYKS1L1hT49MHRA3/7vT+jvfhnQt//7E3pg6ICqCZkAACtAxY1S1MFl8yS7XsWNztYEAAAAlgKCJoc0NjZedeyll15KqdahQ4dmfBwIBJK6Ptk9lnLR+9e+9jVJ0rPPPpvSfRKZHVrt3LkzowEdAOS10lJ7g3AnFRTYdQEAyHM16yWHV86TuVwXAAAAWG4sY5xeeXplCofD08vBXSmV/7zFxcUzlp8bHx9f1PJv3d3damxsnL42EAgoGAwueF0uer/ynocPH057acDu7u4Ze0H5fD6dPHlyUf/d1q1bp7Nnz2rt2rU6c+ZMWn0AQF4ZGbE3CHdKaSmbjQMAlgVjpH/9n6ST550JnCxJ/hukf/kv8yzJ19sr1dU5cLdZenok3oAHAACQMTxfZo8mx/h8Pu3cufOqqZr29vakJpK6u7tnBDWBQGBRYUlvb++MoGXq3mNjY1dNGS2F3qeW1Ovt7VVjY+OiQ6G5NDc3z6jd09PD3kwAsJCyMoIhAAASsCypuV7a+xPnaga2O7/vEwAAALAUsHSegxLtB7Rnz56kalx5vs/nW/QeQ3MtQdfZ2bmopfRy0fvUFFM4HNb27duTuteVGhsbpz/HqZDJ7/enXA8AAAAAdt8pfWGd5E7zt2a3S6q6SXrgLmf6AgAAAJYagiYH+f3+q8KVcDiccA+kRNra2tTb2zv98ZEjRxY9lTNfmHRlzbnkovfy8vIZPZaXl6e0v9TUJJbf7ydkAgAAAOAIr0fa/4jkdUuuFCeRXJZ9/fMPSx63s/0BAAAASwVBk8NaWlrU0tIy41hnZ+eCgU1bW9uMiaBgMKjaJNbR3rRp05yvLbZOtnuf3XMoFFJ5ebkaGxvnDcfC4bDa29tVXFw8HTIFAgENDw8TMgEAAABwTOVa6eDj0ipP8pNNbpd93cHH7ToAAADAcmUZY5zY2xSzzA5fJHtZt0AgoM2bN8vv92tsbEy9vb0KBoMzln47dOjQ9LJyixUOh7Vhw4YZeyRJdni02OX3ctG7Nc8i5T6fT5s2bZoOj8bGxhQKhWaEULW1tTpw4EBSodxsbNYGAAAAYD4DZ6XHfij1n7Y/nu+X6KnfcKpusieZFh0y9fZKdXVpdDmHnh4pjd+XAAAAMD+eLxM0ZVQoFFpwOudKO3fuVGtra8pTOaFQSM3Nzeru7pbf79eePXsUCARSrpWN3tva2vTSSy8t+j5X3q+5uTnpQC4RvhAAAAAAWEgkKnW8JQW7pdB5O1DyuCVjJMuSojE7gCq/QQpst/d48nqSuAFBEwAAQF7i+fIigqZXXnlFX/nKV7LVz5Ly85//XJs2bdLq1avTqhMKhRQMBtXb26tQKKRQKCSfzye/36+SkhI1NDQoEAgsej+mbMpm793d3Tp06JBCodD09FI4HJbf75/+U1dXp/vvv9/R/1Z8IQAAAACwWMZIJ05LfaekwXPSpUmpcJVUcaNUs1667SY7eEoaQRMAAEBe4vnyAkHTyZMnVV5erm984xt6/vnns9lXzu3du1d/+7d/q56eHtXU1OS6HWQQXwgAAAAA5BxBEwAAQF7i+bI07yD/hg0btG/fPu3du1ehUEivv/56tvrKqfvvv18//elP1dTURMgEAMiekRFpdNS5eqWlUlmZc/UAAAAAAACAWRZcMbqlpUVHjx7VT3/6U23ZskVHjhzRn/7pn2ajt6z75JNPtH37dvX29mr79u36+7//+1y3BABYKUZGpI0bpYkJ52oWFEhDQ4RNAAAAAAAAyBjXYk46dOiQvvrVr+rYsWPasGGD/umf/inTfWVdX1+f6urq1NPTozvuuENdXV25bgkAsJKMjjobMkl2PScnpAAAAAAAAIBZFhU0SZ+GTWNjY6qvr9euXbv0ySefZLK3rHn00UdVV1en4eFhNTQ06NixY7luCQAAAAAAAAAAYMlbdNAk2WHTk08+KWOMDh06pA0bNuiHP/xhpnrLuFdeeUVr1qxRe3u7jDFqbm7WP/7jP+a6LQDAEmaM9KvfSD/6hfTUf5X+w4v23z/6hX3cmFx3CAAAAAAAAGTPgns0zdba2qrNmzfr/vvv1/j4uAKBgFpaWtTW1qaHH344Ez067oUXXlBra6tCoZDM5SeC7e3teuSRR3LcGQBgqYpEpY63pGC3FDovWZI8bjtYsiwpGpOMJP/1UnO9tPtOyZv0d1kAALBilZba+ys6vV9jaalz9QAAAIAELGNSe+91KBRSY2Oj3n33XbuQZcnn86m5uVmBQEDr1693ss+0nTp1Sp2dnXr22WcVDoclScYY1dbWTk9nYWVat26dzp49q7Vr1+rMmTO5bgfAEjRwVnr0Ben9y18i5vvGaV3++wvrpP2PSJVrF3mT3l6pri7hS0bS8TV3qO+6zRosrtKEu1AFsUuqGO9XzcdHVX3h3en7XqWnR6qtXWQTAAAgp0ZGnN1fsbRUKitzrh4AAACuwvPlNIKmKe3t7dq7d6/C4bAs69PHXLW1tWpublZ9fX3OQqepcOmll15Sb2/v9PGpT7mtrU3/8T/+x5z0hqWDLwQA5vP2kLTrOSkSk2LxxV/ndklet3TwcWnrxkVckCBoilgedVQ0KXjrEwoV3SLLxOWJR2UsS5Yxiro8MpZL/osfqPm972v34AF5TXRmXYImAAAAAACAjOH5sgNBkyRdvHhR3/72t/W3f/u3nxa+InTy+Xyqr69XQ0ODNm3apJqamnRvmVBfX5+OHTumw4cPq7u7e3pySfo0XJKkQCCg1tZWFRUVZaQP5Be+EACYy8BZaccz0mRUiqfw3dJlSas8Ute3FjHZNCtoGiiu0qPbfqz3S6olScaae1tFy9gJ2BfGjmv/G19X5Xj/py8SNAEAAAAAAGQMz5cdCpqmTAVOBw4cmBHySDODJ0ny+/3Tf3w+n8rLy1VSUiKfz6eSkhJJdkAlabrW2NiYwuGwxsbGNDw8rHA4rFAopGPHjl11v0SfViAQ0J49e1gmDzPwhQBAIpGo1PCMNHguuUmm2dwuO2TqenqBPZuuCJre/uxd2nXPa4q4vIq5vIu/Vzwibzyig6/fq62/fdM+SNAEAAAAAACQMTxfdjhoulJnZ6fa29vV3d396c0sa0YANDt8StXsmld+PLWEX1NTkyP3wvLDFwIAifzDP0l7fzL/fkyLZUna9+fSQ3fPc9LloGmguEo77ntHk65rFHe5k76XKx7Tqvgf1fXqFnuyiaAJAAAAAAAgY3i+LM29Dk+adu7cqa6uLo2Pj6u1tVX19fUJp4yuZIxZ1J+FatTW1qqlpUXDw8M6duwYIRMAICnGSMHuhc9LRvsRu+58IpZHj277sSIub0ohkyTFXW5FXF49tq1DEWu+ESoAAAAAAAAgfRl/AlVUVKQnn3xSTz75pCTp3XffVXd3tw4fPpxwybvFuDJs8vl82rRpkxoaGlRbW6vt27c71ToAYIU6PiKFzjtXz0ga/p104rRUXTb3eR0VTXq/pHre/ZgWI+byqr/kdnVUNOmhtCoBAAAAAAAA88v6W53vuOMO3XHHHdPBkySdPHlSoVBIoVBoOni6cOHC9L99Pp/WrFkz/e+pvZ3YawkAkAl9p+zl7pxcW9a6XHeuoMkYKXjrEw7eUWqvelwPmt/LmYVqAQAAAAAAgKstiTV1NmzYoA0bNjCNBABYEgbPSR63FIk5V9PjtuvO5fhooUJFtzh2P2O5NOzbqBOjA6p2rCoAAAAAAAAwU8b2aAIAIF9NRBbeTylZxkiXJud+ve/8Z2SZuKP3tExcfR9f62hNAAAAAAAA4EoETQAAzFLglSyH15uzLKlw1dyvD44XyBOPOnpPTzyqwbFCR2sCAAAAAAAAV1oSS+cBALCUVNwoRR1cNk+y61XcOPfrE1GXjMPplpF0Kcp7SgAAyHfGSMdH7P0eB8/Z09cFXvtni5r19h6QTr9JBgAAAFgsgiYAAGapWW+HNE4yl+vOpcATl+Xwen2WpEKPs8vxAQCA7IlEpY63pGC3FDpvf2/3uO3gybLsN7IYSf7rpeZ6afedkpff8gEAAJBlvM0ZAIBZqsvsBzZOvTHYklR+g3TbTXOfU1E8oajL2SdDUZdHFSWXHK0JAACyY+Cs1PCMtPcn0snz9jEjKRKTonH776m3qJw8b5/X8Ix9HQAAAJBNBE0AAMxiWVJz3Zicm2syCtSOzbukTc31v5exnP22bCyXaq77g6M1AQBA5r09JO14xl4mz2jhn0imzhk8Z1/39lDmewQAAACmEDQBADDbyIh2f/3z+sKFX8kdj6RVyh2PqOpCnx74epk0MjLnedUVn5H/k1/LMs4sdWeZuMo/+UC3VXzGkXoAACA7Bs5Ku56TJqNSLMkfC2Jx+7pdzzHZBAAAgOwhaAIAYLbRUXkv/U/tf+Pr8sYjcsVjKZVxxWPyxiN6/o3d8lz6vTQ6Oue51ufL1Py1Nc7t5G1ZCnytVNbny5ypBwAAMi4SlR59wV4WL57iYHXc2Nc/9kO7HgAAAJBpBE0AAMyhcrxfB1+/V6vif0x6sskdj2hV/I86+Pq9qhzvX9Q1u/8/JfrCOkvuNL87u11S1U2WHrivJL1CAAAgqzrekt4/k/wk02yxuNR/2q4HAAAAZJqzu44vwieffKL29nYdPnxYY2NjCoVCKikpkc/nk9/vV0lJierq6lRfX6/169dnuz0AAGbY+ts31fXqFj22rUP9JbdL0rx7KU0tfVc5/p6ef2P3okMmSfJ6pP2P2HsrGJPaO5ldluR1S88/LHncyV8PAABywxgp2O1szfYj0oPbnBuYBgAAABLJatD06KOPqr29ffpjY+wnaOPj45Kk3t7eGef7fD7V19drx44devjhh7PXKAAAV6gc71fXz7aoo6JJwVufUKjoFlkmLk88KiPJkhR1eWQsl/wXf61A/3PaPXhAXpP8ejWVa6WDj9t7K0Riyb2j2e2yQ6aDj9t1AABA/jg+IoXOO1fPSBr+nXTitFTNSroAAADIIMtMpT0Z9o1vfGNGyCRJ1qy3VSVq5cpzGhsbFQgE9KUvfSkzTWJFWrdunc6ePau1a9fqzJkzuW4HwFLQ2yvV1SV8yUg6saZGfaWbNVhcpUuea1UY/YMqxvtVM3pUt13o05xvGu7pkWprF9XCwFl7b4X+05/edy5T96u6yZ5kImQCACD//OgX0pM/nv97frIsSd/ZLT1wl4NFAQAAMAPPl7M40fTyyy9fFSxJV4dL851z6NAhHTp0SOXl5QoGg7r77rsz0ywAAHOwJFVf6FP1hb6M3qdyrdT1tL23QrDbfoezJXs5PGPsJXCiMfthlP8GKbBd2n2nvfweAADIP4Pn7O/zkZhzNT1uu+68Rkak0VHnblpaKpUxQgUAALCS5OxxlDFGfr9ftbW1Kikp0djYmMLhsEKhkEKh0IxzrwyfjDH68MMPVV9fr7q6Oh04cEC33357ttsHACDjvB7pobvtvRVOnJb6TtkPiy5NSoWrpIobpZr10m03sfcCAAD5biJiv5nEScbYPzfMaWRE2rhRmphw7qYFBdLQEGETAADACpK1oGnTpk3q7rZ3NrUsS4cOHdJXv/rVOc+/ePGiuru79dJLL6m7u1vhcHj6WskOnI4dO6ba2lq1t7ezhxMAYNmyLHtvBfZXAABg+SrwOv/GEcuy35wyp9FRZ0Mmya43OkrQBAAAsIK4snWjxsZGSXZQVF9fP2/IJElFRUX66le/qpdfflljY2MaHh7Wk08+qaKiouml9CzLkjFGgUBATz/9dMY/BwAAAAAAMqHiRntZXCdFY3ZdAAAAIJOyFjTdf//9aV2/YcMGtba2amxsTC+//LLq6+tljJkOm1pbW/Xd737XoW4BAAAAAMiemvX23otOMpfrAgAAAJmUtaCpqKhITU1N00vepWPnzp3q6urShx9+qC996UuS7KX0Wlpa9E//9E9OtAsAAAAAQNZUl0n+6yWnVs+zJJXfYO/lCAAAAGRS1oImSQoGgyoqKlI4HHYkEPL7/Tp8+LC6urrk9/tljFFjY6P+x//4Hw50CwAAAABAdliW1FzvbM3Aduf3fQIAAABmy2rQJEkHDhyQMUZ79uxxrGZ9fb0+/PBDPfnkkxobG9P27dsdqw0AAAAAQDbsvlP6wjrJneZv6m6XVHWT9MBdqdcwkn615g79qCKgp/7X5/Qf/qxdT/2vz+lHFQH9as0dji/zBwAAgPzlyfYNd+7cqSeffFLf+c539N3vfld/+Zd/6Vjt1tZWrVmzRnv37nW8NgAAAAAAmeT1SPsfkXY8IxkjxVNIc1yW5HVLzz8sedzJXx+xPOqoaFLw1icUKrpFlonLE4/KWJYsYxR1eWQsl/wXP1Dze9/X7sED8ppo8jcCAADAspH1iSbJDoS+9KUvZWRPpZaWFt1xxx1qaWnRJ5984mhtAAAAAAAyqXKtdPBxaZUn+ckmt8u+7uDjdp1kDRRXqeHLR7X3iz/QydU3S5KM5VLEvUpRl1cR9yoZy27q5OqbtfeLP1DDl49qoLgq+ZsBAABg2chJ0CRJhw8fVk1Njerr6/WrX/3K0dpPPfWUjDHau3evo3WxvH300Udat25dwj/f+973ct0eAAAAgBVi60ap61t2WGTJ/jOfqXMq19rXbd2Y/D3f/uxd2nHfOxosrpKxXNOB0lymzhksrtKO+97R259NY50+AACAJe573/venM+OP/roo1y3l3NZXzrvSj//+c9VW1ur2tpadXd36+6773akbkNDgyQpGAxq3759Wr16tSN1sbzF43GdPXs24WtMxwEAAADIpsq1UtfTUsdbUrBbCp23wySP215Wz7KkaMzeS8l/gxTYbu/x5E3ht/yB4irtuuc1TbquUdyV3Hp7MZdXRi7tuuc1db26RZXj/ck3AAAAsMR98skncz47Ro6DpqKiIvX29upLX/qS6uvrtWfPHn372992pO6UQ4cO6eGHH067JpY/l8ulz33ucwlfI6wEAAAAkG1ej/TQ3dKD26QTp6W+U9LgOenSpFS4Sqq4UapZL912kx08pSJiefToth8r4vImHTJNibvcisirx7Z1qOtnW+RNrRUAAIAla/Xq1Vq7NvHaxB999JHi8XiWO1pacho0SXYo1NPToz179mjfvn3q7u7WoUOH9PnPf96R+i+//DJBExblc5/7nM6cOZPrNgAAAABgBsuSqsvsP07rqGjS+yXVCy6Vt5CYy6v+ktvVUdGkhxzqDQAAYKn45je/qW9+85sJX1u3bt2Kn3bK2h5Nr7zyijZv3qzNmzfr3/ybf6NHH31UL7zwgk6dOiVJam1t1eHDh/Xhhx/K7/frscceS3m5sosXL0qSjDE6duyYU58CAGClKC2VCgqcrVlQYNcFAABYIoyRgrc+4WjN9qrHZYyjJQEAALDEZW2i6ZFHHtHFixdljJGVYKa/trZWmzZtUmtrqw4dOqS///u/VzAYVHNzswKBgGpqahZ9r1Ao5GDnAIAVp6xMGhqSRkedq1laatcFAABYIo6PFipUdItj9Yzl0rBvo06MDqjasaoAAABY6rIWNG3YsEHvvvuuLMuSSfD2pp6eHvX29s44ZoxRMBhUMBhUbW2tvva1r6m+vn7B0CkYDEqSLMvSpk2bHPscAAArSFkZwRAAAFjW+s5/RpaJp71s3pUsE1ffx9cSNAEAAKwgWQuannrqKd1///2SlHCiSdKMAGrqnKljs4Oo2tpa+f1+bd68eXoaavXq1bp48aLa29unr29ubs7I5wMAAAAAQD4bHC+QJx5VxL3KsZqeeFSDY4WO1QMAAMDSl7WgaefOndqwYcP0nkyJppqmXBlEXfnvK6+ZCp46OztnXOv3+6fPtSxLX/nKV5xoHwAAAACAZWUi6pKZ442gqTKSLkWzth00AAAAloCsBU2SvaTdjh07ZFmWGhoa9Pd///cqKSlRKBRSKBTS0aNHFQqF1Nvbm3CfpUSTULMDq+Hh4RnTUG63W36/X36/X7W1tSovL9emTZvk9/u1evXqzHyiAAAAAAAscQWeuKx53gSaCktSoSfuaE0AAAAsbVkNmurr69XU1KQXXnhBDQ0N2rBhgyTpjjvu0B133KGvfvWrM84/efKkent7Uwqgpo4bYzQ8PKxQKKTu7u4Zr/t8Pvn9fm3atEl1dXXT/yaAAgAAAAAsdxXFE4q6nH0sEHV5VFFyydGaAAAAWNosM98adhlw8eJFrV+/Xtddd50++OCDlGqkGkDN9akmCqqmpp/27dun9evXp9Qn8sO6det09uxZrV27VmfOnMl1OwAAAACQFb/6fz9S/Qufc7zukUc+UvX/4nxdAACApYjnyzkImiSpu7tbO3bs0N/+7d/qL//yLx2rm4kAKhgM6pFHHnGsRyw9fCEAAAAAsBIZI/3rvRGdHPPIKP29miwZ+Uui+pd9Xjm89RMAAMCSxfPlLC+dN6W+vl5PPvmkWlpatHPnTn3+8593pO6GDRu0YcOGq5bge/fdd3Xs2DH19PTo2LFj6u3tnfH6fHs/9fT0EDQBAAAAAJYdy5Ka7/Fq708cq6jAPYRMAAAAK01OJpqmlJeXq6SkREePHs36vU+ePKnu7m719PSou7v7qsmnqfDJ7/fr17/+ddb7Q/aQOAMAAABYqSJRqeEZafCcFIunXsftkirXSoe/JXnczvUHAACw1PF8OcdB08mTJxUKhbR9+/ZctTDt4sWL09NOhw8f1rFjxxQOh2VZlsbHx7V69epct4gM4QsBAAAAgJVs4Ky04xlpMirFU3hC4LKkVR6p61t22AQAALCS8Hw5x0HTUje159PspfiwvPCFAAAAAMBK9/aQtOs5KRJLbrLJ7ZK8bung49LWjZnrDwAAYKni+XKO9mjKF1N7PgEAli5jpOMjUt8pe8mXiYhU4JUqbpRq1kvVZWKfAAAAgAVs3WhPJD32Q6n/tH1svnelTv14VblWev7hJCaZRkak0dE0Op2ltFQqK3OuHgAAAJJG0AQAyEuRqNTxlhTslkLn7YcdHrcdPFmWFI3ZD0f810vN9dLuOyUv3/UAAADmVLlW6np6kT9j3SAFtif5M9bIiLRxozQx4VzTBQXS0BBhEwAAQA7xyA0AkHcGzkqPviC9f8U0spG91MtsJ89Le38ivfimtP8R9g0AAACYj9cjPXS39OA26cTpT6fGL01Khas+nRq/7aYUpsZHR50NmSS73ugoQRMAAEAOETQBAPLKlfsHLGaTwalzBs/Zm1yzfwAAAMDCLMtegria/AYAAAALcOW6AQAAFmvgrB0yTUaT26Rass+fjNrXD5zNTH8AAAAAAADASkPQBADIC5GovVxeJCbFFzPKlEDc2Nc/9kO7HgAAAAAAAID0EDQBAPJCx1v2nkzJTjLNFotL/aftegAAAAAAAADSQ9AEAFjyjJGC3c7WbD9i1wUAAAAAAACQOoImAMCSd3xECp2XnMqFjKTh30knTjtUEAAAAAAAAFihCJoAAEte3ynJcrimdbkuAAAAAAAAgNQRNAEAlrzBc5LH7WxNj9uuCwAAAAAAACB1nlw3AADAQiYizu+nZIx0adLZmgAAAEiNkXR8zR3qu26zBourNOEuVEHskirG+1Xz8VFVX3jX8Ql3AAAAOIOgCQCw5BV4JcvhJwuWJRWucrYmAAAAkhOxPOqoaFLw1icUKrpFlonLE4/KWJYsYxR1eWQsl/wXP1Dze9/X7sED8pportsGAADAFVg6DwCw5FXcKEVjztaMxuy6AAAAyI2B4io1fPmo9n7xBzq5+mZJkrFcirhXKeryKuJeJWPZjy1Orr5Ze7/4AzV8+agGiqty2TYAAABmIWgCACx5Nevt5VScZC7XBQAAQPa9/dm7tOO+dzRYXCVjuaYDpblMnTNYXKUd972jtz97V5Y6BQAAwEIImgAAS151meQvichyKG6yZFReEtFtNzlSDgAAAEkYKK7Srnte06TrGsVc3qSujbm8mnRdo133vMZkEwAAwBJB0AQAWPKs0yNqfv0/SsahuSZjFHj9P8o6PeJMPQAAACxKxPLo0W0/VsTlVdzlTqlG3OVWxOXVY9s6FLHYehoAACDXCJoAAEvf6Kh2n3heXxg7Lnc8klYpdzyiqrFf6YET/z9pdNShBgEAALAYHRVNer+kOulJptliLq/6S25XR0WTQ50BAAAgVQRNAIC84DVR7X/j6/LGI3LFYynVcMVj8sYjev6N3fKY1GoAAAAgNcZIwVufcLRme9Xjjg29AwAAIDUETQCAvFE53q+Dr9+rVfE/Jj3Z5I5HtCr+Rx18/V5VjvdnqEMAAADM5fhooUJFt8hYzjyKMJZLw76NOjFa6Eg9AAAApIagCQCQV7b+9k11vbpFlePvyTJxWSY+7/lT51SOv6euV7do62/fzFKnAAAAuFLf+c8s+LNbsiwTV9/H1zpaEwAAAMkhaAIA5J3K8X51/WyL9v3zX2jDJx9Ksh8yeGOT8sQm5Y1NTj/E8F/8tfb981+o62dbmGQCAADIocFLxfLEo47W9MSjGrxU4mhNAAAAJMeT6wYAAEiF10T10MB+PTiwXyfW1KivdLMGi6t0yXOtCqN/UMV4v2pGj+q2C32yct0sAAAANFHwpzJeIzk41GS8Xl26ZpVzBQEAAJA0giYAQF6zJFVf6FP1hb5ctwIAAIB5FHgly3L2LUCWZamQnAkAACCnWDoPAAAAAABkXMWNUjTmbM1ozK4LAACA3CFoAgAAAAAAGVezXjIO1zSX6wIAACB3CJpyJBwOKxQK5bqNlORz7wAAAACA3Kguk/zXy7H9My1J5TdIt93kUEEAAACkhKApS7q7u9XY2Kjy8nJZlqXi4uLpf1uWpbq6OrW1tSkcDue61atku/dwOKzOzk41Njaqrq5uxr2m7t3Y2Kj29nYCLwAAAADIE5YlNdc7WzOw3a4LAACA3LGMMU5PruMKnZ2dampqSiqEaWlpUWtra+aaWqRs9x4Oh7Vnzx61t7cndV19fb1aW1tVW1ub0n3XrVuns2fPau3atTpz5kxKNQBkWG+vVFfnfN2eHinFrx0AAABIXiQqNTwjDZ6TYvHU67hdUuVa6fC3JI/buf4AAACSxfNlJpoyJhwOq7GxUY2NjdNBTUtLi3p6ejQ+Pi5jjIaHhxUMBuX3+2dc29bWprq6upxNN+Wi9/b2dhUXFycdMkn2xFVdXZ327NmT9LUAAAAAgOzxeqT9j0het+RKcRLJZdnXP/8wIRMAAMBSwERThpSXl08v6+b3+9XT0yOfzzfn+c3NzVeFLLW1terp6clkmwllu/c9e/aora0t5X6vVF9fr8OHDyd1DYkzkAeYaAIAAFhW3h6Sdj0nRWLJTTa5XXbIdPBxaevGzPUHAACwWDxfZqIpIxobG6eDGp/Pt2BQI0nBYFA7d+6ccay3t1fNzc2ZajOhbPfe1tY2b8jk8/nk9/sX7GFKd3d31v+bAQAAAACSs3Wj1PUte/k7S/af+UydU7nWvo6QCQAAYOkgaHJYW1ubOjs7pz8+cODAokOSAwcOXHWsvb19OvjJtFz0fvTo0auOBQIBDQ8Pyxij8fFxDQ8PTy/Zd/jwYQUCgXlrtre3q7u7e1F9AwAAAAByo3Kt1PW0tO/PpQ3X28cs2RNLnsuTS1MBlP8G+7yup+3rAAAAsHSwdJ6DwuGwiouLpz/2+/0aHh5OqkaiZeR27typQ4cOOdLjXHLVe11dnXp7eyV9OkE1e9+nREKhkBoaGuYMspJZuo/RRiAPsHQeAADAsmaMdOK01HdKGjwnXZqUCldJFTdKNeul226SrBT3dAIAAMgkni8z0eSoZ599dsbHqSzh9tRTT111rLOzM+NTTbnq/crXjhw5sqiQSfo0CJvr/N7e3qxNggEAAAAA0mNZUnWZ9MBd0rd3SX/3gP33A3fZxwmZAAAAli6CJoeEw+GE0zzJ8vl8qk3w7vorl7RzWi57D4fD0/dLdO1CDh8+POdrLJ8HAAAAAAAAAEBmETQ5ZHao4fP5Fj2dM1t9ff1Vx+YLVNKVq96vnDhKNA21GH6/f849mzL53wxAlpWWSgUFztYsKLDrAgAAAAAAAEiZJ9cNLBcvvfTSjI83bdqUcq2GhoarJowyOZ2Tq96ngia/35/SNNOU5uZmtbe3X3V8aloKwDJQViYNDUmjo87VLC216wIAAAAAAABIGUGTQ2aHKekEJ3MFPb29vWnVnUuuep8KmhJNQSVjrn7HxsbSqgtgiSkrIxgCAAAAAAAAlhiWznNAb2/vVdMz5eXlKdfz+XwJj1+51JxTct17bW2tGhsbU77ffPctKSlJuy4AAAAAAAAAAJgbQZMDjh07dtWxdEOORFM6mQiactl7IBBQT09P2hNNUuKeU91nCgAAAAAAAAAALA5L5zmgp6fnqmPphhyJgpOjR4+mVTORfO79SomWyUtnMgsAAAAAsEyMjLDXJwAAQAYRNDkg0bTOXEvILVaisGf2EndOyOfeF6rvxKQUAAAAACCPjYxIGzdKExPO1SwokIaGCJsAAAAuY+k8ByQKa9Jdfi5R2JNoaidd+dz7lN7e3oQ9JFrCDwAAAACwgoyOOhsySXY9JyekAAAA8hxBkwMysXfSmjVrrjqWrYmmdGWr9ykvvfTSVcdaW1szdj8AAAAAAAAAAGBj6bwMSXf5uXSvz+W9s917e3v7jI/9fr8CgUDSdSYnJ/XLX/4yqWvKyspUxnIJAAAAAAAAAJD3RkZGNDIyktQ1k5OTGeomfxA0pSnTew9dyenl5/K59ymdnZ1XfR7BYDClWh9//LHuvPPOpK75q7/6K/31X/91SvcDAAAAAAAAACwd//AP/6C/+Zu/yXUbeYel85aodPdJyqVs9r5nz54ZHwcCAdXX12ft/gAAAAAAAAAArGQETWnK1KROIk4HOPncuyS1tbXN2GPK7/enPM0EAAAAAAAAAACSx9J5acrm8nNOy+feQ6HQjGkmn8+nw4cPp1Xzuuuu0yuvvJLUNezPBAAAAAAAAADLw0MPPZT0illf+cpX9PHHH2eoo/xA0JQmn8+X8Hg4HJ7zNafv5XS9fOi9sbFxxsdHjhyR3+9Pq+aqVav0Z3/2Z2nVAAAAAADkByPp+Jo71HfdZg0WV2nCXaiC2CVVjPer5uOjqr7wrqxcNwkAALKqrKws6eGCVatWZaib/EHQlKZs7kfk9L3ytfc9e/aot7d3+uNDhw6ptrbWsfoAAAAAgOUrYnnUUdGk4K1PKFR0iywTlycelbEsWcYo6vLIWC75L36g5ve+r92DB+Q10Vy3DQAAsGSxR1OGZHP/I6ct5d47OzvV1tY2/XEwGNTOnTtz2BEAAAAAIF8MFFep4ctHtfeLP9DJ1TdLkozlUsS9SlGXVxH3KhnLflRycvXN2vvFH6jhy0c1UFyVy7YBAACWNIKmNM23/Fw6EoU96S4NN1u+9d7b2ztjybzW1lYFAoG06wIAAAAAlr+3P3uXdtz3jgaLq2Qs13SgNJepcwaLq7Tjvnf09mfvylKnAAAA+YWgKUMyMRVUV1fneM1ElmLvoVBI27dvn/64paVFLS0t6bYFAAAAAFgBBoqrtOue1zTpukYxlzepa2MuryZd12jXPa8x2QQAAJAAQZMDEk3rpDsVlOh6pyea5qq51HoPh8NqaGiYrhsIBNTa2ppyPQAAAADAyhGxPHp0248VcXkVd7lTqhF3uRVxefXYtg5FLLa7BgAAuBJBkwMShSihUCitmsPDw4u6T7ryofft27dP97Rz504Fg8GUawEAAAAAVpaOiia9X1Kd9CTTbDGXV/0lt6ujosmhzgAAAJYHgiYHJApREoUtycjGHk1z1VxKvTc0NKi3t1eSHTIdOnQord4AAAAAACuHMVLw1iccrdle9biMcbQkAABAXiNockCi/YfSnQqafX19fX1a9eaylHtvaGhQd3f3dA1CJgAAAABAMo6PFipUdIuM5czjD2O5NOzbqBOjhY7UAwAAWA4ImhyQaFrn2LFjadWcHdY0NDSkVW8uS7X3xsbG6ZCptrZWhw8fTqsnAAAAAMDK03f+M7JM3NGalomr7+NrHa0JAACQzwiaHJBoYiccDiscDqdUL9G1mZpoWoq9Nzc3q7OzU5IdMvX09KTUCwAAAABgZRscL5AnHnW0pice1eAYE00AAABTCJockihMmZrISdbsiSKfz6fa2tqUai3GUup9z549am9vl2RPWx05ciSlPgAAAAAAmIi6ZCzL0ZpG0qUoj1MAAACm8JORQxobG6869tJLL6VUa/ZeRIFAIKnrk91jaan03tbWpra2Nkl2yNTT0yOfz5dSHwAAAAAAFPzJNbKMcbSmJanwT69xtCYAAEA+s4xx+CeuFSocDqu4uPiq46n85y0uLp6x/Nz4+PiiApfu7m41NjZOXxsIBBQMBhe8bin03t7erubmZkn2FFRPT0/C/aMyYd26dTp79qzWrl2rM2fOZOWeAAAAAIDM+9EvpCd/bGTk3FSTJaPv7Lb0wF2OlQQAAHmM58uSJ9cNLBc+n087d+6c3ltoSnt7e1JTPd3d3TOCmkAgsKigpre3Vw0NDVfde2xs7Kopo6XWe2dn57wh05U1x8bGrjo+dSzRxxcuXJAktba2LvrzAAAAAAAsDzXr5WjIJNn1atY7WhIAACCvMdHkoFAopPLy8hnHfD6fxsfHF12jrq5Ovb2909eePHlyUWFNY2PjVUHRlOHh4QWng3LVe2dnZ8Kl+5w23//mJM4AAAAAsDwZI/3r/ySdPG/vrZQuS5L/Bulf/ovk8NZPAAAgT/F8mT2aHOX3+6+anAmHw4sOUtra2qaDGkk6cuTIovcomm9fpitrziUXvU8t9QcAAAAAQCZYltRc72zNwHZCJgAAgCsRNDmspaVFLS0tM44tZmqnra1Ne/bsmf44GAyqtrZ20ffdtGnTnK8ttk42e0+01B8AAAAAAE7bfaf0hXWSO80nIG6XVHWT2JsJAABgFpbOy5DZ4YtkLycXCAS0efNm+f1+jY2Nqbe3V8FgcHoiyefz6dChQ6qvT+4tV+FwWBs2bJixn5Fkh0fJ7k+Ujd6Li4uv6jWTWDoPAAAAAFaugbPSjmekyagUT+EpiMuSVnmkrm9JlWud7w8AAOQvni8TNGVUKBRSY2Pjopauk6SdO3eqtbV1wf2U5rtfc3Ozuru75ff7tWfPHgUCgZRrZbJ3K411BqaW5CspKdHY2NhVrycKsMbHx+dcyo8vBAAAAACw/L09JO16TorEpFh88de5XZLXLR18XNq6MXP9AQCA/MTzZYKmrAiFQgoGg+rt7VUoFFIoFJLP55Pf71dJSYkaGhoUCAQWvR9TNuVz74vFFwIAAAAAWBkGzkqP/VDqP21/PN8Dkam3R1bdJD3/MJNMAAAgMZ4vEzQBfCEAAAAAgBUkEpU63pKC3VLovB0oedySMZJlSdGYHUCV3yAFttt7PHk9ue4aAAAsVTxflvhRCQAAAAAArBhej/TQ3dKD26QTp6W+U9LgOenSpFS4Sqq4UapZL912kx08AQAAYH4ETQAAAAAAYMWxLKm6zP4DAACA1Lly3QAAAAAAAAAAAADyE0ETAAAAAAAAAAAAUkLQBAAAAAAAAAAAgJQQNAEAAAAAAAAAACAlBE0AAAAAAAAAAABIiSfXDQAA8tDIiDQ66ly90lKprMy5egAAAAAAAACygqAJAJCckRFp40ZpYsK5mgUF0tAQYRMAAAAAAACQZwiaAADJGR11NmSS7HqjowRNAAAAWNaMkY6PSH2npMFz0kREKvBKFTdKNeul6jLJsnLdJQAAQHIImgAAAAAAADIoEpU63pKC3VLovGRJ8rjt4MmypGhMMpL810vN9dLuOyUvT2wAAECe4McWAAAAAACADBk4Kz36gvT+mU+PGUmR2NXnnjwv7f2J9OKb0v5HpMq1WWsTAAAgZa5cNwAAAAAAALAcvT0k7XjGXibPyP4zn6lzBs/Z1709lPkeAQAA0kXQBAAAAAAA4LCBs9Ku56TJqBSLJ3dtLG5ft+s5uw4AAMBSRtAEAAAAAADgoEjUXi4vEpPiC40xzSFu7Osf+6FdDwAAYKkiaAIAAAAAAHBQx1v2nkzJTjLNFotL/aftegAAAEsVQRMAAAAAAIBDjJGCr0e08I5Mi66o9tcjMk6VAwAAcBhBEwAAAAAAgEOOv/ORQmNeGVmO1DOyNDzm1Yl3PnKkHgAAgNMImgAAAAAAABzS90FElklzzbxZLBNX368nHa0JAADgFIImAAAAAAAAhwyOF8gTjzpa0xOPanCs0NGaAAAATiFoAgAAAAAAcMhE1CVjObNs3hQj6VKURzgAAGBp4qcUAAAAAAAAhxR44rKMcbSmJanQ4+xyfAAAAE4haAIAAAAAAHBIRfGEoi6PozWjLo8qSi45WhMAAMApzv7kAwBY0Yyk42vuUN91mzVYXKUJd6EKYpdUMd6vmo+PqvrCu3J2EREAAABgaam5/vcylrPv6zWWSzXX/cHRmgAAAE4haAIApC1iedRR0aTgrU8oVHSLLBOXJx6VsSxZxijq8shYLvkvfqDm976v3YMH5DXObpAMAAAALAXVpZfkv/iBTq6+2ZHAyTJx+S/+WreVMtEEAACWJpbOAwCkZaC4Sg1fPqq9X/yBTq6+WZL9jsuIe5WiLq8i7lXTv2CfXH2z9n7xB2r48lENFFflsm0AAAAgIyxLan7v+47WDPQ/J4ulAQAAwBJF0AQASNnbn71LO+57R4PFVTKWa8F3bE6dM1hcpR33vaO3P3tXljoFAAAAsmf34AF9Yey43PFIWnXc8Yiqxn6lBwbbHeoMAADAeQRNAICUDBRXadc9r2nSdY1iLm9S18ZcXk26rtGue15jsgkAAADLjtdEtf+Nr8sbj8gVj6VUwxWPyRuP6Pk3dstjUqsBAACQDQRNAIDklJYqUvgnenTbjxVxeRV3uVMqE3e5FXF59di2DkUK/0QqLXW4UQAAACB3Ksf7dfD1e7Uq/sekJ5vc8YhWxf+og6/fq8rx/gx1CAAA4AyCJgBAcsrK1PHj3+j9NbcnPck0W8zlVf+aGnX8+DdSWZlDDQIAAABLw9bfvqmuV7eocvw9WSYuy8TnPX/qnMrx99T16hZt/e2bWeoUAAAgdQRNAICkGCMFe0okObUbsaX23hIZ41A5AAAAYAmpHO9X18+2aN8//4U2fPKhJDtQ8sYm5YlNyhubnA6g/Bd/rX3//Bfq+tkWJpkAAEDe8OS6AQBAfjk+IoXOO1fPSBr+nXTitFTNUBMAAACWIa+J6qGB/XpwYL9OrKlRX+lmDRZX6ZLnWhVG/6CK8X7VjB7VbRf6HHs7FwAAQLYQNAEAktJ3yp5lcnIAybpcl6AJAAAAy5klqfpCn6ov9OW6FQAAAMewdB4AICmD5ySP29maHrddFwAAAAAAAEB+IWgCACRlIiLH91MyRro06WxNAAAAAAAAAJlH0AQASEqBV7IcXjjesqTCVc7WBAAAAAAAAJB5BE0AgKRU3ChFY87WjMbsugAAAAAAAADyiyfXDQBLxUcffaR169YlfO2b3/ymvvnNb2a5I2BpqlkvObxynszlugAAAEDeKy2VCgqkiQnnahYU2HUBAEBOfO9739P3vve9hK999NFHWe5m6SFoAi6Lx+M6e/Zswtc++eSTLHcDLF3VZZL/eunkeWcCJ0uS/wbptpscKAYAAADkWlmZNDQkjY46V7O01K4LAABy4pNPPpnz2TEImoBpLpdLn/vc5xK+tnr16ix3AyxdliU110t7f+JczcB25/d9AgAAAHKmrIxgCACAZWT16tVau3Ztwtc++ugjxePxLHe0tFjGGKdXQALyyrp163T27FmtXbtWZ86cyXU7QF6IRKWGZ6TBc1Isje+jbpdUuVY6/C3J43auPwAAAAAAACAbeL4suXLdAAAg/3g90v5HJK9bcqU4ieSy7Ouff5iQCQAAAAAAAMhXLJ0HAEhJ5Vrp4OPSruekSCy5ySa3yw6ZDj5u1wEAAACQhpER9oQCAAA5Q9AEAEjZ1o1S17ekx34o9Z+2j823HuvU8FPlWnuSiZAJAAAASNPIiLRxozQx4VzNggJpaIiwCQAALApL5wEA0lK5Vup6Wtr359KG6+1jluyJJc/lyaWpgMl/g31e19OETAAAAIAjRkedDZkku56TE1IAAGBZY6IJAJA2r0d66G7pwW3SidNS3ylp8Jx0aVIqXCVV3CjVrJduu0myUtzTCQAAAAAAAMDSQ9AEAHCMZUnVZfYfAAAAAAAAAMsfS+cBAAAAAAAAAAAgJQRNAAAAAAAAAAAASAlBEwAAAAAAAAAAAFJC0AQAAAAAAAAAAICUEDQBAAAAAAAAAAAgJQRNAAAAAAAAAAAASAlBEwAAAAAAAAAAAFLiyXUDAAAAAAAAyDMjI9LoqHP1SkulsjLn6gEAgKwhaAIAAAAAAMDijYxIGzdKExPO1SwokIaGCJsAAMhDLJ0HAAAAAACAxRsddTZkkux6Tk5IAQCArGGiCQAAAAAAAI4wko6vuUN9123WYHGVJtyFKohdUsV4v2o+PqrqC+/KynWTAADAUQRNAAAAAAAASEvE8qijoknBW59QqOgWWSYuTzwqY1myjFHU5ZGxXPJf/EDN731fuwcPyGuiuW4bAAA4gKXzAAAAAAAAkLKB4io1fPmo9n7xBzq5+mZJkrFcirhXKeryKuJeJWPZj6BOrr5Ze7/4AzV8+agGiqty2TYAAHAIQRMAAAAAAABS8vZn79KO+97RYHGVjOWaDpTmMnXOYHGVdtz3jt7+7F1Z6hQAAGQKS+cBwDJljHR8ROo7JQ2ekyYiUoFXqrhRqlkvVZdJFoujAwAAAEjRQHGVdt3zmiZd1yjucid1bczllZFLu+55TV2vblHleH+GugQAAJlG0AQAy0wkKnW8JQW7pdB5yZLkcdvBk2VJ0Zi9Qa//eqm5Xtp9p+TluwEAAACw7BhJx9fcob7rNmuwuEoT7kIVxC6pYrxfNR8fVfWFd5Xqe88ilkePbvuxIi5v0iHTlLjLrYi8emxbh7p+tkXeFHsBAAC5xaNFAFhGBs5Kj74gvX/m02NGUiR29bknz0t7fyK9+Ka0/xGpcm3W2gQAAADglNJSqaBAmpiYPhSxPOqoaFLw1icUKrpFlonLE4/KWJYsYxR1eWQsl/wXP1Dze9/X7sED8propzULCuy68+ioaNL7JdULLpW3kJjLq/6S29VR0aSH0qoEAAByxTLGmFw3AeTSunXrdPbsWa1du1ZnzpxZ+AJgiXp7SNr1nB0qxeKLv87tkrxu6eDj0taNmesPAAAAQIaMjEijo5KkgQsFevTIer1/oVCSZOaZWbJkPxL6wppL2r/9lCrXXA6rSkulsrI5rzM9vfrXrX+ik6tvTjtokiTLxOW/+Gv9y97fy6qrTbseAADZxPNlKf2fBgAAOTdw1g6ZJqPJhUySff5k1L5+4Gxm+gMAAACQQWVlUm2t3v5MrXb8ty9ocPxaGVnzhkySps8ZHL9WO/7bF/T2Z2ql2tp5QyZJOj5aqFDRLY6ETJJkLJeGfRt1YrTQkXoAACC7CJoAIM9FovZyeZGYFE9xRjVu7Osf+6FdDwAAAEB+yeabz/rOf0aWSfImC7BMXH0fX+toTQAAkB0ETQCQ5zresvdkSvaXydlican/tF0PAAAAQP7I9pvPBscL5Ik7+w41TzyqwTEmmgAAyEcETQCQx4yRgq9HJDm13Z5R++sRsXsfAAAAkD+y/eaziahLxpp/Wb5kGUmXojymAgAgH/EdHADy2PF3PlJozLvg2uuLZWRpeMyrE+985Eg9AAAAAJlljBTsdrZm+xHN++azAk9clsPvTrMkFXqcXY4PAABkB0ETAOSxvg8imVkb/deTjtYEAAAAkBnHR6TQeSfXOJCGfyedOD33ORXFE4q6PA7d0RZ1eVRRcsnRmgAAIDsImgAgj7E2OgAAALCy9Z2SQ+sbfMq6XHcuNdf/XsZy9pGSsVyque4PjtYEAADZQdAEAHmMtdEBAACAlW3wnORxO1vT47brzqW69JL8Fz9wbHUFy8RVHh7SbaVMNAEAkI+cnXMGAGQVa6MDAAAAK9tEZP79lFJhjHRpntW0LUtqfu/72vvFHzh2z0D/c7KsR+Y+YWREGh117H4qLZXKypyrBwDACkbQBAB5jLXRAQAAgJWtwGsHP06yLKlw1fzn7B48oBcrAhosrlLM5U35Xu54RJXj7+mBwXZJcwRNIyPSxo3SxETK97lKQYE0NETYBACAA1gbCQDyGGujAwAAACtbxY1SNOZszWjMrjun0lJ5r/Fo/xtflzcekSueWgOueEzeeETPv7Fbnmu89pRRIqOjzoZMkl3PyQkpAABWMIImAMhjrI0OAAAArGw16+19Vp1kLtedU1mZNDSkyu4XdfCrZ7TKa8ltJdeF2zJa5bV08KtnVNn9ItNFAADkMYImAMhjU2ujO8leG93RkgAAAAAypLpM8l9v77XqBEtS+Q3SbTctcGJZmVRbq63/9hZ1/WeXKtdZsrRwH1PnVK6z1PWfXdr6b2+RamsJmQAAyGMETQCQ53YPHtAXxo7LHY+kVccdj6hq7FeX10YHAAAAkA8sS2qud7ZmYHty+z5VrpW6npb2/bm04frLfUnyuiWPy/57qpz/Bvu8rqft6wAAQP5zdgd5AEDWeU1U+9/4unbc946MXIq73EnXmLE2unF4gXcAAAAAGbX7TunFN6XBc1IsjVW13S47/HngruSv9Xqkh+6WHtwmnTgt9Z2y+7k0KRWusvd8qllvT0qxggIAAMsLQVOOhMNhjY2Nye/357qVpOVz78ByVTner4Ov36td97ymiLyKubyLvtYdj8gbj+jg6/eqcrw/g10CAAAAyASvR9r/iLTjGckYKZ7Cpk0uy548ev5hyZP8e9emWZa9nF81K+EBALBisHRelnR3d6uxsVHl5eWyLEvFxcXT/7YsS3V1dWpra1M4HM51q1dZar13dnaqvLxczc3NWbkfkC+2/vZNdb26RZXj78kycVlm/rcyTp1TOf6eul7doq2/fTNLnQIAAABwWuVa6eDj0iqPPZmUDLfLvu7g4yxnBwAAkkfQlGGdnZ0qLi5WQ0ODOjs7FQqFEp7X29urPXv2qLi4WHv27Mlyl4kttd7b29tVXFysxsZGhUKhOfsBVrLK8X51/WyL9v3zX2jDJx9KsgMlb2xSntikvLHJ6QDKf/HX2vfPf6Gun21hkgkAAABYBrZulLq+ZYdFlj7dF2kuU+dUrrWv27ox8z0CAIDlh6ApQ8LhsBobG9XY2Dg96dPS0qKenh6Nj4/LGKPh4WEFg8GrlqBra2tTXV1dzqabllLv4XBYbW1tKi4uVnNz85Kc+AKWGq+J6qGB/frvhzbqyH+7Q9/55Tf07wf2a9evf6R/P7Bf3/nlN3Tkv92hf+ms0EMD++U10Vy3DAAAAMAhlWulrqelfX8ubbjePmbJXhbP47L/ngqg/DfY53U9zSQTAABInWWMSWHlXiykvLx8euLG7/erp6dHPp9vzvObm5vV3t4+41htba16enoy2WZCS6H33t5eBYPBq+peqb6+XocPH075HlPWrVuns2fPau3atTpz5kza9YCs6u2V6uqcr9vTI9XWOl8XAAAAQNYYI504LfWdkgbPSZcmpcJVUsWNUs166bab7D2Vljx+7wEALGE8X5Y8uW5gOZpa2k2SfD7fgkGNJAWDQY2Njamzs3P6WG9vr5qbmxUMBjPZ7gy57D0cDuvll19Wa2vrjGXx/H6/xsbGmGZC/hgZkUZHnatXWiqVsZMuAAAAgORYllRdZv8BAADIFIImh7W1tc0IXA4cOLBgUHPluVdeK9n7Eu3Zs+eqJeoyIVe9d3Z2KhgMqru7e8bx+vp67dmzR/X19QmnpoAlaWRE2rhRmphwrmZBgTQ0RNgEAAAAAAAAYMlhjyYHhcNh7dmzZ/pjv9+vnTt3Lvp6n8+nlpaWq45fWTNTctV7KBRSY2PjjJBp586dGh4e1uHDh1VfXz9dH8gLo6POhkySXc/JCSkAAAAAAAAAcAhBk4OeffbZGR83NzcnXeOpp5666lhnZ+eMpeQyIVe9T007TQVV4+PjOnToUFYmuAAAAAAAAAAAQHpYOs8h4XBYbW1tM44lMxE0xefzqba2Vr29vTOOd3Z2JpwYckKue+/p6VEtm28CqSkttZfWc3qpvtJS5+oBAAAAQD5i/10AABaFoMkhs/cX8vl8KU/l1NfXXxXWHD58OGNBU657J2QC0lBWZu/fxC8/AAAAAOAc9t8FAGDRCJoc8tJLL834eNOmTSnXamhouGrCaHYY5KR87h2A7F9S+EUFAAAAAJyTyf13+f0NALDMsEeTQ2aHKelM6cwV9MyeFHJKPvcOAAAAAAAAAAByh6DJAb29vQqHwzOOlZeXp1zP5/MlPB4KhVKuOZd87h0AAAAAAAAAAOQWQZMDjh07dtWxkpKStGommirKRFiTz70DAAAAAIAVoLTU3t/ISQUFdl0AAJA29mhyQE9Pz1XH/H5/WjUThT1Hjx5Nq2Yi+dw7kG+MpONr7lDfdZs1WFylCXehCmKXVDHer5qPj6r6wruyct0kAAAAACw1ZWXS0JC9v5FTSkvZKwkAAIcQNDkg0bTOXEvILVaisGf2EndOyOfegXwRsTzqqGhS8NYnFCq6RZaJyxOPyliWLGMUdXlkLJf8Fz9Q83vf1+7BA/KaaK7bBgAAAIClo6yMYAgAgCWKoMkBicKadJefSxT2jI2NpVUzkXzuHcgHA8VVenTbj/V+SfX0MWO5FHGvuurck6tv1t4v/kAvVgS0/42vq3K8P5utAgAAAEDeMUY6PiL1nZIGz0kTEanAK1XcKNWsl6rLJIulIwAAyCiCJgdkYv+hNWvWXHUsWxNN6cpW78BS9/Zn79Kue15TxOWVsRbeEm/qnMHiKu247x0dfP1ebf3tm5luEwAAAADyTiQqdbwlBbul0HnJkuRx28GTZUnRmL18uf96qble2n2n5OUpGAAAGcG32AxJd/m5dK/P5b1z2Xs6Jicn9ctf/jKpa8rKylTG6D4SGCiu0q57XtOk6xrFXe6kro25vDJyadc9r6nr1S1MNgEAAADAFQbOSo++IL1/5tNjRlIkdvW5J89Le38ivfimtP8RqXJt1toEAOShkZERjYyMJHXN5ORkhrrJHwRNacrmpI7Ty8/lc++Z8PHHH+vOO+9M6pq/+qu/0l//9V9npiHkrYjl0aPbfqyIy5t0yDQl7nIrIq8e29ahrp9tkdfhHgEAAAAgH709JO16zg6VzCLOnzpn8Jy04xnp4OPS1o2Z7BAAkM/+4R/+QX/zN3+T6zbyzsJrOSEn0t0nKZfyuXfACR0VTXq/pFoxV3rxUMzlVX/J7eqoaHKoMwAAAADIXwNn7ZBpMirF4sldG4vb1+16zq4DAACcQ9CUpmxO6jgd4ORz78BSZYwUvPUJR2u2Vz0us5i36gEAAADAMhWJ2svlRWJSPMXfj+LGvv6xH9r1AACAM1g6L03ZXH7OafnceyZcd911euWVV5K6hv2ZMNvx0UKFim5xrJ6xXBr2bdSJ0QFVO1YVAAAAAPJLx1v2nkzpvgcvFpf6T9v1HrrbkdYAAMvIQw89pPr6+qSu+cpXvqKPP/44Qx3lB4KmNPl8voTHw+HwnK85fS+n6+VD75mwatUq/dmf/Vmu20Ce6zv/GVkmLmM5NzBqmbj6Pr6WoAkAAADAimSMFOx2tmb7EenBbZJlOVs3U4yRjo9Ifafs/aYmIlKBV6q4UapZL1WX5c/nAgBLWVlZWdLDBatWrcpQN/mDoClN2VwSzul75XPvwFI1OF4gTzyqiNu5bzCeeFSDY4WO1QMAAACAfHJ8RAqdd66ekTT8O+nEaTugWcoiUXv6Ktht/zewJHncdvBkWVI0Zn8+/uul5npp952Sl6d9AIAsY4+mDMnm/kdOy+fegVyb8Fwr4/DbyIwlXfJc62hNAAAAAMgXfafsgMVJ1uW6S9nAWanhGWnvT6STl4M2I3ufqWjc/ntqKcGT5+3zGp6xrwMAIJsImtI03/Jz6UgU9vj9/rRqzpbPvQNLVUHxn8jyOPv2McvjVWHJnzhaEwAAAADyxeA5e4rHSR63XXepentI2vGM3aPRwntTTZ0zeM6+7u2hzPcIAMAUhmkzJBNTQXV1dY7XTCSfewdyreJGKRp39r120bilihsdLQkAAAAAeWMiYi8V5yRjpEuTKV4r6fiaO9R33WYNFldpwl2ogtglVYz3q+bjo6q+8G7qE1gjIxoY+p/a9dMKTcYtxU1ylWJxyRijXX9n1PXVQVVu/BMpyb1GAABIFkGTA/x+v0Kh0Ixj6U4FJbo+E1NB+dw7sBTVrF/4nWbJMpfrAgAAAMBKVOC19yNykmVJhUlurRuxPOqoaFLw1icUKrpFlonLE4/KWJYsYxR1eWQsl/wXP1Dze9/X7sED8pro4m8wMqJIRZUevectRYpjiru8yTV4WdxYikSiemz/H9X1+v8i72A/YRMAIKNYOs8BiUKU2eFNsoaHhxd1n3Tlc+/AUlRdZm/C6tTvQJak8huk225yqCAAAAAA5JmKG6VozNma0ZjmXzmitFQqKJj+cKC4Sg1fPqq9X/yBTq6+WZJkLJci7lWKuryKuFfJWPZjtpOrb9beL/5ADV8+qoHiqk9rFhTYdecyOqqO9bv1fkm1YimGTFNiLq/6S25Xx/rd0uhoWrUAAFgIQZMDEoUoicKWZGRrn6N87h1YiixLaq53tmZgu/Pv3gMAAACAfJGTlSPKyqShIamnR2//n0Pacf9xDZbeLmO5pgOlOWtfPmew9HbtuP+43v4/7ToaGpp3ssgYKXjrE6l8OnNqr3rc8WUHAQCYjaDJAYn2H0p3Kmj29fX1Dj+5viyfeweWqt13Sl9YJ7nT/ArrdklVN0kP3OVMXwAAAACQj3K2ckRZmQZuqNWu/+cWTcZdiiW7X5KxNBl3adf/c4sGbqhdcPm646OFChXdsmCQtVjGcmnYt1EnRgsdqQcAwFwImhyQaFrn2LFjadWcHdY0NDSkVW8u+dw7kA5jpF/9RvrRL6Sn/qv0H160//7RL+zj6bzjy+uR9j8ied2SK8XfhFyWff3zD0sed+q9AAAAAEC+y9XKEZGo9OgLUiQmxVP8HTFu7Osf+6Fdbz595z8jy8RTu9EcLBNX38fXOloTAIDZPLluYDlINLETDocVDofl8/mSrjd17UL3cEI+9w4sysjIjPWoIzGpY6BUwePXK3SxQJaMPC4jY+xfMqJxS0aW/EUTaq4+r92Vo/JeGfSUli5qE9XKtdLBx6Vdz9n3jCXxu4LbZYdMBx+36wAAAADASrf7TunFN6XBc8n9fjWb22X/nrWYlSM63pLeP5P+sn2xuNR/2q730N1znzc4XiBPPKqIe1Wad/yUJx7V4BgTTQCAzGKiySGJwpTu7u6Uas2eKPL5fKqtrU2p1mLkc+/AvEZGpI0bpbo6qa5OA/UPqOFZl/a+uU4nw/YP7kaWInGXosalSNwlc3kxhpPhVdr75jo1POvSQP0D0zW0caNddxG2bpS6vmX/EmNp4WUeps6pXGtft3Vjyp85AAAAACwr2V45whgpmNqjkTm1H5l/9YyJqEvG4Q16jaRLUR7/AQAyi+80DmlsbLzq2EsvvZRSrUOHDs34OBAIJHV9snssLaXeAUeNjkoTE5Kktz97l3bc944Gi6uS27y1uEo77ntHb3/28tvdJiZmTEgtpHKt1PW0tO/PpQ3X28cs2b/ceC5PLk39GuG/wT6v62kmmQAAAABgtqmVI1Z5kt8T1+2yr1vsyhHHR6TQ+fSnmaYYScO/k06cnvucAk9cVjrruCdgSSr0OLscHwAAsxE0OeT++++/6lhnZ2dKtV5++eUZHz/11FOLuq67u1vFxcUqLy+XZVlqbm5e1HVLoXcgkwaKq7Trntc06bpGMZc3qWtjLq8mXddo1z2vaaC4KqX7ez328gj//f8rHfnP0nd2S/9+m7Rrq/33d3bbx//lv9jneVnUFAAAAAASytbKEX2nFq6dLOty3blUFE8o6nL2F8Koy6OKkkuO1gQAYDaCJof4fD7t3LnzquPt7e1J1enu7p6xx1EgEFjUXkm9vb1qaGiYcW17e3vCaaXZct37Ysze90mSxsbGHKmN5S1iefToth8r4vIq7lpgbYQ5xF1uRVxePbatQxEr9R/6LUuqLrPXAv/2LunvHrD/fuAu+7jDKyQAAAAAwLKUjZUjBs8tvLxesjxuu+5caq7//YKrbyTLWC7VXPcHR2sCADAbQZODWltbrzq2Z8+epGpceb7P50tYM5Fnn3024fHOzs5FLaWXy94XI1GolCh8AmbrqGjS+yXVSU8yzRZzedVfcrs6Kpoc6gwAAAAAkKpMrxwxEZl/P6VUGCNdmpz79erSS/Jf/ECWcWapO8vEVR4e0m2lTDQBADKLoMlBfr//qnAlHA4vaqpIktra2tTb2zv98ZEjRxY9ETRfmHRlzbnksveFhMPhhEv5hUKhRX1uWLmMkYK3PuFozfaqxx3/ZQMAAAAAkJpMrRxR4HV+1QnLkgpXzf9683vfd/Segf7nWD0DAJBxBE0Oa2lpUUtLy4xjnZ2dCwY2bW1tMyaCgsGgamtrF33fTZs2zfnaYuvkqve5hEIhdXZ2qq6ubs5ztm/frvb2dvX29jLhhKscHy1UqOgWx5YeMJZLw76NOjFa6Eg9AAAAAMDSVHGjFI05WzMas+vOZ/fgAX1h7Ljc8Uha93LHI6oa+5UeGExuWwQAAFLBlvMZ0NraqjVr1swIXzo7O1VcXKxAIKDNmzfL7/drbGxMvb29CgaD0xNJPp9Phw4dUn19fdL3fPnll68KW1paWuT3+5d071OKi4uTDovC4bCam5uvOu7z+TQ+Pp5SH1g++s5/RpaJO7rGtWXi6vv4WlU7VhEAAAAAsNTUrJecXszCXK47H6+Jav8bX9eO+96RkSulvYZd8Zi88Yief2O3PMbhtAwAgAQsY1gEKlNCoZAaGxsXvbzbzp071dramlQwNPt+zc3N6u7ult/v1549exQIBFKulc3eJclyeJZ7sf9rr1u3TmfPntXatWt15swZR3tAbj31v5/Xj/p8irjnWZsgSd7YpP59TVjf/t+ud6wmAAAAAGBpMUb61/9JOnnemcDJkuS/wd4zas7HH7290uVVXd7+7F3adc9riri8Se057I5H5I1HdPD1e7X1t2/aB3t6JAdWngEAJMbzZSaaMsrv96unp0ehUEjBYFC9vb0KhUIKhULy+Xzy+/0qKSlRQ0ODAoFA2nsa+f1+HT58OC97lxYfDAGLNRF1yTgdYEq6FGXVUQAAAABYzixLaq6X9v7EuZqB7Yvf92nrb99U16tb9Ni2DvWX3C5J867WYZm4JKly/D09/8ZuVY73p90vAACLRdCUBX6/X62trbluIyX53DtQ4InLcjjAtCQVeuKO1gQAAAAALD2775RefFMaPCfF0vg10O2SKtdKD9yV3HWV4/3q+tkWdVQ0KXjrEwoV3SLLxOWJR2Vk/34adXlkLJf8F3+tQP9z2j14QF4TTb1ZAABSQNAEYNmqKJ5Q1OXsl7moy6OKkkuO1gQAAAAALD1ej7T/EWnHM/ZSevEU3sfosiSvW3r+YcmT/HZL8pqoHhrYrwcH9uvEmhr1lW7WYHGVLnmuVWH0D6oY71fN6FHddqFPzq7nAQDA4hE0AVi2aq7//bxLC6TCWC7VXPcHR2sCAAAAAJamyrXSwcelXc9JkVhyk01ulx0yHXzcrpMOS1L1hT5VX+hLr9AiGSMdH5H6TtkTXRMRqcArVdwo1ayXqssWvwwgAGD5I2gCsGxVl16S/+IHOrn6ZkcCJ8vE5b/4a91WykQTAAAAAKwUWzdKXd+SHvuh1H/aPjbfcNNU/lK51p5kSjdkyqZIVOp4Swp2S6Hz9uficdvBk2VJ0Zj9ufuvt/ew2n2nPfkFAFjZ2NEewLJlWVLze993tGag/znetQUAAAAAK0zlWqnraWnfn0sbrrePWbInljyXJ5emflX032Cf1/V0kiFTaalUUOBs4wUFdt1FGDgrNTwj7f2JdPK8fczInuSKxu2/pwK2k+ft8xqesa8DAKxsvOcAwLK2e/CAXqwIaLC4SjGXN+U67nhElePv6YHBdkmPONcgAAAAACAveD3SQ3dLD26TTpz+dFm5S5NS4apPl5W77aYUl5UrK5OGhqTRUeeaLi216y7g7aFPlwdczFZUU+cMnrP3sDr4uD35BQBYmQiaACxrXhPV/je+rh33vSMjl+Ku5HdfdcVj8sYjev6N3fKYWAa6BAAAAADkC8uy9yiqXji/SV5Z2aKCIScNnLVDpsmoFF9MynSFWNxeVm/Xc/bygvm0TCAAwDksnQdg2asc79fB1+/Vqvgf5Y5HkrrWHY9oVfyPOvj6vaoc789QhwAAAAAAZF8kKj36gj3JlGzINCVu7Osf+6FdDwCw8hA0AVgRtv72TXW9ukWV4+/JMnFZJj7v+VPnVI6/p65Xt2jrb9/MUqcAAAAAAGRHx1vS+2fsyaR0xOJS/2m7HgBg5SFoArBiVI73q+tnW7Tvn/9CGz75UJIdKHljk/LEJuWNTU4HUP6Lv9a+f/4Ldf1sC5NMAAAAAIBlxxgp2O1szfYjdl0AwMrCHk0Alq/SUqmgQJqYmD7kNVE9NLBfDw7s14k1Neor3azB4ipd8lyrwugfVDHer5rRo7rtQp8S7t1aUGDXBQAAAAAgjx0fkULnnatnJA3/TjpxOkP7VwEAliyCJgDLV1mZNDQkjY5e9ZIlqfryn5nulPSNuWuWlmZ9Y1YAAAAAAJzWd8r+3djJASTrcl2CJgBYWQiaACxvZWUEQwAAAAAAzDJ4TvK4pUjMuZoet10XALCysEcTAAAAAAAAsMJMRJzfT8kY6dKkszUBAEsfQRMAAAAAAACwwhR4JSvh5sSpsyypcJWzNQEASx9BEwAAAAAAALDCVNwoRR1cNk+y61Xc6GxNAMDSR9AEAAAAAAAArDA16yWHV86TuVwXALCyEDQBAAAAAAAAK0x1meS/XnJq9TxLUvkN0m03OVQQAJA3CJoAAAAAAACAFcaypOZ6Z2sGtju/7xMAYOkjaAIAAAAAAABWoN13Sl9YJ7nTfELodklVN0kP3OVMXwCA/OLJdQMAAAAAAAAAss/rkfY/Iu14RjJGiqewaZPLkrxu6fmHJY97EReMjEijo8nfaC6lpVJZmXP1AABJI2gCAAAAAAAAVqjKtdLBx6Vdz0mRmBSLL/5at8sOmQ4+btdZ0MiItHGjNDFx1UtG0vE1d6jvus0aLK7ShLtQBbFLqhjvV83HR1V94d3E+0kVFEhDQymFTcZIx0ekvlPS4DlpIiIVeKWKG6Wa9fY+ViwFCAALI2gCAAAAAAAAVrCtG6Wub0mP/VDqP20fm2+4aSp7qVxrTzItKmSS7EmmWSFTxPKoo6JJwVufUKjoFlkmLk88KmNZsoxR1OWRsVzyX/xAze99X7sHD8hrop8WmJiw6yYRNEWiUsdbUrBbCp23Px+P2w6eLEuKxuzP33+9vY/V7jvt6S8AQGKWMSaFoVhg+Vi3bp3Onj2rtWvX6syZM7luBwAAAAAAICcWG8CU3yAFtqcQwPT2SnV10x8OFFfp0W0/1vsl1ZIkY829WZRl7FGrL4wd1/43vq7K8f5PX+zpkWprF9XCwFnp0Rek9y8/AlpMoPaFdfYSg4sO1ACsKDxfZqIJAAAAAAAAgOzQ6KG7pQe3SSdOf7qk3KVJqXDVp0vK3XZT+kvKvf3Zu7TrntcUcXnnDZimTJ0zWFylHfe9o4Ov36utv30zuXsOfbpE4GLeeT91zuA5ex+rg4/b018AgJkImgAAAAAAAABMsyx7f6Lq5Lc9WpSB4irtuuc1TbquUdzlTuramMsrI5d23fOaul7dMnOyab57nrVDpsmoFE9yfadY3J7q2vWcvcQgk00AMNPCbxcAAAAAAAAAAAdELI8e3fZjRVzepEOmKXGXWxGXV49t61DEWvh99JGovVxeJJZ8yDR9T2Nf/9gP7XoAgE8x0QQAAAAAAACsRCMj0uioc/VKS6Wy+cegOiqa9H5J9aKWy5tPzOVVf8nt6qho0kMLnNvxlr0nU7ob1cfiUv9pu95Dd6dZDACWEYImADlnjHR85NO1nyciUoH307Wfq8vSX/sZAAAAAABcYWRE2rhRmphwrmZBgTQ0NGfYZIwUvPUJ5+4nqb3qcT1ofq+5HhsYIwW7Hb2l2o/Y+1jxrAIAbARNAHImErXfBRTslkLnJUuSx23/EGhZUvTy5pz+66Xmemn3nfbGpAAAAAAAIE2jo86GTJJdb3R0zqDp+GihQkW3OHY7Y7k07NuoE6MDqp7jnOMj9jMHx+4pafh30onTmdvDCgDyDXs0AciJgbNSwzPS3p9IJy//wGdkr3ccjdt/T420nzxvn9fwjH0dAAAAAADIP33nPyPLxB2taZm4+j6+du57ntKc004p3/NyXQCAjaAJQNa9PSTteMZeJs9o4TWSp84ZPGdf9/ZQ5nsEAAAAAADOGhwvkCcedbSmJx7V4Fjh3Pc8Z6+e4ug93XZdAICNoAlAVg2clXY9J01G7U00kxGL29fteo7JJgAAAAAA8s1E1CXj8MZGRtKl6NyPOCci9hL9jt7TSJcmna0JAPmMoAlA1kSi0qMv2MvixVP8IS9u7Osf+6FdDwAAAAAA5IcCT1yWw6mPJanQM/c7WQu89j7Qjt7TkgpXOVsTAPIZQROArOl4S3r/TPKTTLPF4lL/abseAAAAAADIDxXFE4q6PI7WjLo8qii5NPc9b5SiMUdvqWjMrgsAsBE0AcgKY6Rgt7M12484P/4OAAAAAAAyo+b638tYzj6ONJZLNdf9Ye57rl94b+ik73m5LgDARtAEICuOj0ih8879cGckDf9OOnHaoYIAAAAAACCjqksvyX/xA1kmzaVOLrNMXOXhId1WOvdEU3WZ5L/eXmLPkXtKKr9Buu0mhwoCwDJA0AQgK/pOSZbD7yGyZNR3ytGSAAAAAAAgQyxLan7v+47WDPQ/N+8eTJYlNdc7eksFtqe275Mx0q9+I/3oF9JT/1X6Dy/af//oF/ZxVm0BkK+cXRQVyGMfffSR1q1bl/C1b37zm/rmN7+Z5Y6Wl8Gh/yFP7BpF3M7tlumJRTQ49Efprj91rCYAAAAAAMic3YMH9GJFQIPFVYq5vCnXcccjqhx/Tw8Mtkt6ZP573im9+KY0eC69faPdLqlyrfTAXcldF4na+0wHu+3VXixJHrcdLFmWveeTkT151Vxv9+vlqS2wpHzve9/T9773vYSvffTRR1nuZunhSxZwWTwe19mzZxO+9sknn2S5m+Vn4n/+UcYqcLSmkXTpf/xREkETAAAAAAD5wGui2v/G17Xjvndk5FLc5U66hisekzce0fNv7JbHxBa+p0fa/4i04xk73ImnMDnksiSvW3r+YTskmtfIiDQ6KkkauFCgR4+s1/sXCi+/aK/3EknQ9snzRnt/Ir34j5e0f/spVa6ZsF8oLZXKypJvGoBjPvnkkzmfHYOgCZjmcrn0uc99LuFrq1evznI3y0+BJy7L4RlwS1Khx5l1nQEAAAAAQHZUjvfr4Ov3atc9rykib1KTTe54RN54RAdfv1eV4/2Lv+da6eDj0q7n7JAnmckmt8sOmQ4+bteZ18iItHGjNDGhtz97l/05urwyroXX2jOXd5Ia/NirHT9Zr4Ov36utv31TKiiQhoYIm4AcWr16tdauTfwF4KOPPlI8vrKfURI0AZd97nOf05kzZ3LdxrJVUTyhqMvZLzlRl0cVJXNv+AkAAAAAAJaQ0lI7NJmY0NbfvqmuV7fosW0d6i+5XZJkrLm3k7eM/RC3cvw9Pf/G7k9DpoICu+4ibN0odX1LeuyHUv9p+9h8b4mdioYq19qTTAuGTJI9yTQxoYHiKu265zVNuq5Jemor5vLKyKVd97ymrle32J/r6ChBE5BD822tsm7duhU/7UTQBCAraq7//bw/MKbCWC7VXPcHR2sCAAAAAIAMKSuzJ3MuLytXKakrZtQxcEbB49crdLFAlow8LvPp/kVxS0aW/L5JBarPa3elkfc/vfhpzSSXlatcK3U9vcg9k26QAtuT3zMpYnn06LYfK+LyprQ0oCTFXW5F5NVj2zrU9bMtSn03KwDIPIImAFlRXXpJ/osf6OTqmx0JnCwTl//ir3VbKRNNAAAAAADkjbKyGcGQV9JDm6UHjXTitNR3ytLgOUuXXNjaAwAAT0BJREFUJqXCVVLFjVLNeum2mwpkWWWS0p/q8Xqkh+6WHtw2dU9p8JwS3NMOnpLVUdGk90uq037+EXN51V9yuzoqmvRQWpUAILMImgBkhWVJze99X3u/+APHagb6n5NlPeJYPQAAAAAAkBuWJVWX2X/y+Z7GSMFbn3CuoKT2qsf1oPm9Usi8ACArnF3HCgDmsXvwgL4wdlzueCStOu54RFVjv9IDg+0OdQYAAAAAAJC+46OFChXd4tj2AcZyadi3USdGCx2pBwCZwEQTgKzxmqj2v/F17bjvHRm5Ulqn2BWPyRuP6Pk3dstjYhnoEgAAAAAALCsjI9P7Qjlinn2h+s5/RpaJO7pPtWXi6vv4WlU7VhEAnEXQBCCrKsf7dfD1e7XrntcUkVcx1+K3s3THI/LGIzr4+r2qHO/PYJcAAAAAAGBZGBmRNm6UJiacq1lQIA0NJQybBscL5IlHFXGvcux2nnhUg2NMNAFYulg6D0DWbf3tm+p6dYsqx9+TZeKyTHze86fOqRx/T12vbtHW376ZpU4BAAAAAFimSkvtwMRJBQV23aVkdNTZkEmy680xITURdclYzu6mZCRdivIYF8DSxUQTgJyoHO9X18+2qKOiScFbn1Co6BZZJi5PPCojyZIUdXlkLJf8F3+tQP9z2j14QF4TzXXrAAAAAADkv7IyeyonS0vKrRQFnrgsYxytaUkq9Mz/Jl0AyCWCJgA54zVRPTSwXw8O7NeJNTXqK92sweIqXfJcq8LoH1Qx3q+a0aO67UKfnH0vEAAAAAAAUFnZig+GnFZRPKGoy9lHrlGXRxUllxytCQBOImgCkHOWpOoLfaq+0JfrVgAAAAAAAFJWc/3vZSxnl7kzlks11/3B0ZoA4CQW9wQAAAAAAAAAB1SXXpL/4gcL7ke9WJaJqzw8pNtKmWgCsHQRNAEAAAAAAACAAyxLan7v+47WDPQ/J4s9BQAsYQRNAAAAAAAAAOCQ3YMH9IWx43LHI2nVcccjqhr7lR4YbHeoMwDIDIImAAAAAAAAAHCI10S1/42vyxuPyBWPpVTDFY/JG4/o+Td2y2NSqwEA2ULQBAAAAAAAAAAOqhzv18HX79Wq+B+TnmxyxyNaFf+jDr5+ryrH+zPUIQA4h6AJAAAAAAAAABy29bdvquvVLaocf0+Wicsy8XnPnzqncvw9db26RVt/+2aWOgWA9Hhy3QCAFaK0VCookCYmnKtZUGDXBQAAAAAAWIIqx/vV9bMt6qhoUvDWJxQqukWWicsTj8pIsiRFXR4ZyyX/xV8r0P+cdg8ekNdEHbm/MdLxEanvlDR4TpqISAVeqeJGqWa9VF0mWZYjtwKwghE0AciOsjJpaEgaHXWuZmmpXRcAAAAAAGCJ8pqoHhrYrwcH9uvEmhr1lW7WYHGVLnmuVWH0D6oY71fN6FHddqFPTmU+kajU8ZYU7JZC5+1Ay+O2gyfLkqIxyUjyXy8110u775S8PCkGkCK+fADInrIygiEAAAAAALB8zbOiiyWp+kKfqi/0JVczyRVdBs5Kj74gvX/m02NGUiR29bknz0t7fyK9+Ka0/xGpcm1yrQGARNAEAAAAAAAAAM7I8Youbw9Ju56zQyWziPOnzhk8J+14Rjr4uLR1Y8qdAlihCJoAAAAAAAAAwCk5WtFl4KwdMk1GpfhiUqYrxOL2snq7npO6vsVkE4DkEDQBAAAAAAAAQB6LRO3l8iKx5EOmKXFjX//YD6Wup9mzaT7GSMdHpL5T9jTYREQq8EoVN0o166XqMnsvLGCl4MsFsJKNjORslBsAAAAAAADO6Pg/xvT+mWIZpZduxOJS/2mjjv9jXA99pWTuE1foM6VIVOp4Swp2S6Hz9r5bHrcdPFmWFL28ZKH/eqm5Xtp9J4EdVgb+NwdWqpERaePGhJtTGknH19yhvus2a7C4ShPuQhXELqlivF81Hx9V9YV3E//YUlBgr0OcBz8YAAAAAMD/v737j3HrvO89/+Fo5EoJ4pwZOWlvnajJmWwiV7Hiy5G9FwlauBBp2FugaQtSNi7i7o234tz8wCYtbjlR7/5TYLsKiUXQdLMxSPdmN3GQtUyidYEFkpo0Nk1vgiISeVX/iOUkQ+cqcdprW8PjOI4UzWjO/kGTITmHHJ4f5Dln5v0CCHso8nm+PPM8Q/J8z/d5AGA3sP/rJZXO/lx6kxFMGY1tq3z2ZX14+adK/JrDOZ4x55Q8i8E5pWdf6FSNfedHv7jPVqcKbNjzL0qf+or0pW9ID/4hSxFi9yPRBOxVL7+87QPBRmJeDx85pdJ7P6nWm9+thL2l+a1N2YmEEratzbl52Yk5ma98VytP/4Xuv/iQ9tubv2jg6tVOuxH+UAAAAAAAALCbPHnxNbVuvCWw9uzEnNZufLeeuvisjv2awwMczin5FvFzSt98rrN/1cbrFUs76T7m4o+lu/5ceuQT0gfeM80IgXDNhR0AgGh4duGo0r97Tp96/+f0/I3vktT5YLGx7wZtzu3Xxr4bZCc6fzKev/Fd+tT7P6f0757TswtHwwwbAAAAAABgtJtu6lTLBOnAgU67EXHhxTcqYW8F2mbC3tKFl94QaJtx9ewLnSTTtc3O0oJuXN/qPO++z3baAXYrKpoA6Ju/8pu67+6vamNufy+ZNE73MRcXjuquD35bj3ztHn3gX74x7TABAAAAAADcOXy4syTbLt5P6GL7gOa3NrWx74bA2pzf2tTF9YOBtRdXG5ud5fI2rktbk5QyOdiyO8//6H+SHv9T9mzC7sSwBva4ZxeO6r67v6prc7+krbl9rp57fW6/bM3pvru/qsf/9g7d0n5mSlECAAAAAAB4dPhwpBJDQbu6OSc7iL2Z+tiSrmyyGNbD/9DZk8ljjqnn+pb0zA877T3wW4GEBkQKfy2APWwjMa+P3Pllbcztd51k6tqa26eNuf366J0PayNB7hoAAAAAAGCWDsxvKWH7TYUMSkg6OB/scnxxY9tSqR5sm+UnOu0Cuw1nhYE97OEjp/SdxWMTLZc3zvW5/Xpm8X16+MgpPRBQbAAAAAAAANjZkYWr2pwL9jTv5ty8jixecf08W9KTh/61Lrzldl1cOKqr+w7qwPUrOtJ+Rre9dE7HLv8XBVt71UncPHlJuvAD6eKPpasb0oH90pFflW57h3TssOSl4OvJS1LrxQDjlLT236SnftiJCdhNSDQBe5RtS6X3fjLQNstHP6EP268F/oEBAAAAAAAAzm5762u+LyIeZifmdNtbfjbx4zcS83r4yCmV3vtJtd78biXsLc1vbcpOJJSwbW3OzctOzMl85btaefovdP/Fh7Tf3vQV48ZmZym6Ur2TEEpImt/XOeeVSEib1zvJHfOt0kpKuv833O2PdOEHnTaDLEBKvN4uiSbsNiSagD3qyZcPqvXmdwfWnp2Y05rxHj318rM6FlirAAAAAAAAGOfYTVdkvvJdPX/juwJJOCXsLZmvfE+33jRZRdOzC0f1kTu/rO8s/uKMkJ2Y08a+G7Y99vkb36VPvf9z+tKRnB78+ofc7fd96ZL08sudPi8f0EeeeIe+c/lgN2rZkjaub3/a8y/a+tRXpC/93RU9eOIHuuXQ1c4/3HTT2L27Lv64k7hyatOr+X2ddoHdhj2agD3qwotvVMIOdq3dhL2lCy+9IdA2AQAAAAAAMFoiIa08/ReBtpl75rMTLTf3zV/5Td31wW/r4sJR2Ym5HRNd3cdcXDiquz74bX3zV35zsoAuXZLe8x5peVnf/O0/0l1feYcuvrRfthKyd1hbp/uYiy/t111feYe++dt/JC0vd9q7dGnk865uBL+fkm1LV64F2yYQBSSagD3qYvuA5rf8lSgPm9/a1MX1gzs/EAAAAAAAAIG5/+JD+vX1J7Vva8NXO/u2NnR0/Z/0BxfLOz722YWjuu/ur+ra3C/p+tx+V/1cn9uva3O/pPvu/qqeXTi68xNeflm6ejXYPq9e7VVIOTmw39veTuMkEtLB7YVeO7Jt6Z/+q/TFv5dO/z/SH32p898v/n3n/qATYoBbLJ0H7FFXN+dkB/xuaUu6skn+GgAAAAAAYJb225t68Osf0l0f/LZszWlrbp/rNua2rmv/1oY+//X7NW+PXy9uIzGvj9z5ZW3M7ffUlyRtze3Thvbro3c+rMcfu0M7pY1m3eeRX+3s8xSkzeuddic17X2ogKAw7ICo6FtnNhA7rDN7YH5LiYAvd0hIOjgf7HJ8AAAAAAAA2Nkt7Wf0yNfu0X13f1Ub2u+q4mff1ob2b23oka/dM9G+SQ8fOaXvLB7zvSfU9bn9embxfXr4yCk9ELE+b3tHJ4kTJPv1difx7AvSR/5K+s6PBp/vvA+VOvtQfUN68A+lW24OIFjABRJNQBR015m9ejW4Ng8ckJ57bmSy6cjCVW3OBfsnYHNuXkcWJ9soEgAAAAAAAMH6wL98Q4//7R366J0P65nF90nS2MRMd//uW9pP6/Nfv3+iJJNtS6X3fjKQeLvKRz+hD9uvjdxtKYw+jx2WzMUNPb8+v+M+UJNIyJa5uKlb375zAvCbz0n3fbaTVJok2dV9zMUfS3f9ufTIJ6QPvMdXuIArrHEFRMHr68wGaod1Zm9762u+rwAZZifmdNtbfhZomwAAAAAAAJjcLe1n9Phjd+jT3/q43vmT70vqJJT2X7+m+evXtP/6tV6CyXzle/r0tz6uxx+7Y6IkkyQ9+fJBtd787sDOK9mJOa0Z79FTL4/e9zuMPhM/vKSVr/2H4DZAsm3lvvYflPjhpbEPe/aFTpLp2qZ03eXCQde3Os+777OddoBZoaIJ2KOO3XRF5ivf1fM3viuQN+mEvSXzle/p1puoaAIAAAAAAAjTfntTDzz7oD787IN66tBtunDT7bq4cFRX5t+gg5s/05H2M7rt5XO69fIF17U6F158oxL2VqAXMCfsLV146Q06FqE+9fLLuv+pz+tLSx/WxYWjrpYiHLZva0O3tJ/WHzz1f0ov/48jVyDa2Owsl7dxXdrymN/asjvP/+h/kh7/0wn2bJrxdh7YnUg0hcSyLK2vr8s0zbBDcS3M2ON83KImkZBWnv4Lfer9nwuszdwzn1Ui8YeBtQcAAAAAAADvEpKOXb6gY5cvBNbmxfYBzW9tamPfDYG1Ob+1qYvro6uLwuhT6iTsHvz6h3TXB78tW3Pamtvnup+5revav7Whz3/9fs3bDhss9Xn4Hzp7Mvmtobq+JT3zw057D/zWmAeGsJ0HdieWzpuRer2ubDarpaUlJRIJLSws9P4/kUhoeXlZxWJRlmWFHeo2YcYe5+MWB/dffEi/vv6k9m1t+Gpn39aGjq7/k/7gYjmgyAAAAAAAABBFVzfnZCf871nUz5Z0ZXP0qeow+uy6pf2MHvnaPbph6+euz6Ht29rQDVs/1yNfu2fHpQltWyrVXTW/o/ITO6z8F8J2HtidqGiasmq1qlOnTu2YCGk2m2o2m1pdXVU+n1ehUJhNgGOEGXucj1uczPqqDAAAAAAAAMTbgfktJYLat+h1CUkH50dvSBRGn/0+8C/f0ON/e4c+eufDembxfZI0dhm/7h5Yt7Sf1ue/fv9E+189eUlqvThROBOxJa39N+mpH0rHolZcxHJ9uw4VTVNiWZay2ayy2WwvWZLP59VoNNRut2XbttbW1lQqlbYtA1csFrW8vBxalU6Yscf5uMXVrK7KAAAAAAAAQPwdWbiqzblg6xc25+Z1ZHH0vt9h9DnslvYzevyxO/Tpb31c7/zJ9yV1Ekr7r1/T/PVr2n/9Wi/BZL7yPX36Wx/X44/dMfE5sws/kBK+F80blJCtCz8ItEn/usv1LS8Hd3vPezrtIjRUNE3J8vKyWq2WJMk0TTUaDRmGMfAY0zSVy+WUy+W0srKicvkXy441m02dOHFCjUZjlmFLCjf2OB+3abElPXnoX+vCWzqbNl7dd1AHrl/pbNr40jkdu/xfXG/aKKmT6T9wQLp6NbirMg4c6LQLAAAAAACA2eg7xxOYMed4bnv3ftnfCLZ+wU7M6bb/bvT+S7e99bWx56o89/mWn7l6zn57Uw88+6A+/OyDeurQbbpwU+d83ZX5N+jg5s865+tePqdbL19wfb7u4nOvav76LwW7D9X1DV187ufSb74psDZ9G7Ncn+fzoN3l+qhqCg2JpinIZrO9ZIlhGI7JkmGlUknr6+uqVqu9+5rNplZWVlQqlaYZ7oAwY4/zcZuGjcS8Hj5ySqX3flKtN79bCXtL81ubshMJJWxbm3PzshNzMl/5rlae/gvdf/Eh7bc3J+/g8OHOxnyvl6neIunx67YefvZHKj35VrVeOaCEbM3P2bJtKZGQNrcSspWQaVxT7tiLuv8WW/v/ly/9ok3KVAEAAAAAAGZr6BxPIMac4zl2x7+S+dcben59Xra3y58HJGTLXNzUrXf8q5GPOXbTFZmvfFfP3/iuQBJOCXtL5ivf0603TV7RNPB8SccuX9Cxyxd8x9J19ac/l504EFh70uv7UL36c0nuE01Tu/jdwdTPg7JU39QlbDvgxS33uGKxqNXV1d7PlUpFmUxmoudalqWFhYVt96+trW1bJm4awow9zL7f9ra36YUXXtDNN9+sH/3oRxP1Gbhms1Pm+bpnF47qI3d+Wd9ZPCZpsuqiX19/Ug9+/UOD5biNhpRMug7Htjvrt174gXTxx9KVa9LBG6Qjvyrd9g7p1rd3Ek8AAAAAAADYe77w/0mf+ooCWegtIenT/1Z64LfGPKjZ1Bc+9Ff61Ps/F1ii6dPf+rge+PIfjj53NnS+LjAjzted/ssX9cULRqAVTfuvX9O/u83S//Y/v9X5AQ6vMZCkz7hzkrM+D9pdqi/oir/nnuslmyJxfjlkJJoCNJzwME1Ta2trrtpYXV1VsVgcuC+TyahSqQQS4yhhxh5m35cuXdJ73/tevfrqq3rTm96kp59+WofDyEb3/YH95q/8pu67+6vamNuv63P7J25i39aG9m9t6JGv3aMP/Ms3Ond6TDQBUXfp0iV94Qtf6P38wAMPhDN3AUyMeQvEE3MXiB/mLRBPcZu7G5tS+s87Fyhf3/Lezr456Zabpdp/lOb3jXlgs6mN4/+90r97ThcXjro6Z7atz60N3dJ+WrXHbtf8+W9HJtH0xYcv6U/+/m2BLhGYsLf0v9/5Q/3Bh37N+QFhXPw+6/OgU/49Rub8cshYOi9AZ86cGfh5ZWXFdRunT5/eljCpVqtqtVpTrWoKM/Yw+7506ZJeffVVSdKrr76qS5cu/eIPQQgllc8uHNV9d39V1+Z+SVtz495dt7s+t1+25nTf3V/V4387+UaDQBxdunRJf/Znf9b7OZVK7ck3cSBOmLdAPDF3gfhh3gLxFLe5u39eevAPpbv+vLMyzpaHUoa5hLR/n/T5/2mHJFO3T3tTD379Q7rrg9+WrTnX584kaW7ruvZvbejzX79f8/Z190FPUdj7UPUnfSaJo/uYiwtHddcHvz2Y9JnAbjkPOvb88h5CoikglmU5VtS4ZRiGksmkms3mwP3ValX5fN5XjKOEGXtkj9uYkkrP65MOlVQO20jM6yN3flkbc/s9vVFK0tbcPm1ovz5658N6/LE75P3aDgAAAAAAAGC0W26WHvmEdN9npY3r7iqb9s11kkyPfKLTzsR9tp/RI1+7p5MQkfcqmCheoB3mPlSzTvpE5TzoLPeh2u2CTZHuYfV6feBnwzA8VyClUqlt99VqNU9tTSLM2CN73F5+eVuSaSMxry/c8hH9m+xzSv1eU3/ygQf1xSP/Xo+8+9/pi0f+vf7kAw8q9XtN/Zvsc/rCLR/RRmIoj3v16tgKqYePnNJ3Fo/5Kv2VOn/cn1l8nx4+cspXOwAAAAAAAMA4H3iP9Ph/7CSLEtKOJ+W7j7nl5s7zPvAeD33+yzdeT2g8rYS91VvCbWSfrz/mlvbTevxv73BVdTNLiYS08vRfBNpm7pnP7rjPemBJn7lO0mfbOVEHYZ8H9X2eF9uQaArI2bNnB34+fvy457bS6fS2+4YTMkEKM/a4HLdnF44q/bvn9Kn3f07P3/guSZ3y0I19N2hzbr829t3Qu9Lg+RvfpU+9/3NK/+45PbtwdKL2bVsqvfeTgcTaVT76CbEDGwAAAAAAAKbplpulx/9U+vS/ld751s59CXUqluZfr1zq5jrMX+487vE/dVfJtK3P9jN6/LE79OlvfVzv/Mn3O33aW9p//Zrmr1/T/uvXegko85Xv6dPf+rgefyz6W03cf/Eh/fr6k9q3teGrnX1bGzq6/k/6g4vlHR8766RP2OdBp32ed68iFReQ4YRGctRmZxMYlWxpNpu+2h0lzNjjcNxmsT7pky8fVOvN7/Yco1MMa8Z79NTLz+pYYK0CAAAAAAAA2+2flx74LenDd0pP/VC68APp4o+lK9ekgzdIR35Vuu0d0q1v144VNhP3aW/qgWcf1IeffVBPHbpNF27qLH92Zf4NOrj5s87yZy+f062XL8Rm+bNZ70M1raTPh+3XRh7zMM+Dznofqr2ERFMAms2mLMsauG9paclze4ZhON7farUCTzSFGXscjtus1ie98OIblbC3At3wL2Fv6cJLb9jziabPfOYz+slPfqIbb7xRf/zHfxx2OAAmwLwF4om5C8QP8xaIJ+YuoiyRkI4d7twCddNNnf3PHfZTT0g6dvmCjl2+4K7NAwc67UbMLPehCiPpE9Z50FnvQ7XXkGgKwPnz57fdt7i46KvNZDKpZrM5cF+r1fLVppMwY4/6cZvlpnQX2wc0v7WpjX03eOrHyfzWpi6uHwysvbj6zGc+oxdeeEE333wzH8CBmGDeAvHE3AXih3kLxBNzF3vS4cPSc8+N3f/ctZtu6rQbQd19qD5658N6ZvF9kjQ2MdNdJvCW9tP6/NfvnzgREkbSJ4zzoLM8z7tXkWgKQKPR2HafaZq+2nRKuJw7d85Xm07CjD3qx627PqnfP7T965M+MOIxVzfnZAdVN/w6W9KVTbZhAwAAAAAAwC5w+HBkE0PT0N2H6uEjp1R67yfVevO7lbC3NL+1KVudSq7NuXnZiTmZr3xPuWc+q/svPqT99ubEfYSR9AnjPOgsz/PuVSSaAuBUMTNqGbdJOSVchpeZC0KYsUf5uM16fdID81tKTLpj3YQSkg7ObwXaJgAAAAAAAIDZmPY+VGEkfWZ9HjSMfaj2IhJNAXBKmPhdAs4p4bK+vu6rTSdhxh7l4zbr9UmPvH1em08GOx035+Z15LC3UlAAAAAAAAAA0eB5H6odhHHx+5GFq9qcm8J50MUrjv8Wxj5UexHragVgGnsnHTp0aNt9s6po8mvS2KN83Lrrkwapuz6pk9uSi4GuhSp1/ujdltx+PAAAAAAAAADs4KabpAMHAm3yarfdiJh10keSbnvra9M5D/qWnzn+26zP8+5VVDRNid8l4Pw+P8y+/Tw/7OP25JNPSpL+4bsLM12f9NhhyXyr9PyLnfJSvxKSzF+Wbn17AI0BAAAAAAAAe83hw9Jzz0kvv+y7qbvvvlsvvvSS5n/5l/XtCO0zNeukjyQdu+mKzFe+q+dvfFcgfSfsLZmvfE+33uSc3JrWPlT/8NxPZf7n/9w7n7zXkWjyaRpVRqMEvXRemLFH9bh97GMfkyTtu8GQPf/GwGP5P/56S18qOv8B/dnPpVdG/w12bfMN0tv/7+Dai6t//ud/7v33bW97W8jRICjXrl0b+Pn3f//3dcMNwX1gQLiYt7sT83b3Y+7uTszd3Y15uzsxb3c/5u7uxNzd3f758mVtSZp76aXR83ZjYzqd33OPtH+/879dv65XXrF1PRFcmmCfvan/4f9NSPtGbOmxsaGfrb+mV24wAutz85qlt3/jjY6v85WfbulnG8Ev7PZ/bb6mv/pfrcDbjSsSTRHld6+iMIUZu9u+Dx8+rEQiIXtoLdLr1yzpmhVcYK/7qaSfvhJ4s47aP5Pas+kqFra2tvTCCy+EHQam5KWXXgo7BEwB83Z3Y97uXszd3Y25uzsxb3c35u3uxdzd3Zi7u1Mo8/bFF2fa3ZakF0avnPcLm68F1mdbUvvF4NrzKpFI6HCEKtZmiUSTT0FXGY0TdAInzNijctwOHz6sgwcP6sqVK9uSTZN405vepBtvvNFPeAAAAAAAAACACPjJT36iV1991fXzEomEDh48SKIJ3sxyCbighRl7lI7ba6+9pkuXLunSpUuun3v48OE9+8cDAAAAAAAAAHYTzhN7Q6LJJ8MwHO+3LGvkvwXdV9DtzSL2qB23vf6HAAAAAAAAAAD2Os4TexP8Llh7zCz3Iwq6rzBjj/NxAwAAAAAAAAAAHSSapmSWexAFLczY43zcAAAAAAAAAADYa0g0+TRuCTg/nBIupmn6anPYLGO/+eab1Wq1Qunb73GzLGsg9lkKs28gzuMvzrEDfsV5/Mc5dsCPOI/9MGLv9hmlfV+xNzF3gfiJ89ifRuzTeC/l/RnTwNyNPhJNUzKNypzl5eXA23Qyjdi/+MUvamlpSYlEQolEYuRricJxq9frymazvXgXFha2xV4sFqfyxhlm30Ccx1/UYq9Wq1paWtLKyspM+sPeFrXx78asY7csS9VqVdlsVsvLywN9dfvOZrMql8t74osAwsO8dadarWplZUULCwsDfXZ/7s7darUaWJ+AE+bu9FSrVaXTaS0sLITSP3avqI/9caYdu2VZvffS/s/E3X76b8vLy73Pz/237uOH24ji8US8MHeny7IsFYtFpdNplcvlYBq14ZtpmrakgVulUvHVZqFQ2NZmrVYLKOJfCDr2SqViHzhwYFubk97CPG6VSsU2DMNVvPl83le8UegbiPP4i1rspVJpIJ5UKjW1voCojX83Zh17u922c7mc688lqVTKbjQaAb5y7HXM2+n3aRiGXSgUAnrVQAdzdzrW1tbsXC63LT4gCFEe+zuZVeztdtv15+NJb+12O/gDgz2BuTv9GFOplON3X794Bw+A0y/H75cbp5Mha2trAUX8C0HF3m637UwmM3LSrK2t2Wtra3apVHJMboV53Jxiz+fzdqPR6L0xjos9mUx6fgMNs28gzuMvSrG32227UCg4fpgg0YRpiNL4j0PspVLJ9xflqHxxQXwxb93H7vQ9xc3NNE0+J8M35u50Y08mk9v6NQxjqn1i94vD2I9S7H4/J4+6AW4xd6cX+6jzVoZh9OIMAjM/AE7JjVwu56tNp6TNNAQVe/8keeMb37hj7KOuKg7juPXHPskXUqfYk8mkp3jD7BuI8/iLQuyNRmPHCgkSTZiGKIx/r2Ydez6fD+zLMvMZfjBvJ4+93W6PvTDNzY1kE/xi7k4v9lEXgpimObU+sTdEfeyPE0bsQX1WHr4BbjF3pxO70+pfyWTS96piTpj5AXD6gOT3ZMTwlT3TOrkRROz9yR3DMOz3ve99E7XndPXSzTff7Ov1uD1uw7FP+kXUKaHlNkkWZt9AnMdfmLG3223HK1BM06SiCTPB3J08dqcP1P03wzBGzt1RN95v4QXz1l3so1ZJyOVydq1W661W0G637VqtNnZVBUl2JpPx+vKxxzF3pxd7u90e+f7LhZTwI+pjf9IYZhn7pJ+D3d640ANuMHeDj73RaGw7d5VMJqeyNU8XiaYA1Go1x5MXfgx/6JrWOuN+Yx8+ieO0FuWo2P/mb/7G8c3IzxKBbo6bU+yTao9Yx3bS2MPsG4jz+Asr9nFr2HbfpJ2uSCHRhCAxd93FPuqD+6jn1Wq1ifZxmuYHc+w+zFv3sXv5HrTTevjstQa3mLvTjX3c+y2JJngVh7E/Spixdx9vGEZv24tGo9G71Wo1u1ar2ZVKZeBWKpXG3oBJMXeDj92psGQWe5iSaAqI08Dwmr13GmjT/HLkNfbhOLulgW5id+r7d37ndzy9Djd9O8XultNyPJNcMRlm30Ccx19Ysa+trTk+Z/jN36ltEk0ICnPXfez9Vc7dL86TWFtbG7tsFyfAMCnmrfvY+/s1TdPVd6BxFRJUI8IN5u50Y280GgPvqXx+RhDiMPZHCTt2P/0CfoU9/v2IauzDF3OYpjmzxBuJpoA4Xenuda3D4SqjaW+G6TX24clQKBRcx37nnXc6fhn0MgHc9O0Uu1teM89h9g3EefyFGXv3b0o+nx+ZiCfRhGli7rqPvf+Es5cLdsYlm3i/xSSYt+5jr1Qqvl5j//P9fvHH3sXcnW7s3eRSPp9nRQAEJg5jf5SwY+8+loupEIawx78fUYx9eFWPZDI502UsSTQFxKkkzWsGcvjDVj6fd/V8t4PRS+xOE2Ftbc117KM2APUyOSfte1TsXjhdgTUu9jD7BuI8/sKOfZKT1CSaMC1hj38/wozd7+cxp2rG7o3lQLAT5m2H29i7n+f9XMnpdBHdtC/cw+7B3O2YVuzd7//dOUmiCUGIw9gfJQqxM/cQliiMf6+iGLtTkmnW5oRAnDx5ctt91WrVU1uPPvrowM+nT5+e6Hn1el0LCwtaWlpSIpHQysrKRM/zEnu9Xh/42TAMmabpOnanviWpVquNfZ6TSfseFbsXqVRq233jYg+zbyDO4y/s2JPJpKe+gCCEPf79CCv2VqvV+/9JP0cNM01TuVzO8d94v8VOmLcdbmM/f/68JOnee+/11J8kx+9AlmV5bg97C3O3YxqxW5bVm5+VSsVXW0C/qI/9ceIcO+BXnMd/1GJfWVkZOJdvmqYajYanePwg0RQQwzCUyWS23V8ul121U6/XB74I5XI5GYax4/OazabS6fTAc8vlsrLZ7I7P9RL72bNnB34+fvy4p9gNw9Bv/MZvbLt/eMLuxE3fTrF7lU6nHWMZJcy+gTiPvzjHDvgV5/EfVuzdRJNpmr4SxaMu2uGkNXbCvO1wG3uz2ZQkx+8mk3L6ks8FI5gUc7djGrGfOnVKUueEmtNJta5Jzn8A/aI+9seJUuzMPcxalMa/W1GKvVwubzuHH9YFHSSaAlQoFLbdt7q66qqN/scbhuHYppMzZ8443l+tVgeu6h3FbezDAz6ZTHqO/S//8i8d7+9+0ZyEm76dYvdq1B+SUbGH2TcQ5/EX59gBv+I8/sOKvfvZZ9yJrEmMind9fd1Xu9j9mLcdbudtMplUPp/33J/kfKLM6xWm2HuYux1Bx16v13tXWpdKJc9xAU6iPPZ3EqXYFxcXPfcNeBGl8e9WVGJvtVrbLo4sFAqhXWRFoilApmluS3BYljVRVZEkFYvFgUH0xBNPTHxFwbhk0iQD003szWZz25W83//+9z3Hfttttzne/7GPfWyi57s5bk6xLy0tTdSPk1H9OP0+wuwbiPP4i3PsgF9xHv9hx55MJif+DOa2X76IY5ywx74fYcbeXeJj0ovVRnGqOJx0SXHsbczdXwg69u4cLBQKJH4RqKiP/XHiHDvgV5zHf5RiH/6+axiG74u2/CDRFLB8Pr/tF1qtVnc80VEsFgeqckqlkqvs47gSvUnbmTT27trp/f76r/+69/9uYx8V4z/+4z8GftycYvd7ssipP6c/BmH2DcR5/MU5dsCvOI//MGPP5XJqNBq+K5ok55g5SYZxmLeDZv2eO/wakslkIH8LsPvFefxHOfZisahWqyXTNEM9+YXdKcpjfydRi52l8zBLURv/bkQl9nK5vK24xOv+xEGZD7X3XapQKOjQoUMDCZBqtaqFhQXlcjndfvvtMk1T6+vrajabKpVKvcFjGIYqlYrrL0OFQkGPPvrotoxqPp93dTJkktj/7u/+zvG5XmOXRk/IoI+b00Zofk8WOcV+7ty5SPUNxHn8xTl2wK84j/84x97PaZk8P1esYfeL89iPc+xdw8tyPfTQQ1PrC7tLnMd/VGNvtVq9cwssmYdpiOrYn0TUYj906JCvvgE3ojb+3YhK7E5b3oR9QQeJpinJ5/PKZDLKZrO97KJlWSoWiyOfk8lkPJeSG4ahRqOhlZUV1et1maap1dVV5XK5mcR+zz336HOf+5zniTXueUEeN6dssN+rNpz6dVqyI8y+gTiPvzjHDvgV5/Ef59h3ap/qCIwT57Ef59ilzkVq/Vd2hrlGPeInzuM/qrF3l8zLZDK8d2Iqojr2JxGF2Hd6XeVyWbVaTc1mU+vr67IsS4ZhyDRNHT9+XOl0WplMxlfM2JuiMP69ikLsxWJx279HYS6SaJqi7jrjrVZLpVJJzWZTrVZLrVar94d5cXFR6XRauVwukEFZq9WmHvvc3Jy2trYGHv+Vr3zFV/xOzz169Kh++7d/O9Dj5vTHwG95o1P/Tlc/h9k3EOfxF+fYAb/iPP7jHHuX0z6XhmFw4hpjxXnsxzl2y7J06tSp3s+5XC70qzoRL3Ee/1GMvVqt9jZLp7IQ0xLFsT+pqMXefa5lWVpdXVW5XHZ8nGVZajabajabvccUCgXec+FK1Ma/G1GI3alK+N577/UVQxBINM2AaZq+N7UNi1PsiUQi8H6cSnSvXLkS+HGbxtqcTrFPWtE0q76BOI+/OMcO+BXn8R/n2LvOnj277b64fqbD7MR57Mc59lOnTvXazefzzFW4FufxH8XYu4nfUqnE3i+YmiiO/UlFMfbV1dWxKwqNe16pVFKtVmMvU0wkiuN/UmHHXq/XHWNwqmiyLEv1el21Wq1XlWiappaWlpRKpQK/gJJEEwLh94NjmB88w4w9zscN8Rfn8Rfn2AG/4jz+4xb78JWcpml6WpYYiNvYD7LvacfearUGlvwulUrMUwQm6uN/mn37ef7q6qosy1IymWQ+YuaYt5Prr5joLnXpVavV0tLSkmq1GktlwhPm7mScqpmGE0Y7VSb293v69OnAKhJJNMGVWV7xH3R5Y5ixx/m4If7iPP7iHDvgV5zHf5xj76pWq9teBxuZYydxHvtRj727D21Xs9nU2bNnVa1We/dlMhkdP348kBixt0R9/I8TtdhbrVavIoIl8zBNURv7bkQ9dtM0lclktLS0pMXFxV4lRK1W6y2JOUo2m1Wj0aCyCSNFffyPE4XYneZg/+ffcrk8ceK4m5AKqiKRRBMiwe9almEKM/Y4HzfEX5zHX5xjB/yK8/ifZeyrq6sDP+dyOa7ORGj2+ryt1+tKp9M7Pq5arfYST5lMRqdPn2ZPNYRqL87dbDYrqfO+yfxDHO2leTt80tw0TVUqlZFzN5/PT7SHUzfZBMzSXpi7rVbLMdm1vLzc26+0/yKsSbVaLS0vL/tOEs95fib2pFle8R/0H4gwY4/zcUP8xXn8xTl2wK84j/84xy5JxWJxYN1r0zSpZsJE4jz2oxx7rVZz3Ue1WtXy8rLS6fRU1tLH7hLl8b+TKMVerVbVbDZlGAb7pGHqojT23YpK7P1xZDIZra2t7ZggNgxDpVJpbCKp2WzuWPmEvSsq49+LsGMfN6+Wl5d7SaZUKqVKpaK1tTXZtq12u61Go6F8Pj9ymT7Lsia6sGscEk1wZZYlgkELM/Y4HzfEX5zHX5xjB/yK8/iPc+ytVmugmskwDE8nubE3xXnsRzn27v5LuVxOtVqt96XZtm2tra2pVCqNrDis1+taXl7utQE4ifL430lUYu9eSS1JhUKBPVExdVEZ+15ELfZ8Pq9KpeLqOclkcmyyiWQzRona+Hcj7NhHzbmVlRW1Wi2lUimtra2pVqspk8n0qpMMw1AymVShUNDzzz8/8nPz8Hdht0g0wZVxWc9Z9RV0e7OIPc7HDfEX5/EX59gBv+I8/uMce3fJn64nnniCNeYxsTiP/SjHXigUZNt2L6HUPydN0+wloGq1mmPblmXpxIkToZ8cQHRFefx7bW/Wsa+ursqyLCWTSeVyucD7BoZFZewH2d6sY0+lUrJt23NSqHvi2gkVTRglKuM/yPZmFfu4Kv3u5+Gdvrt2L6QclWwatSzmJEg0wZVZLi0VdF9hxh7n44b4i/P4i3PsgF9xHv9xjX11dXWg6mHcGvWAk7iO/Wm0F2Rfk87DVCo18krP/moLYFiUx/+s2/PSV7PZ7J2YclsVAXgVhbEflfbC7GvcUlwkm+AkzuM/7NhHJZpSqZTrpd4rlcrIC7S8JptINCEQs1yjMmhhxh7n44b4i/P4i3PsgF9xHv9Rjr1arapYLPZ+LpVKymQyIUaE3STKY38ncYt93J5q1WqVqia4Erfx32+WsXeTuPl8nipghI55O3ujqhjZIxFuxHX8S7OLfVQ/XqoSDcPQ6dOnHf/N69LxJJrgyrRKBJ0mStAfUMOMPc7HDfEX5/EX59gBv+I8/uMWe7PZHFgyr1AosOwPPInb2O8X59iH5XK5ka/n0UcfnWrfiKc4j/+wYy+Xy2o2mzIMgz1ZMFNhj30/4hy7k3vvvdfxfi7ugJM4j/+wY3fqxzRNz6twjPrO67UakUQTAjGNzO3y8nLgbToJM/Y4HzfEX5zHX5xjB/yK8/iPYuytVksnTpzo/ZzP55XP5/2GBQyI4tifVFxjH/XFedzG5cCwuI5/aTaxW5bV2zT8oYceCry/4b6ASTBvB80idpaaRhDiOv6lcGP3k0wzDMNxryav77kkmuDapBlVN0ZlZIMWZuxxPm6IvziPvzjHDvgV5/Efh9gty1I6ne61m8vluBobvsVh7I8S59iHpdNpx/tZxgejxHn8hxX7qVOneo/LZrNKJBKubk57QFSrVcfHLiwsqFqt+npN2H2Ytzs/f1bfc536GVX9AcR5/Ectdr/zLMhEMYkmuOY00P1+YVtbW5uoH7/CjD3Oxw3xF+fxF+fYAb/iPP7jEPuJEyd6MWUyGdcbqAJO4jD2R4lz7JP2wUkvjBLn8R9G7M1mk8QPQse8HRTm91yn91e+Y2OUOI//MGOfxufY22+/3fF+L8kzEk1wzWmgO00IN2a1jmyYscf5uCH+4jz+4hw74Fecx3/UY0+n02o2m5I6SaZKpeIrNqAr6mN/nDjHPmxxcdHV/UCcx38YsXeXzAPCxLwdFLXvucePHw+tb0RbnMd/mLE7fY71W001KnnlJalFogmuOa0R6TdzO/x8p/UhgxBm7HE+boi/OI+/OMcO+BXn8R/l2NPpdG+D01QqRZIJgYry2N9JnGOfFHsyYpQ4j/8wYs9ms77aB4LAvB3//Fm+5w6f7E4mk1QRY6Q4j/8wYw+zQnESJJrgmtOgPn/+vK82hyfUqDXV/Qoz9jgfN8RfnMdfnGMH/Irz+I9q7NlstpdkSiaTqtVqvmIChkV17E8izNiD3jtp1KbMJ0+eDLQf7B7M3UE7xZ7L5WTbtq9bLpfb1m8mk9n2uHa7rbW1tdAT1Yge5u2gML/nDr/v3nvvvTPrG/ET5/EfZuxO9/v9DO1UEeW1GpFEE1xz+nBnWZbnUj2n507rA2SYscf5uCH+4jz+4hw74Fecx38UY19ZWentJ5FMJtVoNDzFAowTxbE/qbBiX1hYCLzSyOlLdyqV4upqjMTcHf/cMD8vG4Yh0zSZv9gmzmM/rNhbrVbvoqugOPXtlEgGupi74587KvZkMrntPr+JJqeLs7wm6Ug0wROnAe/1jWo462sYhuPECUqYscf5uCH+4jz+4hw74Fecx3+UYl9dXVW5XJbUuQrtiSee8BQHMIkojX23wog9lUrJsqxeIjgITtWKhUIhsPaxOzF3O/i8jDiJ89ifdeyWZWlpaSnwpS+HY87n8ySGsSPmboeb2EdVGvlJNjldfJnJZDy1RaIJnji9KZ09e9ZTW8P7Iri96sHtZAoz9igdN+w9URp/cZq3QNiiNP7jOneLxaKKxaKkTpKp0Wjw5RdTFZWxL8Vj3naX1zlz5oynfpwMJ60ymQwnyrEj5m4Hn5cRJ1Ea+1Gft4Zh9C7u6H42DkL/+7dpmlzYgYkwdzvcxG4YhmMSyE+V4nCiK5lMet8LygY8aLfbtqRtNy8Mwxhoo91uT/S8Wq028NxcLhf52KNw3LB3RWH8xXHeTiqfz2+LL5VKBdI29rYojP84z91SqdR7jmEY9tramqf+ATeiMPbjNG/7+6zVap766ler1Qb6NQyDz8qYCHPXX+xu5XK5bfFmMpmp9IXdKwpjP07ztv89Moi53Wg0BvoN4n0cewNz11vsw59z/Zx7Wltb29aWnzlMogmeZTKZbYOxVCq5amN4ckw6oYffyNx+KA0z9jD7Bpi305s7Tl+Uk8lkYO1jb2Pueou9Uqn0nuOUZGq3273b2tpa79ZoNOxGo2HXajW7VqvZlUrFrlQqdqlUskulkl0oFOx8Pm/n83lXrwN7C/PWXezJZLI3V/2e+DJNc+zcB8Zh7s7uu6ZTvFyoBS+Yt+5i757Y9ju/2+32wHuu27gB5q632Lufm/tvXj7vDl8w7fccFokmeOaU9TQMw1Ub/RPDzZdKp8nsZmKFGXuYfQPM2+nNHafXZ5pmYO1jb2Puuo+9P8k0zRswCvPWXez9X3T9fMntf+0kmeAFc3d23zWdTpRxoRa8YN56f89tNBqu+upqt9sD/ZJkghfMXW+xOyXJ3FYED8cfxHs+347hS6FQ8Dywh5/r5s3N6QNp91apVCIde9h9A8zb4OfOqLJp5iiCxNydPHan5QSmdQPGYd5OHnv/MpdS52INt0mi/hMGXp4PdDF3p/85dtznZ+YuvGDeTh57/wlmwzBcL5VVq9WoZEJgmLve3nOdtm9wMxeHX38Qy17y7Ri+OQ3snSbV8GRy+6bktESVlw+lYcQehb4B5m0wc2dtbc2uVCoDH7KHb4Zh2KVSyW40GlQfwjfm7s6xj1oCYVo3YCfM28liH7d8ybgv3u122y6VSp7W1wfGYe5O57vmpJ+fK5UKCSe4xrydPPbhOZhMJu1SqTQy5rW1NbtUKg2cnOaiDgSFuevtPdfpNRQKhbHPWVtbm0qSybZJNCEgThlcwzDsfD5vVyqV3j4HhUJh25rpXgZzu93etlmaJE97Jcw69qj0DTBv3XOK3+vNbUk10MXcHS/IeTrJDZgE83YyO71vplIpO5fL2blczs5kMtu+JCeTSSqJESjmrj9ra2u2YRiBvDfzHRiTYt5OxunkeP/NNM3ezSmmnU5mA24xd71xmsv9iePunsS1Wm1bYiqZTAaaLObbMQLjlBEdd8tkMr4G89ramp1KpXpvgH6uuJp17FHpG2DeuuP3C/LwDfCKuTuanznZPRlmmmbv//tvTs+hUhGTYt7urFAouOqnvz9OQGNamLveOe1fsdN78Lj33kmXMgKYt+5idjNPSTBhmpi73jQaDVd9dyuHg5awbdsWEKBWq6VSqaRms6lWq6VWqyXDMGSaphYXF5VOp5XL5WQYRtihbhNm7HE+boi/OI+/OMcO+BXn8R/n2AE/4jz2Zxl7vV5XpVJRq9XS+vq6Wq2WLMuSaZq92/Lysk6ePBnJY4Xdh7kLxE+cx/6sYrcsS+VyWefOneu913b7WlxclGmaSqfTSqVSSiaTwbw4YAfM3eD6liTTNGUYhlKplO69996pzWUSTQAAAAAAAAAAAPBkLuwAAAAAAAAAAAAAEE8kmgAAAAAAAAAAAOAJiSYAAAAAAAAAAAB4QqIJAAAAAAAAAAAAnpBoAgAAAAAAAAAAgCckmgAAAAAAAAAAAOAJiSYAAAAAAAAAAAB4QqIJAAAAAAAAAAAAnpBoAgAAAAAAAAAAgCckmgAAAAAAAAAAAOAJiSYAAAAAAAAAAAB4QqIJAAAAAAAAAAAAnpBoAgAAAAAAAAAAgCckmgAAAAAAAAAAAOAJiSYAAAAAAAAAAAB4QqIJAAAAAAAAAAAAnpBoAgAAAAAAAAAAgCckmgAAAAAAAAAAAOAJiSYAAAAAAAAAAAB4QqIJAAAAAPaoZrOplZUVLS8vK5FIaHl5WSsrK7IsK+zQAAAAAMREwrZtO+wgAAAAAACztbq6qmKxOPLfK5WKMpnMDCMCAAAAEEckmgAAAABgj+lPMqVSKWWzWZmmqWazqVKppFarJUmq1WpKpVJhhgoAAAAg4kg0AQAAAMAe0mw2tby8LEnK5/MqFArbHpNOp1Wv12UYhtrt9qxDBAAAABAj7NEEAAAAYKRWq9WrbtkNdtvr8eLs2bOSJNM0HZNMklQqlSRJlmWpXq/PLDYAAAAA8UOiCQAAAIAjy7K0tLSkpaUlWZYVdji+7bbX41Wz2ZQkJZPJkY8xTVOGYQw8HgAAAACckGgCAAAA4Ki/8mc3VAHtttfj1fr6uiRpcXFx7OO6/3758uWpxwQAAAAgvkg0AQAAAHDUTUgM/39c7bbX41UqlZIknT9/fuzjusm422+/feoxTYNlWb2lEvdyYhEAAACYNhJNAAAAABAxzWZzakv8pdPpXh+j9l9aXV3t/X83MRU32Wy2t1Ti0tLSVPool8taXl5WIpFQIpHQwsKCstnszJdmrFarWl5e3tNLQgIAACA8JJoAAAAAIELq9bqWl5fVarV05syZwNtPpVLKZDKSOkmnYrGot7/97UokEvq93/s9ZbNZFYtFSVKpVOrt1RQnrVZrIImWz+cDb39paUkrKysDe1hZlqVqtTrzCqrV1VU1m02STQAAAAgFiSYAAAAAiIhqtdqrODJNU4VCYSr9PPTQQ0omk5I6SYof/ehHkqTHHntM1WpVkpTL5ZTL5abS/7QNH7fTp08H1nY3oROl5fgqlYqkTgKMZBMAAABmjUQTAAAAAERAtVpVNpuVJBmGoVqtNrW+DMNQo9FQoVDQ/Pz8wL/ddNNNqtVqKpVKU+t/mizLUrlc7v2cyWQCq8pqtVo6ceJE5BI5yWSy9/si2QQAAIBZI9EEAAAAACGr1+u9JJPUqVAxTXPq/eZyOW1ubg7cd+ONN8Z2XyZJ25YbDKqaybIspdNpWZalVCqlWq2mdrutdrvdS9qFucxgfwUaySYAAADMEokmAAAAAAhRs9nsLZcndfYTmlWip7/yp2t4f6O46X9NyWSyt0SgXydOnFCr1ZJpmqrVakqlUjIMQ4ZhKJlMKp/P6/nnn1cul5tJktBJqVTqvd5u9RUAAAAwbSSaAAAAACAklmUNJAOSyeTU9mVyMmp5vFnGEKRyuTxQxRNUNVM6nVaz2ZTU2dNqFMMwVCqVQq1s6u7XJHWSmP2VcgAAAMA0kGgCAAAAgJAM7/fTnySYtnq9rlar5frfoqw/QWYYhjKZjO82y+XyQIVX1JcVNE1T+Xy+93O1WnWsXAMAAACCQqIJAAAAAEJQLpd7VTJSZ8m8WS65tlPV0qhqp6gaTo4FUc1kWZZWVlYG7gtrWTw3CoXCQJwrKyvs1wQAAICpIdEEAAAAADPmlMAIapm3SfTvwzQqcRK3KpjhxFkul/Pd5vAxCHNJPLeGl/hjCT0AAABMC4kmAAAAAJixU6dODfycz+dnmsToT8oUCgXHJeYsy4pNsqk/cSZ1kkxBHM/hqq7FxUXfbc5KLpcbSCLW63VVq9UQIwIAAMBuRaIJAAAAAGao2WxuO+E/y2qm/gRSdx+j4eqqrp2W14uK4TiHq3m8iuM+Vf2Gj8NwghMAAAAIAokmAAAAAJihM2fODPycSqVmWs3UX6XUTXClUinHJfRardbAPlJRNFx5Neq1uBX11z2JkydPDvxsWRZVTQAAAAgciSYAAAAAmBGnE/2jqommpT/R1b+P0agqoOHEWNQML+8XVDXT+vr6tvvitEeT1Ik3lUoN3Bf13ycAAADih0QTAAAAAMyI00l+p/2RpqVarcqyrF6//YmT/qTTqOdEUf8xNU1zW2LFqyi/ZjeGE5nNZnNgPysAAADALxJNAAAAAAJXr9eVTqeVSCSUzWa1urqqYrGocrmsarWqer0+cCsWi1peXh65rJdlWcpms0okEmMfF3XD1TdBJUUm1Z+UcdoXalSyKapVMMNJsKCqmSTniqY4chpjpVIphEgAAACwW82HHQAAAACA3Wd1dbW3x42bpJDTyf1Wq6Xl5eVeQqHZbCqbzapSqcy0Gsiver2+rUommUzOrP9ms9n7nSSTSce+V1dXtyXDpE6CrFAoTD1Gt/oTYIZhjEyURU2z2dTZs2fVbDZ1/vz5gXFhGIZM09Ti4qLS6bSSyaSvhGS3vVar1bsvrolaAAAARBMVTQAAAAAC1Z/QcCOTyWxLFAwnmfqdOnXKa4ihcKoiSafTM+t/p2omafTSc057S4VteJyFlWSyLEuWZanVag0kc5xUq1UtLS1peXlZxWLRMfloWVZvebvV1VWl02ktLCwom816jtEpqRi13ycAAADii4omAAAAAIE6e/Zs7/+7iYulpSVdvnx5W+XGoUOHtLq6KtM0ValUBtoZl2SSfpH8iEtVk9O+OMePH59J3/2JIsMwxh6zlZUVx1jPnDkTqWM9vJzfqOSZF8Vi0XG5wGazqUQiMfJ5pmlqbW3N8d+y2exAcieXyymbzco0TZmm2UtWnT9/XoVCYSBp5TfRl06ntz3/7Nmzkfp9AgAAIL5INAEAAAAIVPeEdq1W23HJr25Fz3CSSeqctD9+/Liy2awsy1KpVNpWMbJTBUlUtFqtbQkzwzBkGMZM+u9PmuxU+ZPJZGQYxrZ4uxVEs1zub5ThxEs3Zj9arZZKpZKKxaLnNkzTdLw/nU73kneGYajRaGx7rGEYvSUNc7mc6vV6b+yPa3sSTglNp2QiAAAA4AVL5wEAAAAITLcqI5PJ7Jhk6lbO5PP5kcmLWq2mXC6nfD6vRqOxLZkwqnokapxO6vvZd8et/n2XJqn8GfUYp+X/wjCNaqaVlRVfSSbJORnUXSKvq1KpTJQ0SqVSeuKJJ3pj3k8izWl+dZf8AwAAAPwi0QQAAAAgMN0T6jud+C8WiyqXyzJNU4VCYaK2DcPQyZMnfccYhlqttu0+PxUqbpTL5V5CYdLKn1FVT/1thak/IZRKpQKpsioUCqrVamo0GlpbW3Mcl6Zpqt1uj7w5JeJWV1d7/28YhqsEYzKZnHh+7MRpvFHVBAAAgCCQaAIAAAAQmHPnzvWW/xql2Wz2Tr67rZBZXl4e+HlWS8/55bTE39LS0kz67k9UTFr5M24fp/7qqDAM99+fyPEjmUz2klamaTqOre5yh6Nuw4b3RfKyJ1c3ubq4uOj6uf2cEk1xWXoSAAAA0UaiCQAAAEBgCoWCGo3GyH+3LEsnTpyQ1KlEcbt83PDJ9lkla/xyOqE/i4qmer3e69s0TVeVP6OSUsPL1s1af+LMNM2ZLkHo1nAl2/r6uus2gkqmOo23uCw9CQAAgGgj0QQAAABgZrLZbG/pNS/7/QyfqPdSITJro/bC8VuhMon+pIzbyp9RlWmWZW2r1JmV/sSZFFw107QMj9dms+mpnUKhoJWVFV+xOCWszp8/76tNAAAAQCLRBAAAAGBGyuVyb0+YTCbjqaJnOGETxN480zaqimXay/61Wq3e8TYMY+S+S+OMSm54SRIGYXi/Ii+vKWzpdNr1c/L5/MilDCd16NChbfdFYb8tAAAAxB+JJgAAAABTZ1nWQPXJpHsFDetf6ivKS6b1C+tkfn9SxmtCJpfLOSbEhiuLZqHZbPYSZ1In+RJ1TsnUer2u5eXlgdcyC06/Ry9L+QEAAADDSDQBAAAAmLrV1dVewsXtXkH9+pMbfpcSC9u0l84rl8u9//dzrEYlqYari6ZteG8or8nKWbr33nsd7282m0qn01pYWNDKyoqq1erME3cAAABAUEg0AQAAAJgqy7ICS3r0V4H4XUpsVsKoGikWiwM/Ly0tKZFIeLoNt9XV/zudtuF9oTKZzNSXHgxCMpkcW3nXnRvZbLb3O1peXtbq6upMKp5YOg8AAABBINEEAAAAYKqGK1G8Joj6Kz7ismyeNLpyaZoJqFntoTSrZFMcq5m6KpWKq/3Ims2misWi0um0EomEstmsms2m7zickkpxSNYBAAAg+ubDDgAAAADA7tafjDAMw9VJ9379FR5xWjZv1Mn8aVWT9C/DZhhGIEmZy5cvO1Y2FQoFz/s/udE/hpLJpOelF8NgGIYajYZWV1c9Jeaq1aqq1aoymYwqlYrnOC5fvrztvmkv3wgAAIC9gUQTAAAAgKmp1+sDCRU/lUjdKh3DMGKzbJ40+4qm/uqf06dPK5/PB9Ku0z5CrVZL9Xp9qhVm5XJ5YAzFqZqpyzAMlUolra6uqlAo6NFHH3WdaKxWq1peXlaj0fAUAxVNAAAAmBaWzgMAAAAwNcMVGF6rmVqtVm/5sEKh4DuuWZplRVOz2RxYZi3IaqPV1VXH+6f9++hvP25JxmGmaapUKqndbqvRaCifz7uqzuouq+eFU2KTiiYAAAAEgUQTAAAAgKnpX+5Okg4dOuSpnWq1KqmTaJjFUm2zMI2Kpv69mXK5XKAVKydPnnS8v16vb6t0Cspw23GsZholmUyqUCio0Wio3W6rVqtNlHga3q9qUlQ0AQAAYFpINAEAAACYmuEEhNeKpu7J9bhVM3U5JQ+CrmiyLGtgD6Cg97EaV03Un+AK0vDve7ckGYcZhqFUKjWQeBo11i3L8jR2nBKbXucjAAAA0I9EEwAAAICpcKpy8VJBUSwWZVmWkslkbBMNx48f33bf5cuXA+2jP8mUTCZdLck2qVEVRf19B6W7/1NX0BVaUWYYhvL5vNbW1hz//fz5867bdEpOpdNp1+0AAAAAw0g0AQAAAJgKpxPbbveEsSyrV800vN9TnCwvL2+7L+jl5vqXVAu6mqkrmUw6VsEMV1MFYbiiZ9QeUVFWLBaVSCQ8HxvTNB2Tq172VnIab04JUAAAAMAtEk0AAAAApsJpqS63yZVTp07JsiwVCoVYL/PldEK/2WwG1n61Wh1I7E2z8mtUwifIZQ2HE1epVCrWv38/nKqO3B6LUdWFe6VCDAAAANNFogkAAADAVDhVXbhJNFWrVVWrVaVSKeXz+SBDmzmnZexarVZg+zT1VzON2kcpKCdPnnS8f3ipOz+GK4CiUs0U9L5aXiSTSdcJIqekZiqVCigiAAAA7HUkmgAAAABMhVPVxdmzZyd6bqvV0qlTp2QYRqyXzOvndGLfy147w5rN5kAi4d577/Xd5jiGYYxMZgVV1dSfODNNM7ZJke4+XKP2WprEuXPnBn72sixirVbbdt/tt9/uOSYAAACgH4kmAAAAAFPhtDRXs9ncseql1Wr19jR64oknds3yXtlsdtt9QSyfN1ztM4ukzKhkR71e9/2ahpcBDKuaKYjqpW4b5XLZU3vDSwgmk0lPyyI6JTSnubwiAAAA9hYSTQAAAACmxulkdjabHbmEXrVa1fLysizL0hNPPOG45FxcOS0551Rp4ka5XN6WuJtFYs5pz6kup4SaG/3VTIZhhJYQcapCcrvHWPfxlmXpxIkTrmM4ceJEL0Hlp7pvOPnnZfk9AAAAYBQSTQAAAACm5vTp09tOaFuWpaWlJRWLRdXrdbVaLZXLZaXT6V6SotFo7Kokk9RJFAy/Jq9L57VaLa2urjpWFqXTadXr9ansJ2RZlprNpk6dOjU2tnQ67amyaXgZwNOnT3uK0w/LslSv17ftE9W1srIyccKp/3HNZlNLS0uqVqs7Pq9arWppaal3LAzDUKPRcFyOcidOvwcvy+8BAAAAoyRs27bDDgIAAABA9NTrdaXTaUmdyhuvS7KVy+WJT2ybpqlarebphPpOgno9flSr1W0VP2traxO9Xsuy9M53vtN1AskwDF/VYcViUWfOnPGcuDIMQ+12e6LHZrPZgURMu92eSeXN6uqq5+XtTNMcuQdTIpFwvN8wDJ08eVJLS0syDEOLi4tqtVpaW1vrJV+7MpmMHnroIc/HoVgsblt+cFbHFQAAAHvDfNgBAAAAANjdcrmcLMvaca+dQqGgfD4/o6jCkclkZJrmQCKhVCqpUChM9PxxiRCnxIFlWb4rmy5fvjxRG06Va/3/3Umr1RpIMuVyuZklQyY5TqOO77jqpkwm41hdNrz30qjnnj592ndlX6lU2tYuSSYAAAAEiYomAAAAAI6CrgBqNps6c+ZM78S7YRgyTVMrKys6efLk1E9+R6GiSdpe4TWuImYvWV1dVbFY7P08aaVXHDSbTdXrdZ07d06tVkuWZWl9fb03DxYXF2UYhlKplG6//XalUqlA5kOr1dLS0tLAfbvpuAIAACAaqGgCAAAAMBPJZFKVSiXsMEKXy+W0urraq3JptVpqtVp7/uR/f5IplUrtquORTCZD2XNseD+obkUdAAAAEKS5sAMAAAAAgL3m9OnTAz9PunTebjW8jNxOyyxiMmfOnBn4ea+PMwAAAEwHiSYAAAAAmLF8Pj9QWVIul33vpRRn/QkQ0zRDW9ZwN6lWqwNjKpfLUc0EAACAqSDRBAAAAAAhKJVKAz8PV5/sFdVqVa1Wq/cz1UzB6D+OhmFQzQQAAICpIdEEAAAAACFIpVLKZDK9n4vF4p6saupPsBmGoVwuF2I0u0O5XB5I3j300EMyDCO8gAAAALCrkWgCAAAAgJBUKpWB5cyy2WyI0cxes9lUs9ns/UySyT/LsgaqmXK53EBCEwAAAAjafNgBAAAAAMBeVqlUtLy8LEmq1+uqVqt7KjHQv4TgyZMnQ4xkdzh16lSvMi6ZTG5bohEAAAAIGokmAAAAAAhRMplUrVZTOp2W1EkUpFKpPbHUWTKZVDKZDDuMXaObqJQ6yxA+8cQTIUcEAACAvYCl8wAAAAAgZKlUSpVKRVJn6bO9toQe/OsfN4ZhqNFo7IlkJQAAAMJHogkAAAAAIiCTyahQKEjqVKb077MD7OTEiROyLKtXydS/9xcAAAAwTSSaAAAAACAi8vl8L9lULBZVr9dDjghxsLKyomaz2UsysRwhAAAAZolEEwAAAABESD6fV6lUktRZDg3Yyfr6em+5PJJMAAAAmLX5sAMAAAAAAAzK5XJKpVIsf4aJVCoVtVotxgsAAABCQUUTAAAAgB0tLi6GHUKg4vB6SBrADcYLAAAAwpKwbdsOOwgAAAAA0WNZlhYWFiRJ7XZbhmGEG5BPu+31AAAAAEAUsHQeAAAAAEfdPV+6/x93u+31AAAAAEAUUNEEAAAAAAAAAAAAT9ijCQAAAAAAAAAAAJ6QaAIAAAAAAAAAAIAnJJoAAAAAAAAAAADgCYkmAAAAAAAAAAAAeEKiCQAAAAAAAAAAAJ6QaAIAAAAAAAAAAIAnJJoAAAAAAAAAAADgCYkmAAAAAAAAAAAAeEKiCQAAAAAAAAAAAJ78/yQGApWdX7VuAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "fig = plt.figure(figsize=(17,10))\n", - "\n", - "ax = []\n", - "n = 0\n", - "l_tot = 1\n", - "c_tot = 1\n", - "\n", - "x_boundaries = 0, 0.06\n", - "x_ticks = [0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06]\n", - "y_boundaries = 0, 0.06\n", - "y_ticks = [0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06]\n", - "\n", - "n += 1\n", - "ax.append(plt.subplot(l_tot, c_tot, n))\n", - "\n", - "for path, legend, color, symbol in zip(paths, legends, [myred, myblue], [\"s\", \"o\"]):\n", - " dump = path + \"dump.lammpstrj\"\n", - " file = open(dump, \"r\")\n", - " velocity = []\n", - " norm_velocity = []\n", - " for line in file:\n", - " try:\n", - " id, type, x, y, z, vx, vy, vz = np.float32(line.split())\n", - " velocity.append([vx, vy, vz])\n", - " norm_velocity.append(np.sqrt(vx**2+vy**2+vz**2))\n", - " except:\n", - " pass\n", - "\n", - " proba, vel = np.histogram(norm_velocity[100:], bins=50, range=(x_boundaries))\n", - " vel = (vel[1:]+vel[:-1])/2\n", - " proba = proba/np.sum(proba)\n", - "\n", - " ax[-1].plot(vel, proba, symbol, color=color, markersize=15, label=legend)\n", - "\n", - "plt.xlim(x_boundaries)\n", - "plt.xticks(x_ticks)\n", - "plt.ylim(y_boundaries)\n", - "plt.yticks(y_ticks)\n", - "\n", - "complete_panel(ax[-1], r'$|v|$ (\\AA/fs)', r'$p (|v|)$', legend=True, title=\"25 particles in 1.7 nm$^3$ at 300 K\")\n", - "\n", - "fig.tight_layout()\n", - "plt.savefig('velocity_distribution_300K.png', bbox_inches = 'tight', pad_inches = 0.062)\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAB8UAAAPdCAYAAAATbrkYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9749b533n/78oyYKDotIZyknhSBnYh2iT7CJuQo73TuOi6ZBN725MSsYCLdAkQybZG8G6MJlJ8UUS4JvKZAoDubFtyGkDtAG60fDYf4BJpegmvbMannpbtI2x5pFWkWLUPzjHChYxbGv4ucGQIYeHHP44JA/J5wMYWDzDc53rXOZI8z7v63pfoWaz2RQAAAAAAAAAAAAAACvo1KI7AAAAAAAAAAAAAADArJAUBwAAAAAAAAAAAACsLJLiAAAAAAAAAAAAAICVRVIcAAAAAAAAAAAAALCySIoDAAAAAAAAAAAAAFYWSXEAAAAAAAAAAAAAwMoiKQ4AAAAAAAAAAAAAWFkkxQEAAAAAAAAAAAAAK4ukOAAAAAAAAAAAAABgZZEUXwGu68pxnEV3IzBc112KNgEAAAAAAAAAAADM3plFdwDjq1arKhaLsm3bMxkejUZ15coVpdNpGYYx/w6OybIs5XI5xeNxFYvFqdpyXVcbGxs9x9pjEA6HPY8fT3g3Gg3P44eHh0sxngAAAAAAAAAAAAB+KdRsNpuL7gRGY1mWdnZ2xlq1nM1mlc/nZ9epKZRKJeVyuc79xONxVSqVqdr0Sor7haQ4AAAAAAAAAAAAsHwon74EXNdVKpVSKpXqJJCz2axqtZoODw/VbDZVr9dVLBZlmmbPuYVCQbFYLDDlv13XVaFQ0MbGhjKZjO/9mmXSmoQ4AAAAAAAAAAAAsHxYKb4EIpFIp0y6aZqq1WpDE7SZTEalUqnnWDQaVa1Wm2U3h7JtW8Visa9f3fxYKS5JoVBo6ja88KMCAAAAAAAAAAAALB9WigdcKpXqJMQNwzgxIS5JxWJRyWSy55ht28pkMrPqpifXdVUqlRSJRBSLxToJcdM0l3LVdVBW2wMAAAAAAAAAAAAYHSvFA6xQKCiXy3Vel8vlvmT3IIP21q7X630l1v1mWZaKxaKq1WrP8Xg8rlwup3g87rma3e+V4u1JBFJvQrvRaPQd6z4+SDqdnrpvAAAAAAAAAAAAAObrzKI7AG+u6/YkxE3THDkhLrUSwtlsVoVCoed4LpdTuVz2rZ/HOY6jVCrVcyyZTCqfz/ck4+exUjwcDs98AgAAAAAAAAAAAACAYKN8ekBdvXq15/Ukpc93d3f7jlmW1SnHPgvtJHQ7KX94eKhyubyQ5PQylmgHAAAAAAAAAAAA4C+S4gHkum7fCu9xVom3GYahaDTad9yyrIn7NoparabDw0Pl8/mFJqbD4fDCrg0AAAAAAAAAAAAgGEiKB9DxvbgNw5h4pXU8Hu875se+3cN4JeIBAAAAAAAAAAAAYBFIigfQtWvXel5vbW1N3FYikeg7djzpvqoonw4AAAAAAAAAAACApHgAHU9aT7PyelBC3bbtidtcFpRPBwAAAAAAAAAAAEBSPGBs25bruj3HIpHIxO0NWi3tOM7EbQIAAAAAAAAAAADAsiApHjAHBwd9x6Zd8ey10nwdkuKUTwcAAAAAAAAAAABAUjxgarVa3zHTNKdq0yupfuPGjanaXAYXLlxYdBcAAAAAAAAAAAAALBhJ8YDxWsE97Ypnr6T68RLtq+Kk+yqVSkqlUopEItrY2FAoFNLGxoZisZgymYwsy5pPRwEAAAAAS8V13aWrutbu8yyeASxLmwAAAAAgSWcW3QH08gqwpy2f7pVUbzQaU7W5DNr37bqucrmcSqWS5/tc15Vt27Jtu/OefD6vbDY7r64CAAAAAAKmWq2qWCzKtm3PWD0ajerKlStKp9OB2b7LsixVKhXt7+97JphN0+z0O5lMTnwd13W1sbHRc6w9BsefYXTH5t3azyWOHz88PAzMeAIAAABYHSTFA2YWs869yoivy+zrXC6nQqEw0XnFYlGVSmXq8vUAAAAAgOVhWZZ2dnZOjJvbk6tzuZyy2azy+fx8Ouhh1D47jiPHcWRZlgzD0O7urm8TwtvXXpfnDQAAAACWC0nxJTDtDOl1mmHdvQI+k8lM1ZbjOIpEIqpUKorH4yOfd/v2bd2+fXvs621ubmpzc3Ps8wAAAIB1we/amCXXdbWzs9OzrVY2m9WVK1dkmqYMw5DjOKpWq8rn8z2T2guFgqrVqq5fvz73GDyRSKharY59XruqWrFYVK1WG6vfs7zHdXqGAQAAAGB+SIoHyDxnU69D+fRupmkqmUwqEokoHA6r0WjIdV1VKpUTHx6kUinVarWRVoz/yq/8in7+85+r2WyO3cdf/dVf1blz58Y+DwAAAFgX9+7d089+9rOxzwuFQnrf+96n//f//t8MeoVVEYvFOolu0zQ9E8WmaSqdTiudTiuTyfRs02Xbtra3t1Wr1ebSX9d1e/o8KcdxFIvFxk6ML9Kv/Mqv6O2339bp06f1gQ98YNHdAQAAANbea6+9pvv37+vBBx8MbOxNUnwNTLsn+TI5PrHANE2Vy2VFo1HP92ez2ZH2HG8nxoe5ffv2xAlxSfrZz3420QM+AAAAAMM1m039/Oc/1+3bt1kxDk+pVKqTXDYMY6QEcbFYVKPR6FlZbtu2MpmMisXiLLsrSdrZ2fFMiKfTaaVSKZmmKdM05bquDg4OVCwWe/razXEc7ezsqFwuz7rbJ3Jdd+jYd8feR0dHunv37vw6BwAAAGCoIMfeJMUDZJ6rt1c1Ud49hslkcqSA3jAMFYtFZTIZxWIxz/fYtq1qtTq0jPrt27cnTohLrBSf1KuvvqqjoyOdOnVKDz/88KK7s/Leeecdvf76653X73//+3X27NkF9mg98DmfLz7ni8HnfL74nC8On/XpTLpSXGolxoMamGOxCoVCT7J4b29v5BXTe3t7fYnmUqmkXC43UrWxaRyvepbP5z33BzcMQ/F4XPF4fOje45ZlybbtgZPKB2lPIpB6J6q34/Pj1zrp2cdJY3889ubfsPng36/54ne1xeBzPl98zheHz/p88VlfDD7n89X9OQ9y7E1SPEDmWT591WWzWeXz+bHOiUajqtVqAxPj+Xx+rL3F//t//+967LHHRn4/+xxO5tKlS7p7964efvhh3blzZ9HdWXk/+tGP9MQTT3Rev/DCC/rkJz+5wB6tBz7n88XnfDH4nM8Xn/PF4bM+nXH3FP+nf/on/df/+l9n2CMsu3blsLb21lujMgxD2WxWhUKh53gul5vpqmvXdTvPEE6qkNYtmUwqHo/r0Ucf9XwGUSwWx17lHg6HZz4BYBj+DZsP/v2aL35XWww+5/PF53xx+KzPF5/1xeBzPl/HP+dBRVI8QAbNhj6pdJif11p28Xh8qtXa0WhU+Xy+56FI20l7jx/32GOP8Y8bAAAA4CMmksJvV69e7XmdyWTGbmN3d7cvKW5ZlhzHmVmyuDs+rVQqY13HMAzt7e0plUoNbXec9gAAAAAg6E4tugP4pXmWNF/V8ul+yGazA4P6SR4QAAAAAACCx3XdvmT2OKvE2wzD8FylPWj/bj9UKhVJrf5Oknhvrxg/bpJt3Xi+AAAAAGAZkBRfAvPcaxwt6XTa87jjOHPuCQAAAABgFo5PejYMY+KV3V4J5nbiehYODg4kSVeuXJm4Da9V8WzrBgAAAGBVkRQPkGHl06fhlVRf5H5fy2DQgwUeEAAAAADAarh27VrP662trYnbSiQSfcdmWWnMtm1Jk61sb/N6LjDKvuTHUT4dAAAAwDIgKb4EZrFSPBaL+d7mKpnkQQAAAAAAYHkcT1pPEwcOSqi3k9d+chxH0WhU2Wx2qna8ktmTTKCnfDoAAACAZXBm0R1AL9M0+0p0T7s62et8VoqfzOv/BTPgg+fpp5/WvXv3dO7cuUV3BZgZPudYB3zOsS74rAPBYNt2X6wciUQmbm9QrNhOYPvJNE3VarWp2/F6VuBVUh2Q+PcL64HPOdYFn3WsAz7n8EJSPGC8ErHT7mNdr9c9r4Ph/Jo1j9l6+umnF90FYOb4nGMd8DnHuuCzDgRDe0/ubtOueI5Go30rw6eN52fp+BhEo1HPvdFPwuTx9cC/X1gHfM6xLvisYx3wOYcXyqcHjFfS1SupPQ72FPfPNHvMAQAAAACCwWul9bRxsldS/caNG1O1OUvFYrHn9d7e3kTtXLhwwY/uAAAAAMBMkRQPGK+9vqedWX78/Elmfq+j46XkotEoM+ABAAAAYAV4xdnTxnteSfVpt0ObFcuyela15/P5scq8n3RfpVJJqVRKkUhEGxsbCoVC2tjYUCwWUyaTkWVZk3YdAAAAACZC+fSA8Qqivcq6jeN4sJ9IJKZqb10cX2F/5cqVBfUEAAAAAOAnr6T4tOXTvZLqXpXbFs11Xe3s7HRep9NpZbPZidtr37frusrlciqVSgOva9u2bNvuvCefz091bQAAAAAYFSvFA8ZrFbfruhPPLvc6d9VWijuOo2q16mubXuOWTqd9vQYAAAAAYDFmsde3VxnxIK4U39nZ6fQrm832lVGfRC6X08bGxsCE+LDzIpFIoPdeBwAAALAaWCkeQPF4vC/JW61WlUwmx27r+CpzwzDGKokWdK7rKhKJyDAMHR4e+tbu8fHPZrMnltLb3NzUr/7qr+pnP/uZfvVXf1Wbm5u+9QcIis3NTX3ta1/reQ2sGj7nWAd8zrEu+B0d45i2fHrQt9tyHEepVKpTNr1YLE48+bt7BXwmk5m6X5FIRJVKZaRJ/PxcYx3wuxrWAZ9zrAs+61gHy/I7OknxAEqlUn1J2WvXrk2UFC+Xyz2vxw14HcfxLOkeFIZhdCYRFAoF38quXb16tfNn0zSVz+dPPGdzc1Pnzp3Tz372M507dy6wP/TANDY3N/X1r3990d0AZorPOdYBn3OsC35Hh5d5rt5eRPn0arXaE8fbtq1r16717OOdTCa1tbXl+7VN01QymVQkElE4HFaj0ZDruqpUKidWeEulUqrVaic+g+j+uX7wwQd1+/Zt3b59e+Q+bm5u8ncBAo/f1bAO+JxjXfBZxzIa93dsSXrwwQcDH3uTFA+gy5cv98207g5ex7G/v9/zend3d6TzqtWqUqlU52FBOp32paTaLORyOVWrVeVyOaXT6aln57f3OGsL6n0DAAAAAIJj2j3J/VCtVpVIJE58n2VZnecMyWRSu7u7Y1WVOz6xwDRNlcvlgW1ks9mR9hxvJ8ZH9frrr+uJJ54Y+f2S9LWvfY0H0wAAAMAQ3/3ud/WNb3xj0d3wHXuKB5BhGJ6rwsfdm6tarfYEqqMmjG3bViKR6Dm3VCoplUqNdf1hvGbmTzqDPh6Pd+4rl8tN0atfBuFtxWJx5fZgBwAAAIB1Ns/V2/NOlFcqlbHPsSxLsVhMiURi5L29u8cwmUyqXq+fmFQ3DEPFYnFo0tu27RNXlAMAAADAJEiKB5RXue5xE77d7zcMY6QS4FJv6fBulmWNHCCfxOshxDQl7Npl4UulUs8q73G4rqvt7e3OPU6zvxoAAAAAIJjmWT593trxcDqdVqVSUb1eV7PZVLPZVL1eHzrxu1qtKhaLjRVTZ7PZvm3bThKNRocmxkd9dgEAAAAA4wg1m83mojsBb4VCoS8RnkwmRwo4j59bq9VGLoU2LAgul8sT7W3ezXVdbWxseH5vnH52cxxHkUhEUmsCQLlcHmuFd7VaVSaTmTohfunSJd29e1cXL17UnTt3xj4fAAAAgL/4HR3HdceP3Q4PD6fajsuyrL4KayclgP1m2/ZIMfXxLdO6GYahmzdvTr012Um8nnm0nfSoqv1z/f73v18vvPDCWNdlT3EAAABguEn2FP/MZz6j119/PdCxN3uKB1g2m9Wbb76pQqHQOdYOsoclxo8HlsVicaxE89bW1sCk+CQJ6zbHcWTb9tAV79vb28rn89ra2pJpmiMH4aZpyjRNOY4j13WVSCQUjUaVyWQUj8dlmqZnf6rVqorFYud+TdNUpVLxfD8AAAAAYPnNs6T5vMunjxqzx+Nx1Wo1z8kBrutqZ2dn7BXg48pms7p69apnYr5arY400f3s2bP65Cc/OYPeAQAAAOtrkomkZ8+enVFv/ENSPODy+bwuXLjQk0i2LEsbGxtKp9N6/PHHZZqmGo2GbNtWsVjsrHaeZMV0+5r7+/t9gWk2mx0rWbyxsTF2WTrXdZXJZPqOG4ahw8PDoecmk8meCQS2bfe01d3342XgDcPQ7u6ustnsWP0FAAAAAKyGRqMx89XRQWKaporFomcMblmWXNed+Xik0+meOL7Nr63bAAAAAKCNPcWXQDabVb1e75nx7bquCoWCUqmUYrGYEomEcrlcJ3BMJpOq1WpjJ8SlVoK4+9x2oDzuvl5+7tM2SlvtVeGDOI7T+Wpr77V+eHhIQhwAAAAA1sCgRO+0MWyj0eg7FvQqZOl0euB47O/vz/z6V65c8Ty+yvu+AwAAAFgMVoovCdM0VavV5DhOp9x3O8FrGIZM01Q4HFYikRga1I5zvUqlMlUb896uvt1n13VVKpV048aNTjn19jiFw2GZpqlEIqF4PD5VOXgAAAAAwOrwSmpPKxaL+d6m3wat1p7HXujE5AAAAADmhaT4kjFNc+wV2+vGMAxWfQMAAAAABjJNs69E97Srk73OD/pKcUlKJBILLWHu9f9incrYAwAAAJgPkuIAAAAAAGCteCVip00C1+t1z+sE3aA+zisx7XWdZRg3AEvg9m3pjTf8a++hh6TNTf/aAwAAc0VSHAAAAAAArBWvpKtXUnscy7inuCSFw+Gxjs/D1tbWwq4NYEXcvi19+MPS22/71+aDD0ovv0xiHACAJXVq0R0AAAAAAACYJ6+9vqddKX78/Hg8PlV7izav/dCPl52PRqOUTwcwvTfe8DchLrXa83PlOQAAmCuS4gAAAAAAYK14reA+ODiYqs3jSfFEIjFVe6NeZ1peK9wl6fLly75eZ9TrX7lyZS7XBQAAALBeSIoDAAAAAIC14rWK23XdvlXLo/I6dxYrxTc2Nnxfwe2VZI/H432rtR3HUbVa9fXaXuOWTqd9vQYAAAAASCTFAQAAAADAGvJKWk+a9D2+ytwwDEWj0YnaGiYej8t1XVmW5VublUql71g+n+957bquIpGIUqmUb9eV+sc7m81SOh0AAADATJAUBwAAAAAAa8crwXvt2rWJ2iqXyz2vx13tPGpJ9HZp8atXr47V/jDHE+zJZLIvoW8YRichXygUfLt2932YptmXjAcAAAAAv5AUBwAAAAAAa8drz+xJV2Dv7+/3vN7d3R3pvGq1qo2NDUUiEYVCIWUymaHvb69ut23bl1Lm1Wq1JyFvGIb29vY835vL5Tr/nbTMfDfbtmXbdud1sVicuk0AAAAAGISkOAAAAAAAWDuGYSiZTPYdL5VKY7VTrVZ7ksTpdHqkEuC2bSuRSPScWyqVhpYo7y7Lnkqlpk5OdyfhDcNQrVYb2PfufcbbCfJJua7bc5/FYnEme7ADAAAAQBtJcQAAAAAAsJa8ynWPm/Dtfr9hGCOXAB9UAt2yrKHl1NvJY9d1tb29PUZPe6VSqc512glx0zSHntMuC18qlXpWeY+j3e/2tYvF4tjl5gEAAABgXCTFAQAAAADAWvLax/r4KuZhCoVCT3L4+vXrI60Sl4bvIz4s4RyJRHreF4lERt6TvC2VSnVKxZumOVJCXOpdWb69vT12CfdqtapYLNa5PxLiAAAAAOaFpDgAAAAAAFhb2WxW2Wy255hlWScmxguFQs8q8WKx2CltPoqtra2B3xvWzvHzHMdRJBJRKpUamkx3XVelUkkbGxudhHg6nVa9Xh8pIS61Eujt97quq0QioVgsplKpNDAx7ziOSqWSYrGYEomEHMeRaZqq1+skxAEAAADMzZlFdwAAAAAAAGCR8vm8Lly40JPktixLGxsbSqfTevzxx2WaphqNhmzbVrFY7Ck9Xi6Xx94TO5/Pa39/v29f8Gw2OzRJPShhblmWLMuSYRja2trqtNFoNOQ4Tk/CPBqNam9vb6wkflsymVShUOi8tm27ZwV5d9+PJ8oNw9Du7m7fJAQAAAAAmDWS4gAAAAAAYO1ls1klk8meFdeu6/YkgI9LJpPK5/Mjr7Tu1t7HO5PJqFqtyjRN5XK5kVZP5/N5Xbt2zXNluOu6A8uaJ5NJZTKZsRP43TKZjGzbHngNrxXjJMMBAAAALBpJcQAAAAAAAP1yf23HcVQsFmXbthzHkeM4MgxDpmkqHA4rkUgonU6PvH/4sOtVKpWxz+su+V6tVlUul+U4TmdVuOu6nVLnpmkqFovp8uXLU/e3u8/tcuw3btzoXLM9TuFwWKZpKpFIKB6PT7QiHQAAAAD8RFIcAAAAAACgi2mayufzi+7GSOLx+FQrvydlGAYrvwEAAAAsjVOL7gAAAAAAAAAAAAAAALNCUhwAAAAAAAAAAAAAsLJIigMAAAAAAAAAAAAAVhZJcQAAAAAAAAAAAADAyiIpDgAAAAAAAAAAAABYWSTFAQAAgAmUSiWFQiHFYrFFdwUYyLZtFQoFJRIJRSIRbWxsKBQKKRQKaWNjQ4lEQplMRpZlyXXdRXcXAADAHw89JD34oL9tPvhgq10Ac0XsjWVA7L0cQs1ms7noTgCr4tKlS7p7964uXryoO3fuLLo7AAAERiwWk23bMgxDkhQOh088p9FoSJJc11WxWFQ6nZ5lF8cWiUTkOI4kqV6vyzRN39p2XVcbGxsDx6t7bNLptIrFom/XHsVJ/z8bjYZc15VpmqrX6yt3P5KUSCRUrVYlqXNe20mf7/b9SuoJhg3DkGma2traUiwWm/gz77quSqWSrl69OnawHY1GlclkdPny5b77Wlb8jg6sHn6uAYzk9m3pjTf8a++hh6TNTf/aA2aA2Hs8qxarrtr9SMTey2QZfkcnKQ74aBl+6AEAWIRcLtcJYhzHGSlYME1ThmEoHA4rl8spHo/PuJejq1arSiQSndd+B5Ou6yqVSnUCwvYDgEH8fjAwjG3bJ87Qb/+/29raUrFYXLn7kVqfadu25TjOifczjXQ6rXw+P3KQbFmWdnZ2en7GotGo4vG4IpGIwuGwHMfRm2++Kdu2Oz+XXsrlspLJ5JR3sHj8jg6sHn6uAQDwRuw9nlWLVVftfiRi72WyFL+jNwH45uLFi01JzYsXLy66KwAABFqtVmsahtGU1PcVj8cX3b0TJZPJvn4fHh7O/Zrtr3Q6PdNrd4vH4wP7kc1mR25n1e6nXC4PbCeZTDbz+XyzUqk0a7Vas16vd74qlUozn88P7YekZqVSObEP6XS655xoNNqs1WpDzzk8PGwWi8WmaZoTXXMZ8Ds6sHr4uQYAYDTE3v5cc5lj1VW7H2Lv4FqG39FZKQ74aClmwgAAEBCZTEalUqnveK1WUzQaXUCPRtMuR3ZcPp9XNpud2XUdx1EkEhn4/cPDw5mX3DppZvc4ocWq3Y8kpVIpWZbVc8wwDB0eHo50vuu62tnZ6WujrVKpDFy1cfznaZLP4/E25vH/YB74HR1YPfxcAwAwOmLv8axarLpq9yMRewfVMvyOfmrRHQAAAMB6GhQQBTkol+T5MEHSzPfiOqmk2dWrV2d6/ZOuMe7/t1W7H0k9Zf0mYRiGyuWy8vm85/dTqZRn+cNCodDzucxmsxM9JCoWiz3/X1YhKAcAAADWHbH3eFYtVl21+5GIvTE5kuIAAABYiHA4vOguTGRQMOc4ztA9ovwwLFAqFAoj7Rc3KcdxBs6ilib7/7lq9+PXZzqbzXruJ+a6bt+DIdd1lcvlOq9N0xwY2I8ik8l02gEAAACw/Ii9x7dqseqq3Q+xNyZFUhwAAAAYkWVZnWDRK3CZJiAax6CZ1LOc4d0d/Pk9i3nV7scPgz5L165d63m9s7PT87odWE+q/bkO4pgAAAAAWA/E3i3E3rNH7L1eSIoDAADM2+3bkm3793X79qLvaCJev/gHPRhoB4qmaXqWbKtWq3IcZ2bXb8+GNk1T6XS67/uDystNy3XdzszuQdeexKrdj5+fX9M0PR9Y2Lbd8/r4jHuvWe7jXlda3tUkAAAAQAextyRi70msWqy6avdD7I1JkRQHAACYp9u3pQ9/WIrF/Pv68IeXNjhfJrZtd4KiXC6neDy+0BnrXtdxXVeFQsH3a3XP7J7V/a3a/fhha2tr6Pe9StBNW3qN0m0AAABYCcTeS4vYe/B1/bBq9+MHYu/1QVIcAABgnt54Q3r7bX/bfPvtVruYqfZMdcMwOrObuwO8tlnNsD7OMAzPmcl+lz3r3kvLNM2pZ0MPsmr344eTZr/PYmWEYRhqNpuqVCq+tw0AAADMDbH30iL2JvaeN2Lv9UFSHAAAADhBd8mv7nJfg0p/zSs4HzTD28/rdwfGs57ZvWr3Mwvds8nr9Xrf99v77gEAAADAsiH2Hnw9P63a/cwCsfdqIikOAAAAnKA7mMtkMj3f8wrO5xXwmaapeDzed9xrFv0kukuozWNm96rdz7S8guzuPjcajb7vV6vVWXYJAAAAAGaG2JvYexGIvdcHSXEAAADgBO3Z0l57mXkFjY7jzC1AmuUM7+42Fr1f27LezzS8PkNXrlzp/DkcDvd93++SdwAAAAAwL8TexN6LQOy9PkiKAwAAAEOUSqXOrGGvIHzQDOt5BX7RaFTRaHQm128HefOc2b1q9zMpx3H69i2Lx+M9YxOJRPrOs23bt9n9AAAAADAvxN7E3otA7L1eSIoDAAAAQ7QDwkEBuNRf1k1qzTQ+HljNilfQ6jhOZy+2SRQKhaEPJGZp1e5nEl6fqWKx2PN60OexUCgoFovJtu2Z9A0AAAAA/EbsTey9CMTe64WkOAAAADBAd3A9LJhLJpMyDKPv+PFAala8SstJ0wWg7ZndhmF47t02S6t2P+MqlUp95dvK5XLfmAya2S+1Zq3HYjFFIhHlcjlZljW3B0UAAAAAMA5ib2LvRSD2Xj8kxQEAAIABumdNnxTM7e7u9h3zYy+uUfm5v1p32Tqv+5qHVbufURUKhb6Z6uVyeWDJub29vaHtOY6jQqGgVCqlSCSiUCikSCSiVCpFwA4AAAAgEIi9ib3njdh7PZEUBwAAADx0B4GjzG72eo/runMLztPptOeM+UlmeI/zQGJWVu1+2gYFwZZlKRaL9dyfaZqq1WpD92CLRqMql8tj98GyrJ6AfWNjQ6lUaqoyeQAAAAAwLmLvX7a7CKt2P23E3vBCUhwAAADw0B3MjRIMGobhGUB57dE1K14zsW3bHmuGd/fs5Ww26xkcz8uq3Y8kJRIJbWxsKBKJdEqshUIhpVKpzj5kpmmqWCyqXq8PLNHWLZlMjvzeQVzXlWVZSqVS2tjYmGhVAAAAAACMi9h78bHqqt2PROwNbyTFAQAAgGO6Z5kP2mPLi1cg6ThOJ+CatUGB5zgzvLvfu+hyZ6t2P5KUyWQUDoc7n4tGoyHTNBWPx5XP51Wr1VSv18eeVd+e2V6r1ZROp0f+zHpxXVeJRGKqfeQAAAAA4CTE3i2LjlVX7X4kYm94IykOAAAAHNNddu34HlPDRKNRzxnDV69e9aVfo/AK6GzbHunhQLVa7czsHlRCbd5W7X6y2azq9bqazaaazaYODw9Vr9dVqVSUzWanmnEutT6D7Znuh4eHKpfLyufzSiaTY7ddKBTmujcfAAAAgPVC7B2cWHXV7ofYG15IigMAAADHtAPpQWXZhvEK5C3Lkuu6fnTtRINmZI8y87j7PUGZqbxq9zNP7c9vNptVuVxWrVZTs9lUvV5XuVweaVZ7JpOZ22cXAAAAwHoh9g5OrLpq9zNPxN7Lg6Q4AAAA0KU7iJ6k5NegWdHzmrFuGIbnDO9qtTp0hnf395PJ5FQlwPy0avcTBKZpKplMdma1VyqVoeOzv78/x94BwOheffVVXbp0yfPrueeeW3T3AADAEMTewYpVV+1+gmAVY+/nnntu4O/fr7766qK7dyKS4gAAAECX7gA6l8spFAqN/eU1u3eepbAGzcwe9nAgn897/jkIVu1+giYej6terw9cmVGpVObcIwAYzdHRke7evev5de/evUV3DwAADEHsHbxYddXuJ2hWIfa+d+/ewN+/j46OFt29E5EUBwAAAH5h1P2yJuG6rizLmknbx7VnIx9nWVZnn69utm2rWq1KagVpQZvZvWr3E1TlctlzrCjhBiCoTp06pYsXL3p+nTt3btHdAwAAAxB7BzNWXbX7Capljr3PnTs38PfvU6eCn3I+s+gOAAAAAEHRPft5UJAyTlvHA/GrV6+OvU/apPL5vOeDgFwup3K53Nev7vOCaNXuJ6jy+bxSqVTPsUajsaDeAMBwDz/8sO7cubPobgAAgDERewc3Vl21+wmqZY29n376aT399NOe37t06ZLu3r075x6Nh6Q4AAAAoN7Z5NFodOoAend3ty+QbM+Gj0ajU7U9CtM0FY/HO7O229ozvNsPHRzH6bnvefRtEqt2P0Hl9blntj8AAAAAvxB7BztWXbX7CSpi78UI/lp2AAAAYA66Zzjv7u5O3V40GvUMaIbtxeW3QfuBdc/g7n5P0Gd2r9r9BJVhGD2vCcwBAAAA+IXYO/ix6qrdT1ARe88fSXEAAIB5eugh6cEH/W3zwQdb7aKHbdsqFAqe+155KZVKklpBiV9l1rwCScuy5rZPVDwe95ytXSqV5Lpuz8zu9mzwIFu1+/FDoVDofHZn5fHHH59p+wAAAIDviL3nhth79WLVVbsfPxB7rwbKpwMAAMzT5qb08svSG2/41+ZDD7XaRY9isahSqTRw1ni3dmAnSel02rc+XL58WZlMxvN62WzWt+sMs7u727dPldSaNd/9gGBZZnav2v1Mq736wc/P7fEHR/Paiw8AAADwDbH33BB7t6xarLpq9zMtYu/VQFIcAABg3jY3CaTnoL3/1Sjlp7qDOK9AelLtme/H9ze7evXq3ALzZDIp0zT7Zu0XCoXOn03TXJrga9Xuxw9+rn6wbbvn9TqNIwAAAFYMsfdcEHu3rFqsumr34wdi7+VH+XQAAACsnHY5L0kKh8ND31utVjvvHWVm+7i89khzXbcvWB9Fo9GYqA+D9gMb9fuzsmr34xUgz6tc36ilCk9SLBZ7Xq/LrH8AAAAA4yP27hXUWHXV7ofYG5MiKQ4AAICFmGXA0p6pLrVmjA8zq5nqbYOC/XbprUmMO3bpdHrgOBiG4Wv5r0ms2v3MU3vsjs8yn4Rt2z17pOXzed8fVAEAAACYL2JvYu+2VbufeSL2Xg0kxQEAALAQfs2u9XLt2jVJJ5dvcxynJ4i/fPnyTPrjFfDbtt1z7VFM8zDDa9a8NNl+WF79mGTm+ardz6Sz7/0w7Qx913W1vb3deR2Px+dWZhAAAADA7BB7E3uv2v0Qe2NSJMUBAACwEPV6fSbtdpdHOykw7w6YDcM4cWb7pAbtDTXO7PjuBxkHBwdj9yGbzXre36AAd9S+tI07W3rV7keSarXayO37ofuBguM4ikQiE/Xbtm3FYrFOe/F4XJVKxadeAgAAAFgkYm9i77ZVuB+J2BuTIykOAACAuXMcp6dUVJvrukqlUioUCiqVSrIsy/OrVCqpVCqpUCgol8spk8kokUgoEoloY2Oj096wwDyTyfTMFnddd+zZ46MaFCw5jjNycN49G9l1XRUKhbH7cXwmdzKZHPthhGVZA8dpnD6t2v3Ytq39/X3P781qn7Xjs+Mdx1EsFlMqlRpp37z25y8Wi3UeHmSzWYJyAAAAYEUQe7cQe7eswv0Qe2MaoWaz2Vx0J4BVcenSJd29e1cXL17UnTt3Ft0dAAACx3VdXb16daIgbBL5fL5Thqod9DcajRNn9JqmKdM0lclkBs40HyaTychxnJGuJbVmypumqXg8rnw+39NX13WHznZu99UwDJXL5aHXcV2358FFpVJRPB4fek47eBv1Xtp9MgxD4XBYxWJR4XB4pe7HNE3lcjnZtq1GoyHHcUYqR9fdTi6XO7GvJ6lWq0okEkPfE4/HO9e9cOGC3nzzTTmOI9u2e/4/mKapcrmsaDQ6VZ+CiN/RgdXDzzUAAMMRe3sj9l6u+yH2Xi7L8Dv6mUV3AAAAAOtjf39/bkG5pJ4go9FoDJyVfHyGs+M4chxH0Wh0osB8f39/aKB2/Hqu6/YFicNmznef3+7rKLO0DcNQOp1WqVTqPAg4yaiz+Luv3w5W2+eHw+GVuh+p9f9n1MC+3VZ3O6lUaqRzh4nH46rVaioWiwM/cyfdazwe9+UhAQAAAIDgIPb2vh6x9y/PXYb7kYi94S9WigM+WoaZMAAALJLrumo0GgqHw77sIdbdXrdZ7U+2Ctr7XxWLxb4SaMto1e5nGrZtq1qt6saNG52Z9O1gvT1L3jRNRaNRJRIJbW1trcXPCr+jA6uHn2sAAIYj9l68VYtVV+1+pkHs7W0ZfkcnKQ74aBl+6AEAAIB1wu/owOrh5xoAAAAIlmX4Hf3UojsAAAAAAAAAAAAAAMCskBQHAAAAAAAAAAAAAKwskuIAAAAAAAAAAAAAgJVFUhwAAAAAAAAAAAAAsLJIigMAAAAAAAAAAAAAVhZJcQAAAAAAAAAAAADAyiIpDgAAAAAAAAAAAABYWSTFAQAAAAAAAAAAAAAri6Q4AAAAAAAAAAAAAGBlkRQHAAAAAAAAAAAAAKwskuIAAAAAAAAAAAAAgJVFUhwAAAAAAAAAAAAAsLJIigMAAAAAAAAAAAAAVhZJcQAAAAAAAAAAAADAyiIpDgAAAAAAcALXdeU4zqK7MZZ2n13XXXgfAAAAAGCRSIoDAAAAAAAcU61WlUqlFIlEFAqFtLGx0flzKBRSLBZToVBYaML5OMuylMlktLGx0dPn9utIJKJUKiXLsmbWh2UcNwAAAACrL9RsNpuL7gSwKi5duqS7d+/q4sWLunPnzqK7AwAAAKw9fkfHuCzL0s7OzlhJ22w2q3w+P7tOnWCSPhuGod3dXWWz2YX1YdJx4+caAAAACJZl+B2dleIAAAAAAGDtua6rVCqlVCrVSexms1nVajUdHh6q2WyqXq+rWCzKNM2ecwuFgmKx2EJWPycSiZ4+j8p1XeVyOUUikan6vazjBgAAAGC9sFIc8NEyzIQBAAAA1gm/o2NUkUiks/e1aZqq1WoyDGPg+zOZjEqlUs+xaDSqWq02y252uK6rWCzmy37do9zvIIsYN36uAQAAgGBZht/RWSkOAAAAAADWWiqV6iR2DcMYKUFcLBaVTCZ7jtm2rUwmM6tu9tjZ2fFMiKfTaVUqFdXrdTWbTR0eHqpSqfT1tZvjONrZ2Rm7D8s4bgAAAADWE0lxAAAAAACwtgqFgizL6rze29sbecX03t5e37FSqeTL6u2TVKvVntf5fF7NZlPFYlHxeLxTqtwwDMXjcZXLZZXL5YH3ZlmWbNse+frLOm4AAAAA1hNJcQAAAAAAsJba+2q3maY5dEX1cYZhKJvN9h3vbnMWXNft7MPdLlnu1Y/jksmkbt68OTB5XSwWR77+Mo4bAAAAgPVFUhwAAAAAAKylq1ev9ryepIT37u5u3zHLsma66rl7lXilUlE0Gh35XMMwPFdqH293mGUdNwAAAADri6Q4AAAAAABYO67rqlAo9BwbZ7Vzm2EYnknp7tLifqtUKpJa/W2XSR9HMplUPB7vO95oNE48d5nHDQAAAMD6IikOAAAAAADWzvFV0YZhTJRgluSZYG4nrmfh4OBAknTlypWJ2/Ba3d0uyT7MMo8bAAAAgPVFUhwAAAAAAKyda9eu9bze2tqauK1EItF3bNRS5JOwbVvSZCu027wS2aOUYV/mcQMAAACwvkiKAwAAAACAtXM8+TrOvtzHDUoMt5PXfnIcR9FoVNlsdqp2DMPoOzbKiu9lHTcAAAAA6+3MojsAAAAAAAAwT7Zt95UKj0QiE7fnlWCWfpnA9pNpmqrValO341Uq3aukerdlHjcAAAAA642V4gAAAAAAYK209+TuFg6Hp2rTK4nrOM5Ubc7S8TGIRqOee3wPO0dav3EDAAAAsJxIigMAAAArwGvFHwDAm9dK61FKhw/jlRy+cePGVG3OUrFY7Hm9t7d34jmMGwAAWHfE3sDyIikOAAAALCnXdVUqlZRIJLSxsaFCobDoLgHAUvBaiTyolPeovJLDQX1oallWz77d+Xx+pHLl6z5uAABgPRF7A6uBPcUBAACAJeA4jmzb1o0bN+Q4jqrVKkkDAJiQV3J32jLgXsnhRqMxVZuz4LqudnZ2Oq/T6bSy2exI567zuAEAgPVA7A2sLpLiAAAAmLlEIqFqtSqp/+H3SQ/Tux+MdweihmHINE1tbW0pFospnU771t8gyufzKpVKi+4GAKyEWexZfeHChb5jQXyAurOz0+lXNptVPp8f+dx1HjcAAJYBsff0iL2B1UVSHAAAADPXLsnqOE7fA/VJH3y7rivbtjvlXzOZjNLptPL5/NSlXIMol8splUpJat371atXe0rfAgCmM+2/HUH/t8dxHKVSqc6/HcVi0ZeH2qs+bgAALBNi7+kRewOri6Q4AAAAZu74KjTLsjpB5nHJZFKPP/64otGowuFwT5DdLmNWqVQ6s9+7lUollUolVSoVxeNxX+9h0UzT7Nl31TAMJRKJBfYIAJbTPFchL6IMeLVa7fn3wrZtXbt2TZZldY4lk0ltbW2N1W4Qx+2dd97Rj370o7Ha3tzc1Obm5iTdAgAg8Ii9p0fsDUi3b9/W7du3xzrnnXfemVFv/ENSHAAAAHOXTCaVTCZ7HtBLrWCzXC4PPM80TcXjcWWz2c6eqMfbkFol41YxOO/WHaQDABZv2r21/VCtVkd6aGtZVuffz2Qyqd3d3c7KsnmbZtxef/11PfHEE2Od87WvfU1f//rXJ74mAADLhNh7esTeWEff/e539Y1vfGPR3fDdqUV3AAAAAOtp2pnW7SB+0F6oqVRqKfYktW1biURChUJh0V0BgLUwz9Xb806UVyqVsc+xLEuxWEyJRGLonuGrPG4AAKwyYu8WYm8AJMUBAACwEH498M5ms0omk33HXddVqVTy5RqzYFmWEomEYrGYqtWq3nzzzUV3CQDWwjI8tJ1Ue7/LdDqtSqWier2uZrOpZrOper2uYrE4cCVXtVpVLBYbuGfmKo8bAACrjNib2BtAC+XTAQAAsPTy+bxnKbdr164pm80uoEfDpVKpvv5euHBhQb0BgPXSvV9mN9d1B37P72vNSj6fH1gG3TRNpdNppdNpVatVz1Vdrutqe3tbN2/e7Ot7EMft/e9/v1544YWx2mY/cQAAJkfsDayHz372s2Nvi/CZz3xGr7/++ox65A+S4gAAAAHRbEr/dFt66Zb0459Kb78rPfiA9JEPSh9/RHpsUwqFFt1L//j5AN00TUWj0b7VbYNWuy2a10x99ikDgPmYZ2nueZcBH3Vf8Hg8rlqtpkgk0ve99r6hx/cZDeK4nT17Vp/85Cdn3BsAwKoh9p4csTewHjY3N8eeTHr27NkZ9cY/JMUBAAAW7N33pO/9UCpWJec1KSTpzOlWoB4KSe/dl5qSzA9Imbj0B09ID/BbXJ+tra3ABuLHeT2UIDAHgMVqNBpzX9m9SKZpqlgsKpPJ9H3PsqyRV4Cv27gBAJYXsbc/iL0BLCv2FAcAAFigf7srJb4pfeVvpZuvtY41Jb17X3rvqPXf5i/ee/O11vsS32ydh17L/kB+2fsPAMtiWBnwaTQajb5jQX/omk6nB47H/v5+z2vGDQCwzIi9/bPsseuy9x/A5EiKAwAALMg/vCz93jdb5dqa+mUAPkj7PT/+aeu8f3h59n1cdkF9qM4eZgAQPF7J2WnFYjHf2/RbOp32PF6r1UY6f13HDQCwPIi9Z4/YG8AyICkOAACwAP92V3rq29I770n3j8Y79/5R67ynvs2s9W5eK9WSyeT8OzKhee87CwDrzOvB7bQrnr3OD+oD4m6JRMLzuOM4fccYNwDAsiH29h+xN4BlxY4YAAAAc/bue9IX/7JVnu3opCnqAxw1W+d/6a+kF7/KPmeSVK1W+45duXJFUitoPzg4kPTLAPh4ybR2YN9e8WaapudDecdx5DjO0HbabcTj8cluxkeu6yqXy6larXYSHIZhyDRNxeNxXblyRdFo1LfrOY4jy7JUqVTkOI4ajUZnX9r2mF65ckXxeHyqsnW2batYLGp/f1+7u7vKZrM935/3fQNYLqZp9iV9vZLA46jX657XCbpBfRy0ByfjBgBYFsTes0Hs7Y3Ym9gbwcdf4cAMvPrqq7p06ZLn955++mk9/fTTc+4RACBIvvdD6V/vnFyy7ST3j6R/+Umrvc9+ypeuLa12sNwtHo93Aq9qtapUKjVWm/l8vi/Ya7eVyWRGauPw8HDk4HMW+5qVSiXPvrquK9u2Zdu2CoWC4vG4yuXyVH2oVqvK5XKybbtzzDAMhcNhua7bc03LsiS1Svbm8/mRrmvbtg4ODlSr1bS/vz90ZeI87xvB8Nxzz+m5557z/N6rr746595gGXg9ePVKzo5jWffGHrRayus44wYAWCbE3v4j9vZG7N2L2BtBRVIcmIGjoyPdvetdU+fevXtz7g0AIEiaTanYP6l6KqXr0h/9jhQK+dvuMvEKworFYufP7QCsUqmoVCoNbCedTiuRSMgwDG1tbXm+5/Lly52VcuVyuW+WfDQaVSaTkWmangGfbdu6du1a3/FCoSBJevPNN3tmvLuuq1QqNXDP10EymczQe+1WrVb16KOPqlarTZSISCQSnXEwDEP5fF6XL1/uuf/27PLuPpVKJZVKJRWLxYH3l8vlOmMzinneN4Lj3r17A3//Brx47Vk97YpnrwfEy8xrjBg3AMCyIPaeDWLvfsTeJyP2RlCQFAdm4NSpU3r44Yc9v3fu3Lk59wYAECT/dFtyXvOvvaak+r9L//wT6bFN/9pdJqVSqS84LpfLPYGWYRhKJpNKJpNKJBKeM9fT6XRPMD+IYRidB/bpdFqxWKwzQzsajapWq3meV61Wlc/nPUvNSa0AdJBxZ9p3B8rxeFymaSoWi6lWq+ng4KBnRnmb67pKJBJjrfhzHEeJRKKT0IjH46pUKp7vjUajKhaLymQy2t7e7pltnslkVKvVPMf/woULnfH2WpWwiPtG8Jw7d04XL170/N6rr76qo6MxN5DEyvN6GNcu9Tmp438/Ddqre1qO4/j6MNFrpbbUehB93DKPGwBgvRB7+4/Yux+xN7E3lgtJcWAGHn74Yd25c2fR3QAABNBLt6SQpi/f1i30i3bXMTAvFAp9AW25XFYymRx4TjKZVDwe7wuQByUFTtIdYJbLZc/3dAeMkxg1+VGv1zsPCpLJpPL5vOe5tm0rlUp57gtrWdbQ8WtrB7TtNqLR6MCgvFv74UUkEuk5XiqVFIlE+srmZbPZnmNes9Hned8IpmFbFF26dIlV5OjjtRq5XW5ykrKO7XNPusa0NjY2JLVKhPrF64HnoL0nl3XcAADrh9jbX8TevYi9ib2xnE4tugMAAADr5Mc/lc6c9rfNM6db7a6iQTOTLctSLBbrCcpN01StVhspuPKaGT5J4Nw9ezqbzQ4MoDOZjMrlcqeMnFcfK5WKarWa59eoCYJSqSTbtjvXGtSfaDSqer3u+f1RZuxL6gtw9/b2RjpPav2/8gric7ncif8fvGbuz/O+AawOr79bJ32Ieny1tGEYnb01/RSPx+W6bmd/SD94/X2cz+eH9uG4oI8bAGD9EHuPh9ib2NvruscRe2PZkRQHAACYo7ffbe1t5qdmU/r5O/62GRSJREIbGxuKRCKKxWKKRCIKhUJKpVKdclymaapYLKper4/8IL1d3qub67pjB+fdwdzu7u7A97XLx7VnyofDYc8+RaNRz69xnDRbv5tX0mOUMbAsq+d9k/QzHo97PnDw2qOu26Cgex73DWC1eD3o89p3chTHVyuNuxflqPtyX7lyRZJ09erVsdof5niCPZlMDv07PUjjBgDAIMTe4yH2JvY+jtgbq4ikOAAAwBw9+IAUCvnbZigkve+sv20GRSaTUTgcluM4sm1bjUZDpmkqHo8rn8+rVqupXq9P9BDdKwAcd8Zyu5RYOp2eqGys3+Lx+FhlyJLJpGege1Jy5vhs/3aSZlxeAXK7nNo45nXfAFaL157Zk67A3t/f73k97GFtt2q12nkAHQqFTnw42X6gadu2Lw8Uq9Vqz999hmGcuPooCOMGAMBJiL3HQ+w9HmLv0RB7I2hIigMAAMzRRz4ovXff3zbfu99qdxVls1nV63U1m001m00dHh6qXq+rUqkom81OVWLVK5i3LKtvb9NBut/rVRJuESYZj0H7ww5yPIEyqI1RRKNRX8qpzeO+AawewzA8H+od3zvxJNVqtefvj1Ef1tq2rUQi0XNuqVTyXInd1l1ePJVKTf33VvdDasMwVKvVTuz7oscNAIBREHuPh9h7PMTeoyP2RpCQFAcAAJijjz8i+VzBTc1ftIvxGIbhGZwfX7U2SLt07aCZz4tw4cKFsc+JRCJ9xxqNxsD3Hy91Kw0uqzYKr1UD465+nMd9A1hNXqtmxn3Y2v1+wzCG7sfdbVAJdMuyhq6eaT9YdF1X29vbY/S0V/f+lO2E+Kh/ny9y3AAAGAWxd3AQe7cQe/8SsTcWhaQ4AADAHD22KZkfkPyq4haSFPk16WMf8qnBNTNpGbd2STlp+Uu9jhtUewXN06zsGzTTvT2+sxKUhykAFss0zb5krOu6Q1drdysUCj1/X12/fn3kvxOHJb6H/R3Y/WDRtm1FIpGxS1CmUqlOuUzTNMdKiLfPWdS4AQAwCmLvYCH2JvYGgoCkOAAAwByFQlJmsmpXA6W3/d8rbV1Eo9G+8l+2bZ+YXGgnArzOX3XHx2baJMag8WPmOIB5yWazymazPccsyzoxwVsoFHpWOxeLxbH+Tdja2hr4vWHtHD/PcRxFIhGlUqmhDzVd11WpVNLGxkYnIZ5Op1Wv1yd6WLmocQMAYBTE3sFC7D0+Ym/Af2cW3QEAAIB18wdPSH/zP6Uf/1S6fzR5O6dPSR+9KP3hb/vXt3W0u7vb9wC/WCwOLePa3jd12Weqj2tW+34ZhtHX9rirHgFgGvl8XhcuXOhJ1lqWpY2NDaXTaT3++OMyTVONRkO2batYLPaUHi+Xy2Pv8ZjP57W/v9/39182mx2apB70QNOyLFmWJcMwtLW11Wmj0Wj0rLJqt7G3tzf1w+VFjBsAAKMi9g4WYu/REXsDs0FSHAAAYM4eOCP9xeel3/um1GxKRxNsdHYqJD1wWvrzz0lnTvvfx3WSTCb7AsNSqTQwMG8H5YZhKJlMzqOLgeEVLPsRrIfD4b52wuHw1O0CwDiy2aySyWTPimvXdVUoFAaek0wmlc/nJ1pp3d7HO5PJqFqtyjRN5XI5zz03j8vn87p27ZrnynDXdQfuD5lMJpXJZHxNRM973AAAGBWxd7AQe4+O2BuYDZLiAAAAC/DRi9L3vyw99W3p3fvjzVo/faoVlH//y612ML10Ot3z8N51XVmW5Rl4t/c9GyVpgdF4lYFjb1kAi9DeX9txHBWLxU5ZT8dxZBiGTNNUOBxWIpFQOp2e+u8q0zRVqVTGPq+7dHm1WlW5XJbjOJ1V4a7ryjTNzlcsFtPly5dn9nfrvMcNAIBREXsHC7H3YhF7Y92RFAcAAFiQ3/qw9OKfSF/6K+lfftI6Nmzienvrso9ebM1SJyj3TyaT6VvRViwW+wJz27Y7q+DWrXybpIEr+mzb9n1/N1YPAlgk0zSHlvIMkng8HpgS5Ms0bgCA9UHsHRzE3qMh9gZm49SiOwAAALDOPnpRevGr0rP/RXr0A61jIbVmo5/5xaz0dkBu/lrrfS9+laDcb6Zp9iUUqtVqX1mx9kz1dtm3dTPong8ODqZq9/g4t1cVAgAAAIAfiL2Dgdh7NMTewGywUhwAAGDBHjgjffZT0h/9jvTPP5FeuiX9+KfSz9+R3ndW+sgHpY8/In3sQ1IoNLwtTC6Xy/XtwVoqlTrlaV3X7expto4z1dui0WjfHra1Wm2qNhuNRs/roKx4BAAAALA6iL2Dgdh7NMTegP9IigMAAAREKCQ9ttn6wvzF43GZpinHcTrHrl692gnM9/f3JbUCU7/LlS2TeDzeF5jv7+93ZvKPy3XdvtnqV65cmbR7AAAAADAUsfdiEXuPhtgb8B/l0wEAALAQx4OxQcfmKZPJ9Lx2Xbez31l7j9RZzVRf9L2Pyitodl23b6b/qI6fF41G+/aTAwAAAABMhti716LvfVTE3oD/SIoDAAAAv5BOp/uOXb16VdVqVY7jyDCMmQWNx8uYTeLNN9/0oSfDHxIMmq2fy+UmutbxWe7tByDjmMd9AwAAAAD8QezdQuwNzBdJcQAAACyEH4Go37wCb9d1lUgkJPk3U90wjL5j3aXjgs4reLZtu7Pv26hs2+6ZrZ5Op9nTDAAAAAB8ROzdi9ib2Bvri6Q4AAAAFqJWq3keX3SAOiz49prNPolIJNJ3zCvYdRxnYGk0r3Hya7b1SQ9N4vF4Z7+3bplMpm/Ps2F2dnZ62hxlb7RF3jcAAAAALBti717E3sTeWF8kxQEAADB3tm1rf3/f83uTlgLzSzQalWmafcfT6bTnLPNJeLVfrVYViUSUy+WUy+WUSCQUiUT69lprK5fLfcf29/d9CVK92j4un897zizf3t6WZVknnp9KpTpBfDKZVKVSmbhv87xvAAAAAFgWxN7E3sTewC+Fms1mc9GdAFbFpUuXdPfuXV28eFF37txZdHcAAAiMXC4n27bVaDTkOM5IQZRpmjIMQ+FwWLlcbq6lvUqlUl9AXK/XPQPqScVisRNndhuGoVqtJtM0VSgUVKlURhpD0zQ743dSsGlZllKplOf3otGowuGwUqnUwJn6mUzGs3RbMplUJpPp+/9mWZZyuVxn1nmxWBy6CiCo943lwe/owOrh5xoAAG/E3v2IvYm9MR/L8Dv6mUV3AAAAAKuvWq2OXNqrPSO8HYhJGhhAzcrly5d7AvN4PO5rUC5Je3t72t7eHhpoXr9+vXPdGzduDCznJvXuldY9dpNot+U4jmzbHnrvxWJRqVSq8/ClzbKszqz19vndfcpms9rd3T1xBUBQ7xsAAAAAgobYux+xN7E30MZKccBHyzATBgAAjCaVSnUCy0qlMrPZ8rlcTtVqtTMT2zAMmaY5sERakNm2rWvXrvXcj/TLlQfxeFyJRGLp7gvLjd/RgdXDzzUAAKuD2Ht8xN4IomX4HZ2V4gAAAICHxx9/XJZlyTTNmQaS+Xx+Zm3PWzQaVTQaXXQ3AAAAAABLgth7fMTewGROLboDAAAAQBBdu3ZNUms2OQAAAAAA8B+xN4B5ISkOAAAAHNPe10qS0un0gnsDAAAAAMDqIfYGME8kxQEAAIBjisWiJIJyAAAAAABmhdgbwDyxpzgAAABwTKlUkkT5NgAAAGDVNJvSP92WXrol/fin0tvvSg8+IH3kg9LHH5Ee25RCoUX3ElgPxN4A5omkOAAAANClVCrJdV3F43GZprno7gAAAADwwbvvSd/7oVSsSs5rUkjSmdOtJHkoJL13X2pKMj8gZeLSHzwhPcDTc2BmiL0BzBv/rAMAAABd8vm8JGaqAwAAAKvi3+5KX/xL6V/v/PJYU9K79/vfe/M16St/K/3N/5T+4vPSRy/OrZvAWiH2BjBv7CkOAAAA/EKhUJDjODJNU/F4fNHdAQAAADClf3hZ+r1vtkqlN9X6Gqb9nh//tHXeP7w8+z4C64bYG8AikBQHAAAAJDmO05mh3p6xDgAAAGB5/dtd6alvS++8J90/Gu/c+0et8576dqsdAP4g9gawKCTFAQAAsFZs2+475rquEomEJMk0TSWTyXl3CwAAAICP3n2vVTL93fvS0UnLwwc4arbO/9JftdoDMDpibwBBQ1IcAAAAa6NUKikWiymTyci2bbmuK8uy9Oijj8pxHElSsVhccC8BAAAATOt7P2ztIT7uCvHj7h9J//KTVnsARkPsDSCIziy6AwAAAMC8tIPuUqmkUqnU9/10Os1+ZgAAAMCSazalYtXfNkvXpT/6HSkU8rddYBURewMIIlaKAwAAYC24rutZvq0tHo8zUx0AAABYAf90W3Jekyasmt6nKan+79I//8SnBoEVRuwNIKhIigMAAGAt7O/vD/xePp9XpVKZY28AAAAAzMpLtyS/F3SHftEugOGIvQEEFeXTAQAAsBbS6bTC4bAqlYoajYbC4bBisZguX74swzAW3T0AAAAAPvnxT6Uzp6V37/vX5pnTrXYBDEfsDSCoSIoDAABgbSSTSSWTyUV3AwAAAMAMvf1ua19xPzWb0s/f8bdNYFURewMIIsqnAwAAAAAAAABWxoMPSCGf66eHQtL7zvrbJgAAmB9WigMAAAAAAGDpvPrqq7p06ZLn955++mk9/fTTc+4RgKD4yAel93wsnS612vvIB/1tEwCAZfLcc8/pueee8/zeq6++OufejI+kOAAAAAAAAJbO0dGR7t696/m9e/fuzbk3AILk449IPldPV/MX7QIAsK7u3bs38PfvZUBSHAAAAAAAAEvn1KlTevjhhz2/d+7cuTn3BkCQPLYpmR+Qbr7mT3I8JMn8NeljH/KhMQAAltS5c+d08eJFz++9+uqrOjo6mnOPxkNSHAAAAAAAAEvn4Ycf1p07dxbdDQABFApJmbj0lb/1r830tv/7lAMAsEyGbVF06dKlwK8iP7XoDgAAAAAAAAAA4Kc/eEL6D5ek01M+AT99SvqPH5L+8Lf96RcAAFgMkuIAAAAAAAAAgJXywBnpLz4vPXBaOjXhCu9Todb5f/456cxpf/sHAADmi6Q4AAAAAAAAAGDlfPSi9P0vS2fPjL9i/PSp1nnf/3KrHQAAsNxIigMAAAAAAAAAVtJvfVh68U9aie2QWl/DtN/z0Yut837rw7PvIwAAmL0zi+4AAAAAAAAAAACz8tGL0otflb73Q6lYlZzXWonvM6elZlMKhaT37ktNSeavSent1p7kD/D0HACAlcE/6wAAAAAAAACAlfbAGemzn5L+6Hekf/6J9NIt6cc/lX7+jvS+s9JHPih9/BHpYx9qJckBAMBqISkOAAAAAAAAAFgLoZD02GbrCwAArA/2FAcAAAAAAAAAAAAArCyS4gAAAAAAAAAAAACAlUVSHAAAAAAAAAAAAACwskiKAwAAAAAAAAAAAABWFklxAAAAAAAAAAAAAMDKIikOAAAAAAAAAAAAAFhZJMUBAAAAAAAAAAAAACuLpDgAAAAAAAAAAAAAYGWRFAcAAAAAAAAAAAAArCyS4gAAAAAAAAAAAACAlUVSHAAAAAAAAAAAAACwskiKAwAAAAAAAAAAAABWFklxAAAAAAAAAAAAAMDKIikOAAAAAAAAAAAAAFhZJMUBAAAAAAAAAAAAACuLpDgAAAAAAAAAAAAAYGWRFAcAAAAAAAAAAAAArCyS4gAAAAAAAAAAAACAlUVSHAAAAAAAAAAAAACwskiKAwAAAAAAAAAAAABWFklxAAAAAAAAAAAAAMDKIikOAAAAAAAAAAAAAFhZJMUBAAAAAABO4LquHMdZdDcCw3XdpWgTAAAAACTpzKI7AAAAAAAAEDTValXFYlG2bXsmw6PRqK5cuaJ0Oi3DMObfwWNc11W1WtW1a9fkOE5PEt8wDIXDYUWjUSUSCcXjcZmmOdW1NjY2eo61xyAcDnseP57wbjQanscPDw8DMZ4AAAAAVgtJcQAAAAAAgF+wLEs7Ozsnrlq2bVu2bSuXyymbzSqfz8+ng8e4rqtcLqdSqTT0Pe0kuWVZkqR4PK58Pq9oNOpbP7r/CwAAAABBQvl0AAAAAACw9lzXVSqVUiqV6iR2s9msarWaDg8P1Ww2Va/XVSwW+1ZZFwoFxWKxuSeES6WSNjY2hibEB6lWq4rFYsrlcmOfO8uV3KwSBwAAADALJMUBAAAAAMDai8VinVXUpmnq8PCws5K6nag1TVPpdFr1el3pdLrnfNu2tb29Pbf+5nI5ZTKZqdspFApKJBI+9AgAAAAAgoukOAAAAAAAWGupVKpn/+1arXbiiuVisahkMtlzzLZtXxLVJykUCioUCgO/bxiGTNMcedV1tVqdS79HQfl1AAAAALPAnuIAAAAAAGBtFQqFzgpxSdrb2xs5mby3t9dzrtQqaZ7L5fpKrPvpxo0bfcfS6fTA61arVZXL5aFl1kulklKplOLx+Fh9aU8ikHoT2o1Go+9Y9/Fh7QEAAACA30iKAwAAAACAteS6bs+e2qZp9q3+HsYwDGWz2b5V27lcTuVy2bd+Htde1d7uQ61WG5qEj8fjisfjyuVySiQSPed3y+VynQT3qMLh8EwnAAAAAACAHyifDgAAAAAA1tLVq1d7Xk9SQnx3d7fvmGVZAxPPfuhu+/r16yMnpU3TVL1eH/h+27bH7jcruwEAAAAsA5LiAAAAAABg7biu27fCe5xV4m2GYSgajfYdP15W3U/tkuTJZNLz2iepVCoDv1etVsdqKxwOj319AFhWzab0v/+v9Nd/L+3+D+m//U3rv3/9963jzeaiewgAAAahfDoAAAAAAFg7x5O/hmFMXAY8Ho/Ltu2eY5VKRdlsduL+DdK9kttrlfooTNNUOp323GO8UqkonU5P3D8AWEXvvid974dSsSo5r0khSWdOt5LgoZD03n2pKcn8gJSJS3/whPQAT94BAAgUVooDAAAAAIC1c+3atZ7XW1tbE7eVSCT6jo274npU7aS4aZoTrRJvG1Qqvr0KfVSUTwew6v7trpT4pvSVv5VuvtY61pT07n3pvaPWf9sLxG++1npf4put8wAAQHCQFAcAAAAAAGvneNJ6mgTzoIT68dXjfmgnxePx+FTtDLrfRqMxVjuUTwewyv7hZen3vin9+KetxPdJ1dHb7/nxT1vn/cPLs+8jAAAYDUlxAAAAAACwVmzb7lsRHYlEJm5v0Grp7lLnfopGo0qlUlO349VvktwA0PJvd6Wnvi298550/2i8c+8ftc576tusGAcAIChIigMAAAAAgLVycHDQd2zaZLDXyutZJMXT6bRqtdrUK8Ul73sed191yqcDWEXvvid98S9bpdGPTloePsBRs3X+l/6q1R4AAFgskuIAAAAAAGCt1Gq1vmPjJoOP80ow37hxY6o2Z82rVPq4K+YvXLjgV3cAIDC+90PpX++Mv0L8uPtH0r/8pNUeAABYLJLiAAAAAABgrXit4J52xbNXUv14ifag8erfKCvQT7qvUqmkVCqlSCSijY0NhUIhbWxsKBaLKZPJyLKsCXsMALPXbErFqr9tlq632gUAAItzZtEdAAAAAAAAmCevpPi05dO9kupeK7GDwrbtvmOGYXiWgR+mfd+u6yqXy6lUKnm+z3Vd2bYt27Y778nn88pms+N1HABm7J9uS85r/rXXlFT/d+mffyI9tulfuwAAYDysFAcAAAAAAGtlFnt9e5URD/JK8WvXrvUdy+fzE7WVy+W0sbExMCE+7LxIJDKT/x8AMKmXbkkhn9sM/aJdAACwOKwUBwAAAAAAa2/a8unTnj9vxxPYpmkqnU6PdG73CvhMJjNVPxzHUSQSUaVSGal0e7d33nlHP/rRj8Y6Z3NzU5ubLNUEMNiPfyqdOS29e9+/Ns+cbrULAMAyuH37tm7fvj3WOe+8886MeuMfkuIAAAAAAGBtzHP1dlDLp1uW1TcOxWJx6nZN01QymVQkElE4HFaj0ZDruqpUKqpWh2/Qm0qlVKvVPPdmH+T111/XE088MVYfv/a1r+nrX//6WOcAWC9vv+v//t/NpvTz4OcKAACQJH33u9/VN77xjUV3w3ckxQEAAAAAAKY07Z7k85TL5Xpep9PpsVZpH0+om6apcrk8cD/ybDY70p7j7cQ4ACzSgw9IIZ/rp4dC0vvO+tsmAAAYD3uKAwAAAACAtTHP1dtBTJQXCoWePbxN0xx7lXj3GCaTSdXr9YEJ8TbDMFQsFocmvW3bPnFFOQDM2kc+KL3nY+l0qdXeRz7ob5sAAGA8rBQHAAAAAABrY57l04PGcZyeVeKGYahSqUzcXjabVT6fH+ucaDSqWq2mWCzm+f18Pj/yqvX3v//9euGFF8a6PvuJAzjJxx+RfK6eruYv2gUAYBl89rOfHauSlCR95jOf0euvvz6jHvmDpDgAAAAAAFgbhmF4Hnddd+D3/L7WoqRSqZ7X169fH2sP77Z4PK7mFBvuRqNR5fP5vjLuksZaKX727Fl98pOfnLgfAODlsU3J/IB08zV/kuMhSeavSR/7kA+NAQAwB5ubm2NPJj17Nvj7hFA+HQAAAAAArI15ljQPUvn0XC4n27Y7r4ftAT4P2Wx24KQBSqgDOEmzKf3v/yv99d9Lu/9D+m9/0/rvX/996/gU83YUCkmZ8RbHnSi97f8+5QAAYDysFAcAAAAAAGuv0WgEbmW3XyzLUqFQ6LwuFotKJpML7FFLOp3u6Vdb957nANDt3fek7/1QKlYl57XWKuwzp1tJ8FCotXd3U62V3pm49AdPSA9M8AT8D56Q/uZ/Sj/+qXT/aPL+nj4lffSi9Ie/PXkbAADAH6wUBwAAAAAAa2NY+fRpNBqNvmOTlCb3m23bPWXT8/m80un0Anv0S1euXPE8vs77vgMY7N/uSolvSl/521Zpc6mVAH/3vvTeUeu/7QXiN19rvS/xzdZ543rgjPQXn5ceOC2dmnCF96lQ6/w//1wrcQ8AABaLpDgAAAAAAFh7XkntacViMd/bHIfjONre3u68zmazymazC+xRr0WWbwewXP7hZen3vtlaud3UyXt9t9/z45+2zvuHl8e/5kcvSt//snT2TGvF9zhOn2qd9/0vt9oBAACLR1IcAAAAAACsFa8V3NOuTvY6f5ErxV3XVSKR6PQrnU4rn88vrD+DeI3RqpaxBzCZf7srPfVt6Z33xi9lfv+odd5T355sxfhvfVh68U9aie2QWl/DtN/z0Yut837rw+NfEwAAzAZJcQAAAAAAsFa8ErHT7mNdr9dHus68bG9vd+4pmUyqWCwurC/DeCXAg1B2HkAwvPue9MW/bJVGPzppefgAR83W+V/6q1Z74/roRenFr0rP/hfp0Q+0joXUKo1+5lTrv+1kuflrrfe9+FVWiAMAEDRnFt0BAAAAAACAefJKunoltccRpD3FE4mEbNuW1EqIl8vlhfRjUltbW4vuAoCA+N4PpX+9c3K59JPcP5L+5Set9j77qfHPf+BM67w/+h3pn38ivXSrVZr95+9I7zsrfeSD0scfkT72ISk04R7kAABgtkiKAwAAAACAteK11/e0K8WPnx+Px6dqb1KJRELVarXTh6AnxI+XnY9Go5RPByBJajalYtXfNkvXW4ntSRPXoZD02GbrCwAALBfKpwMAAAAAgLXitYL74OBgqjaPJ8UTicRU7U0ilUp1EuLRaFSVSmXufRjX8RX2V65cWVBPAATNP92WnNemXyXe1pRU//fWSm8AALB+SIoDAAAAAIC14rWK23XdvlXLo/I6d94rxTOZjCzLktRKiNdqNV/bdxynk3D3i9e4pdNpX68BYHm9dOuXe3X7JfSLdgEAwPohKQ4AAAAAANaOV9J60qTv8VXmhmEoGo1O1NYkcrmcSqWSpNYq+OvXr/vavuu6ikQiSqVSvrZ7fLyz2Syl0wF0/Pin0pnT/rZ55nSrXQAAsH5Iiq8A13Wn3vtsHTFuAAAAALC+vBK8165dm6it4/t2j7vaeZrYtFAoqFAoSGolxGu1mu+JZcMwFI/H5bpu51p+uHr1aufPpmkqn8/71jaA5ff2u619xf3UbEo/f8ffNgEAwHIgKb6EqtWqUqmUIpGIQqGQNjY2On8OhUKKxWIqFAoTl32bN8uyFIlElMlkZnqdVRs3AAAAAMDkLl++3HesXX58XPv7+z2vd3d3RzqvWq32xKbjxsWlUkm5XE5SK3FdqVRmttK6fZ1cLudL3Gzbtmzb7rwuFotTtwlgtTz4gBTyuX56KCS976y/bQIAgOVwZtEdwOgsy9LOzs6JwWc7sMzlcspms4Gdad0O3tv3M6tV26s2bgAAAACA6RmGoWQy2ZcIL5VKY630rlarPfFmOp0eKTFt27YSiUTftRuNRt/Kcy+WZXWS6IZhqFaryTTNzve7+9RoNPqOt495vX7zzTclqScujsfjMgxDrusql8tNlcR2XbdnpX6xWJz7HuwAgu8jH5Teu+9vm+/db7ULAADWT6jZ9LsIDfzmuq52dnZ6AvVsNqsrV67INE0ZhiHHcVStVpXP5/uSy9FoVNevXw/Evlyu66pUKunq1at9Sep4PK5KpeLrteY9bpcuXdLdu3d18eJF3blzx69bAQAAADAhfkfHMI7jKBKJ9BwzDEOHh4cjtxGLxTorng3D0M2bN0eKI1Op1MCV6fV6vSfBfZxlWb7v7+3l+COjXC7XKZ9eq9Um2jfddV1tb293xqxYLI5dbp6fa2A9/O//K8X///63e/3/Jz226X+7AACss2X4HZ3y6UsgFot1AmXTNHV4eKh8Pq9oNNoJtE3TVDqdVr1e7wsmbdvW9vb2vLvd14dMJqONjQ3fSq2dZBXGDQAAAAAwO177WB9fxTxMoVDoKQE+zsTqYdXSuts8rr012CJ0l3ff3t5WtVod6/xqtdoziWCShDiA9fHYpmR+QPKrgnpIUuTXpI99yKcGAQDAUiEpHnCpVKoTKLfLoZ0UYBeLRSWTyZ5j7aT0PLVXhUciEcViMZVKJUnqrNKepWUeNwAAAADA/GSzWWWz2Z5jo6zELhQKnX22pVZMOc7K6a2trYHfG9SOV8n1eTJNs7OC3XVdJRKJTrw/KMnvOI5KpZJisZgSiYQcx5Fpmp6T0wGgWygkZXzeWSG97f8+5QAAYDmQFA+wQqHQU0ptb29v5GTy3t5e37FhQaqfLMtSIpHQxsaGMplM55rt8uj1el2XL1+e2fWXddwAAAAAAIuRz+f7VoxbltWpdmZZlmzbVrVaVaFQUCQS6STEDcNQpVIZO8Gbz+c9Y9VsNjuwdHoQqpkNmkweiUQUCoUUiUQ6X+3XmUxGtm3LMAzl8/kTy8MDQNsfPCH9h0vS6SmfYp8+Jf3HD0l/+Nv+9AsAACwfkuIB5bpuz4xz0zT7As9hDMPom+kuqafNWXAcR6lUqqeEWjKZVL1eV6VSUTwe7/RvFpZ13AAAAAAAi5XNZlWv13tWabuuq0KhoFQq1VnpnMvlOhOnk8mkarVaJ9YdR7uqWftc0zRVLBb7kvPdptmKzDAMGYbRqd52/GvU62UymaH36zhO56v72vl8XoeHh54xNwAM8sAZ6S8+Lz1wWjo14QrvU6HW+X/+OenMaX/7BwAAlseZRXcA3q5evdrzepIS3ru7uyoUCj3HLMvqlCqbhXa7hmEonU5rd3d35qXSuy3ruAEAAAAAFs80TdVqNTmOo2KxKNu2OwnedkI5HA4rkUgonU5PHe+apqlKpTLy+5vN5lTX80O7z+0t027cuCHHceS6bmecwuGwTNNUIpFQPB4fq6w8ABz30YvS978sPfVt6d370v2j0c89faqVEP/+l1vtAACA9UVSPIDaM9G7jbPauc0wDEWjUdm23XPcsqyZzsyu1WoLCXiXfdwAAAAAAMFgmubQFdsYXGkNAGbhtz4svfgn0pf+SvqXn7SODZsm1F5U/tGLrRXiJMQBAADl0wOou/S4pM5s9El4lTQbZxb6JBY1A3zZxw0AAAAAAACAt49elF78qvTsf5Ee/UDrWEitleBnfrEivJ0MN3+t9b4Xv0pCHAAAtLBSPICuXbvW83pra2vithKJRN/q6ePJ41XBuAEAAAAAAACr64Ez0mc/Jf3R70j//BPppVvSj38q/fwd6X1npY98UPr4I9LHPiSFJtyDHAAArCaS4gF0PPk6zcrrQYlh27ZXbk8vxg0AAAAAAABYfaGQ9Nhm6wsAAGAUlE8PGNu25bpuz7FIJDJxe4ZheB53HGfiNoOIcQMAAAAAAAAAAADghaR4wBwcHPQdC4fDU7XptbJ51ZK7jBsAAAAAAAAAAAAALyTFA6ZWq/UdM01zqja9ksM3btyYqs2gYdwAAAAAAAAAAAAAeCEpHjBeK5EHlfIelVdy+Hip8WXHuAEAAAAAAAAAAADwQlI8YLySu9OWAfdKDjcajanaDBrGDQAAAAAAAAAAAIAXkuIBM4s9qy9cuNB3bNVWPDNuAAAAAAAAAAAAALyQFF8C05YBn/b8ZcW4AQAAAAAAAAAAADiz6A7gl+a5CnmVyoAHcdzeeecd/ehHPxqr7c3NTW1ubk7SLQAAAGAt3L59W7dv3x7rnHfeeWdGvQEAAAAAAMuCpPgamHZv7XU1zbi9/vrreuKJJ8Y652tf+5q+/vWvT3xNAAAAYNV997vf1Te+8Y1FdwMAAAAAACwZyqcHyDxXb69SopxxAwAAAAAAAAAAADAISfEAmWcZ8FXCuAEAAAAAAAAAAAAYhPLpAWIYhudx13UHfs/vay2jII7b+9//fr3wwgtjtc1+4gAAAMBwn/3sZxWPx8c65zOf+Yxef/31GfUIAACspNu3pTfe8K+9hx6SePYHAMBCkRQPkHmW5l6lMuBBHLezZ8/qk5/85Ix7AwAAAKyXzc3NsSeTnj17dka9AQAAK+n2benDH5beftu/Nh98UHr5ZRLjAAAsEOXTl8A898xeJYwbAAAAAAAAgLG88Ya/CXGp1Z6fK88BAMDYSIoHyLAy4NPwSg6bpjlVm0HCuAEAAAAAAAAAAAAYhKT4EpjFiudYLOZ7m0HDuAEAAAAAAAAAAAAgKR4wXiuRp13x7HX+qq14ZtwAAAAAAAAAAAAAeCEpHjBeSVfHcaZqs16vj3SdZca4AQAAAAAAAAAAAPBCUjxgvJKuXsnZcazD3tiMGwAAAAAAAAAAAAAvJMUDxmvP6mlXPB8/Px6PT9VeEDFuAAAAAAAAAAAAALyQFA8Yr5XIBwcHU7V5PLmbSCSmai+IGDcAAAAAAAAAAAAAXkiKB4zXamTXdeW67kTteZ27iiueGTcAAAAAAAAAAAAAXkiKB5BX8rVarU7U1vHV0oZhKBqNTtRW0DFuAAAAAAAAAAAAAI4jKR5AqVSq79i1a9cmaqtcLve8TqfTY50/7b7c8xSkcQMAAAAAAAAAAAAQDCTFA+jy5ct9xyzLmqit/f39nte7u7sjnVetVrWxsaFIJKJQKKRMJjPR9ecpCOMGAAAAAADm49VXX9WlS5c8v5577rlFdw8AAABYKc8999zA379fffXVRXfvRCTFA8gwDCWTyb7jpVJprHaq1WrPvtjpdFqGYZx4nm3bSiQSPeeWSiXPldiT8trru9FoTNXmoscNAAAAAADMz9HRke7evev5de/evUV3DwAAAFgp9+7dG/j799HR0aK7dyKS4gGVz+f7juVyubHa6H6/YRiebXq5evWq53HLsnwrp+6VAPdKlI9rkeMGAAAAAADm59SpU7p48aLn17lz5xbdPQAAAGClnDt3buDv36dOBT/lHPwerinTNPuSsa7rjrxau1AoyLbtzuvr16+PvNp5WOK7u81Jua7rWdbccZyp21/kuAEAAAAAgPl5+OGHdefOHc+vp59+etHdAwAAAFbK008/PfD374cffnjR3TsRSfEAy2azymazPccsyzoxwVsoFHpWOxeLRUWj0ZGvu7W1NfB747RznOM4sixLsVhs4Hu2t7dVKpVk2/bEK8cXNW4AAAAAAAAAAAAAgufMojuA4fL5vC5cuNCTrLUsSxsbG0qn03r88cdlmqYajYZs21axWOys9DYMQ+VyWfF4fOxr7u/v9yWls9msTNMcuZ2NjY2xE9uu6yqTyfQdNwxDh4eHI7eziHEDAAAAAAAAAAAAEDyhZrPZXHQncDLHcZRKpUYuL55MJpXP58dKYh+/XiaTUbValWmayuVySqfTY7URCoUmuvYgk3xU5z1uly5d0t27d3Xx4kXduXNnojYAAAAA+Iff0YHVw881gJmybWlIpcuJ1WoSVSkBACtqGX5HZ6X4kjBNU7VaTY7jqFgsyrZtOY4jx3FkGIZM01Q4HFYikVA6nZ56H2zTNFWpVKZqIwjzLeY9bgAAAAAAAAAAAACChaT4kjFNU/l8ftHdWDqMGwAAAAAAAIATPfSQ9OCD0ttv+9fmgw+22gUAAAtDUhwAAAAAAAAAAEna3JRefll64w3/2nzooVa7AABgYUiKAwAAAAAAAADQtrlJEhsAgBVzatEdAAAAAAAAAAAAAABgVkiKAwAAAAAAAAAAAABWFklxAAAAAAAAAAAAAMDKIikOAAAAAAAAAAAAAFhZZxbdgbZbt27JcRw5jqN6vS7XddVoNCRJrutKkgzDkCSFw2EZhqFIJCLTNGWaph555JHFdBwAAAAAAAAAAAAAEFgLSYrfunVLtm2rUqmoWq3KcRxf2jVNU9FoVIlEQvF4nEQ5AAAAAAAAAAAAAKy5uSXFf/CDH6hYLKparXZWfktSs9nseV8oFBqr3e7z6/W6HMeRZVmSWivL4/G4MpmMfvd3f3fyzgMAAAAAsGao6AYAAAAAWBUzTYrfu3dPpVJJxWKxsxq8ncQelPw+niSfVLPZ1OHhoSzLkmVZMgxDmUxG6XSawBwAAAAAgC5UdAMAAAAArLKZJMVfeukl5XI5VavVnuPdCe9msynDMLS1tSXTNBWJRGQYhkzT7MwwD4fDkqTz589Lkt566y1J6sxMdxxHrut2Zq07jqODg4O+leihUEiHh4fK5/PK5/NKJBLK5XL61Kc+NYvbBwAAAAAg8KjoBgAAAABYF74mxW/duqVMJtNJhh8PpKPRqK5cuaJoNKqtra1OsntU7fe3//voo496vu+tt96S4ziqVqudWe7d/alUKqpUKkokEsrn8/rN3/zNsfoBAAAAAMAyoqIbAAAAAGAdhZo+Rbe7u7sqFAqSegPmdDqtRCKhJ5980o/LTOz69ev6zne+o+eff75zrB3wZzIZ/fmf//miuoYVcunSJd29e1cXL17UnTt3Ft0dAAAAYO3xO3rLKBXdJM2lopvUisfbld0kUdENY+HnGgAAAAiWZfgdfeqk+EsvvaRUKiXHcTrBdDQaVSaT0c7Oji+d9JtlWXr22Wdl27akVjC+sbGhcrlMAI6pLMMPPQAAALBO1v139FlXdBvVoIpubd3JcSq64STr/nMNAAAABM0y/I5+apqTv/WtbykWi6ler6vZbCoej6tWq+ng4CCwCXFJSiaTOjg40MHBgba3t9VsNtVoNBSPx/XVr3510d0DAAAAAGBqu7u7ikQiqlarajabnYR4Op1WuVzW0dGRDg4O9Mwzz2h7e3tmCXGptbL8E5/4hJ555hm9+OKLOjo6UqVS6VSVa/evUqkoGo3qS1/60sz6AgAAAABYPxMnxa9cuaKvfOUrajabikajqtVqevHFF/WJT3zCz/7NVDQaVaVS0cHBgT7xiU+o2Wwqn8/r93//9xfdNQAAAAAAJvLSSy/p13/911UoFDrJ5mg0qmKxqKOjI33nO99Z+BZnkrS9vd1Jzu/v7ysajXb6WywW9dBDD+nv/u7vFt1NAAAAAMAKGDsp/tZbb+nxxx9XuVxWs9lUqVTqJJWXVTup/+yzz3Zmpv/Gb/yGfvazny26awAAAAAAjIyKbgAAAAAA9Bs7Kd4OqKPRqOr1uj7/+c/Pol8Lkc1m9corr+jjH/+4XnnlFcViMRLjAAAAAIClQEU3AAAAAAC8jZUUf/zxx1Wr1ZRKpXRwcKBHH310Vv1aGNM0VavV9OSTT3YS4wAAAAAABBUV3QAAAAAAGG7kpPgXv/hF1Wo15XI5Xbt2bZZ9CoRyuaxnnnlGr7zyip566qlFdwcAAAAAAE9UdAMAAAAAYLiRkuI3b95UsVhUqVTS1atXZ92nwMjn8/rOd76j/f19/eAHP1h0dwAAAAAA6EFFNwAAAAAATjZSUvzRRx9VrVZbqdnmo0qn06rX6/rd3/3dRXcFAAAAAIAOKroBAAAAADCakcunL/NeZNNaxZn2AAAAAIDlRUU3KroBAAAAAEZ3ZtEdAAAAAAAA42lXdFvHCezpdFqJRIIJ7AAAAACAkY28UhwAAAAAAATHOibE2xaREHddV47jzP26y45xAwAAABAErBQHAAAAAAA4plqtqlgsyrZtz6RuNBrVlStXlE6nZRjG/Dt4jOu6qlarunbtmhzH6UlGG4ahcDisaDSqRCKheDwu0zRn0o9lGzcAAXf7tvTGG/6199BD0uamf+0BAIClEWo2m81FdwJYFZcuXdLdu3d18eJF3blzZ9HdAQAAANYev6NjXJZlaWdnR67rjnxONptVPp+fXaeGcF1XuVxOpVJprPPi8bjy+byi0agv/ZjnuPFzDayJ27elD39Yevtt/9p88EHp5ZdJjAMA4LNl+B196cunX7lyRV/84hf1Z3/2Z7p169aiuwMAAAAAAJaQ67pKpVJKpVKdxG42m1WtVtPh4aGazabq9bqKxWLfKutCoaBYLDZWQtgPpVJJGxsbYyfEpdaK7lgsplwuN1UflnHcACyJN97wNyEutdrzc+U5AABYGkufFK/X6yqVSsrlcrIsy9e2t7a29Pu///u+tgkAAAAAAGZnd3dXX/rSl8Y+LxaLdZ4rmKapw8PDzkrqdplv0zSVTqdVr9eVTqd7zrdtW9vb21P3f1S5XE6ZTGbqdgqFghKJxMTnL9u4AQAAAFhPS58Ul6RZVYB/9NFH9eKLL+o//af/pHv37s3kGgAAYPU1m9L//r/SX/+9tPs/pP/2N63//vXft47P4leZRVwTAIAgKBaLKhaLY52TSqV69t+u1Won7nddLBaVTCZ7jtm27Uui+iSFQkGFQmHg9w3DkGmaI+/ZXa1WJ+r3so0bAAAAgPV1ZtEdmFY4HJ5Z27u7u3r++edVq9W0tbWlg4MDnTt3bmbXAwAAq+Xd96Tv/VAqViXnNSkk6czpVkI6FJLeuy81JZkfkDJx6Q+ekB6Y8rezRVwTAIAgcV1XGxsbI7+/UCj0VJ7b29sbOZm8t7fXV7WuXc3ueKlwP924caPvWDqdHnjdarWqcrk8tMx6qVRSKpVSPB4fqQ/LOG4AAAAA1tfSrxQfNeCaRDQa7fzZq8QXAADAIP92V0p8U/rK30o3X2sda0p697703lHrv+3F2jdfa70v8c3Wect0TQAAguStt94a6/2u6/bsqW2aZt8q5mEMw1A2m+07Pu0+3Sdpr85u92HQnt1t8XhcxWJR9Xp9aNJ51H4v67gBAAAAWF9LnxSf5Urxbs1mU7VabS7XAgAAy+0fXpZ+75vSj3/aSkKfVKm8/Z4f/7R13j+8vBzXBAAgaIathPZy9erVnteTlPDe3d3tO2ZZVk/i2m/dbV+/fn3k1dWmaQ5NjNu2PVK/l3XcAAAAAKwvimUOcXyGOYEZAAA4yb/dlZ76tvTOe9LRmPt23z9qlTl/6tvSi38iffRicK8JAIAfbt26pWq1qlqtpkajIdd1J2qn0WjIcZzO+aO047pu377c46x2bjMMQ9FoVLZt9xy3LMtzNbQf2veXTCZ7qtyNqlKpKBKJeH6vWq0OrZS3zOMGAAAAYH0tfVJ8luXTd3Z2ZtY2AABYPe++J33xL1tlysdNTrcdNVvnf+mvpBe/evJ+34u4JgAA0/rLv/xL5fN53yafN5vj/yNYrVZ7XhuGMfF+1vF4vC+5W6lUZpLc7R4zr9XWozBNU+l02nNlfaVSGZoUX9ZxAwAAALDeAvfI8+bNm9ra2lI4HJZpmp3g6sKFCzIMo6dcumEYPcHgjRs39IMf/GDia7uu25mZXiwW5TiOQqFQz/UAAAAG+d4PpX+9c3Lp8pPcP5L+5Set9j77qeBdEwCASd27d0+pVErVanWiRPYw7fh91HavXbvW83pra2viaycSib7V08eTx35pPwcxTXOiVeJtmUzGMyl+0ir7ZR03AAAAAOstcEnxRx99VM1mU47jjDVjvNlsyrIsWZblSz/aQXQoFFKz2VQoFJp45jMAAFh9zaZU9PkZbum69Ee/I3XN0Vv4NQEAmMbv/u7v6h//8R87cfYiHU++TpNgHpQYtm17qna9tJ+VxOPxqdoZ1K9GozH0vGUdNwAAAADr7dSiO+DlK1/5Sicp3Ww2T/xqG+W9o36FQqG+AD2Tycx1HAAAwPL4p9uS89r0K7bbmpLq/y7980+CdU0AACa1u7vbKZU9aFW3H/H8KGzb7lsRPWiP7VEMqiznV3n446LRqFKp1NTtePW7u0Lfccs+bgAAAADWV+BWiktSNpvVs88+q7feemukmePdq7pnxTRNff7zn59Z+wAAYLm9dEsKyb8EtdRq76Vb0mObwbkmAACTeOutt5TP53uS4e3J6O2Yvl0OvL2F2iwdHBz0HRuWDB5FNBrt2x97FsnddDo9dM/vcYTD4b4k97Aqecs8bgAAAADWWyCT4pKUSqW0t7fXk+j2mvE9q0R497VM09T+/v5MrgMAAFbDj38qnTktvXvfvzbPnG61G6RrAgAwie6Yup0Qb8fd+XxezzzzzFz7U6vV+o5Nu2WaV3L4xo0bU7U5a16l0oet/GbcAAAAACyrwCbFv/CFL2hvb0/nz5/vBEheZbUcx+nMam42mwNLb43LNE2ZpqlEIqGdnR1f2gQAAKvr7Xdbe3z7qdmUfv5OsK4JAMAkKpVK58/tye2RSEQHBwc6f/783PvjtRJ52ucJXsnh46uwg8arf8P2KmfcAAAAACyrwCbFP/GJT+jo6OjE95VKJX3hC19QKBRSNpvV1atX59A7AACAXg8+IPldwCYUkt53NljXBABgErZt95VOr1QqC0mIS97J3WnLgHslh71WYgfF8ZLlUuseotHowHMYNwAAAADL6tSiOzCtdDrdCaCYSQwAABblIx+U3vOxjLnUau8jHwzWNQEAmEQ7ydlOiOfzeT3yyCML688s9qz22gc9yM8prl271ncsn88PPYdxAwAAALCsArtSfBw7Ozv61re+xUxiAACwMB9/RPK5krmav2g3SNcEAGASrut2VopLrQnuQTNtGXC/tnObl1Kp1PPaNM2J/r8sctzeeecd/ehHPxrrnM3NTW1ubk58TQAAAGDV3b59W7dv3x7rnHfeCf5+jCuRFP/qV7+qb33rW8wkBgAAC/PYpmR+QLr5mj+J6pAk89ekj30oWNcEAGBahmHo3LlzC7v+PJ8dBHXyvmVZfeNQLBaHnhPEcXv99df1xBNPjNX21772NX3961+foFcAAADAevjud7+rb3zjG4vuhu+Wvny6JJ0/f175fF7xeHzRXQEAAGsqFJIyPv8qkt4evmf4Iq4JAMAkTNPs/HnaPaiDapnuK5fL9bxOp9MLe6ayTOMGAAAAYHmtRFJckp555hk988wzi+4GAABYY3/whPQfLkmnp/wN6/Qp6T9+SPrD3w7mNQEAGNf29raazVZdk0Wvnp7n9YOY8C0UCj17g5umeeIqcYlxA7AADz0kPfigv20++GCrXQAAsHZWonw6AABAEDxwRvqLz0u/902p2ZSOJqhpfiokPXBa+vPPSWdOB/OaAACMq1AoaG9vT1KrDPe9e/cWVkJ9nbdecxynZ5W4YRiqVCojnRvEcXv/+9+vF154Yaxz2E8cWCKbm9LLL0tvvOFfmw891GoXAAAM9NnPfnbsSlKf+cxn9Prrr8+oR/4gKQ4AAOCjj16Uvv9l6alvS+/el+4fjX7u6VOt5PT3v9xqJ8jXBABgHOfPn9ezzz6rr3zlK5Kkvb09/fEf//FMrvXpT39ah4eH+l//6395ft8wDM/jrusO/N6k/G5vWqlUquf19evXe0rbDxPEcTt79qw++clP+nptAAGzuUkSGwCAOdvc3Bx7MunZs2dn1Bv/rEz5dC+3bt3Sn/3Zn+nTn/60Hn/8cV24cEEXLlzQr//6r+vTn/60rly5ohdeeEH37t1bdFcBAMAK+a0PSy/+SSvJHFLra5j2ez56sXXeb314Oa4JAMA4stmsnnzySTWbTf3pn/7pzK5TqVRUq9UGfn+epbmDVAY8l8vJtu3O63K5rGg0OvL56zpuAAAAAFbDSq4Uf+GFF5TL5Xr2yGrvXSZJh4eHne9ZliVJSiQSyufz+s3f/M35dhYAAKykj16UXvyq9L0fSsWq5LzWSkKfOd0qcx4KSe/dl5qSzF+T0tut/cEfmOK3s0VcEwCAcZTLZcViMb300kv66le/OtPk+LgajUbgVnb7xbIsFQqFzutisahkMulL26s8bgAAAABWx0o9Ar1165ZSqZRs2+5JgreFQr9cM3X8+5VKRZVKRYlEQt/5znf0yCOPzLq7AABgxT1wRvrsp6Q/+h3pn38ivXRL+vFPpZ+/I73vrPSRD0off0T62IdaCetlvSYAAOO4fv26YrGY8vm8IpGIPve5z/nW9ltvvSVpePntYWXAp9FoNPqOjVqafJZs2+4pm57P55VOp8duZ93GDQAAAMBqWZmk+PXr1/V7v/d7kloJ79AJT3mPf7+dJH/xxRcVi8VkWZY+9alPzaazAABgrYRC0mObra9VviYAAKMwDEPValWxWEzpdFqu6/q2v3ipVJr4XK/k7LRisZjvbY7DcRxtb293XmezWWWzWV+vsYrjBgAAAGD1rERSvJ0Qbye22wnvUZLjbd3vOzw8VDweV6lU8nXGOgAAAAAA6+jKlSt9x8LhsFzXVTab1Z/+6Z9qa2tr7DLc3auUDw4ORl61bJpmz5Zrx9uahNf5i1zx7LquEolEp1/pdFr5fH6qNtdh3AAAAACspqVPit+8eVOJREJS/+rvUCjkWUbdMAyFw2FJrRnN3QFYKBTqnJdOp7W1tcU+4wAAAAAATKFcLntOWm/H34eHh6pWq1Ndwyv+H8QruXv89bjq9brndRZle3u7c0/JZFLFYnHqNtdh3AAAAACsplOL7sC02vtiHU+AN5tNNZvNTuBXq9V0dHSko6MjNRoNvfLKK3rllVfUaDR0dHSkWq2mfD6vRx99tLPCvNlsant7W/fu3VvU7QEAAAAAsPSefPLJTszejtfbX92T06f5arcjnbx62Svp6pWcHUeQ9sZOJBKybVtSKyFeLpd9aXfVxw0AAADA6lrqpPjzzz8v27Y7QW87iH700UdVLpd1dHSk/f197ezs6BOf+MTQtj7xiU/omWee0SuvvKIXX3xRjzzyiKRWKfV0Oj3rWwEAAAAAYGU99dRTnT+3k9fdSWyv4+N+jcNrz+ppVzwfPz8ej0/V3qQSiURn1X08HvctIS6t9rgBAAAAWG1LnRTP5XI9+4c3m00Vi0W98sorevLJJyduNx6Pq16va2dnR81mU+VyWbdu3fKp1wAAAAAArJfuGH3QinE/vkbltRL54OBgqns8ntxtb/U2T6lUqpMQj0ajqlQqvra/quMGAAAAYPUt7Z7iN2/elOM4naS4YRi6fv36iSvCx1EsFtVoNPT888/rK1/5ir7//e/71jYAAAAAAOskmUzKsqxOlbdoNKqtrS0ZhjF1267rynGckfcl91qN7LquXNedqD/tc0+6xixlMhlZliWplRCv1Wq+X2MVxw0AAADAeljapHg70GvvG2bbdqfkuZ/K5bI2NjZULpdJigMAAAAAMKHHH3+8E8uXSiV9/vOf9/0apVJJX/jCF0Z6bzwe70uiV6tVJZPJsa97fLW0YRiKRqNjtzOpXC6nUqkkqbWa+/r16zO71iqNGwAAAID1sbTl09slwEKhkPb392eSEG9r7yn+d3/3dzO7BgAAAAAAq6w72Xn58uWZXOPKlSsjvzeVSvUdu3bt2kTXPb5vd/s5wqim2Ze7UCioUChIaiXEa7WaL6vvBwnSuAEAAADAqJY2Kd4unR6NRqfaP3wUTz31lJrNpvb392d6HQAAAAAAVtXW1lbnz+fOnZvJNc6fPz/ye70S8+2V7OM6/rxgd3d3pPOq1ao2NjYUiUQUCoWUyWTGum6pVFIul5PUWmVdqVRmmhCXgjFuAAAAADCupS2f3k6KjxswTsI0zc41AQAAAADA+M6fP6/z58/r3r17M72OYRh66623Rnpfe5/zbqVSaawVy9VqtWdf7HQ6PVJi2rZtJRKJvms3Go2+FdReLMvqPBMxDEO1Wq3z/EJST58ajUbf8fYxr9dvvvmmJCmfz/ddd9HjBgAAAACTCDWbzeaiOzGJU6dOKRQKqV6vz7R0uiS99dZbnZnb/+f//J+ZXgvL7dKlS7p7964uXryoO3fuLLo7AAAAwNrjd/RgKZVKsm1b3/nOd2Z2jUwmo8PDw5GqvTmOo0gk0nPMMAwdHh6OfL1YLCbbtjvn3rx5c6TkbiqVGrjCul6v9yS4j7Msy7OMud8GPTJa5LhJ/FwDAAAAQbMMv6Mvbfn0tlknxKVfrhDvnlkNAAAAAADGk06nZ5oQl6RisTjy9memafathnZdd+SEc6FQ6CR2Jen69esjJ3aHVaPrbvO4arU6l4T4MIscNwAAAACYxNImxdvB0qzLrknSwcGBpN7SYwAAAAAAIHg+/elP6zd+4zdGfn82m1U2m+05NspK7EKh0NnPW2ol46PR6MjX7d5j/bhB7XiVXF+URY0bAAAAAExiafcUN01T//iP/6hGo6Fz587N9Frt2c/MWgYAAAAAINgqlYpCodBY5+TzeV24cKEnWWtZljY2NpROp/X444/LNE01Gg3Ztq1isdhZ6W0YhsrlsuLx+NjX3N/f75uAn81mB5ZO397eHusas7aIcQMAAACASSxtUnxra0v/+I//qOeff15//Md/PLPrPP/883IcR6FQaOh+XgAAAAAAYHlls1klk0mlUqlOaW/XdVUoFAaek0wmlc/nJ3peYBiGarWaMpmMqtWqTNNULpdTOp0eeM40FezaE/3D4bDn9nBebbuue+ICgXmPGwAAAABMYmmT4qlUSqVSScVicWZJ8bfeeks7OzudGeYEawAAAAAABNdbb70lafJKb6ZpqlaryXEcFYtF2bYtx3HkOI4Mw5BpmgqHw0okEkqn01NXlDNNU5VKZeT3N5vNqa43K/MeNwAAAAAY19Imxdslw+r1uv7qr/5Kn/vc53xt/9atW0okEp2Z0qFQKDD7dgEAAAAAsGgvvfSSPv7xjy+6Gz1KpZIv7Zim2dlKDaNj3AAAAAAE1dImxSVpZ2dHe3t7SqfTCofD+s//+T/70u4LL7ygnZ0dHR4eKhQKdWZiX7582Zf2AQAAAABYVnt7e/rCF77QeZ3L5fSnf/qnA9//1ltvDS0JPo3ukt8HBwdTlRcHAAAAAKyupU6KFwoF7e3tSWrtR5XJZPTss8/q3LlzE7X3gx/8QLlcTrZtq9lsdhLioVBIyWRy4nYBAAAAAFgF169fVyaT6TmWz+cViUQGVnA7f/68yuVyZ2uyWQlqaXEAAAAAwOKdWnQHpnH+/Hk988wzajabajabKhaL2tjY0FNPPaUXXnhBt27dGnr+rVu39MILL+iLX/yiLly4oEQioVqt1kmEd6P8FwAAAABg3bVj41Ao1PlqNpt69tlnh5735JNPdpLW7Rje7692fySxYhwAAAAA0GOpV4pLrYDctm1dv35dUiu4LpfLKpfLnfeYpinDMCS1AuNGo9EXIHfPKG8H0e2g+tlnn9Ujjzwy0/sAAAAAACDoHMfxXPHdaDSGnvfUU0/p+eefl6SZrxgHAAAAAOC4pU+KS5JlWYpGo7p582bPHuBt9Xr9xDYGBeXpdFrPPPOML/0EAAAAAGCZPfnkk/rWt77VE0OHQiHF4/ETz2vr3q7MbyTcAQAAAABeViIpfv78edm2rWQyqevXr3sGwe1ge9QAudlsKpPJ6C/+4i987SsAAAAAAMsqn8/LsizdvHmzc2xjY0N7e3snnptMJmVZVichHo1GtbW11ansNg3XdeU4jqrV6tRtAQAAAABWz0okxaVWYrxSqSiXy+lb3/qWJPXNXB9FO3leLpd7ZrIDAAAAAIBWNbZSqSTbthWJRJROp3Xu3LkTz3v88cdlWZYkqVQq6fOf/7zvfSuVSvrCF77ge7sAAAAAgOV2atEd8Fs+n9fh4aGeeeYZNZvNni8v3d8/f/5853wS4gAAAAAAeEun0/rOd76jZ555RufPnx/pnGg02vnz5cuXZ9KvK1euzKRdAAAAAMByW5mV4t3aye18Pq/r16+rUqmoWq3KdV01Gg25rivDMBQOh2UYhuLxuBKJhLa3txfddQAAAAAAVtLW1lbnz6OsLJ/EqAl6AAAAAMB6WcmkeLft7W2S3QAAAAAALNj58+d1/vx53bt3b6bXMQxDb7311kyvAQAAAABYLiufFAcAAAAAAMGQz+dl2/ZMr5FKpXTz5s2ZXgMAAAAAsFxIigMAAAAAgLlIp9Mzv0axWJz5NQAAAAAAy+XUojsAAAAAAADgl1u3bi26CwAAAACAgFnpleL3/j/2/j82qvvO+79fZ2xTs99r8dg4ySYQFx93A14aCmMTrZomSsqYq5VuqavGBu5Vib75wUwSrZRuthlDul+11XWlME4310Z3FTJDUmlL1Quwm6sr3VK7eEi7SbPXpQVP3KQE09YDcQJsibEHem9xsT3n/uNkHGyPjWfmzO/nQ0Lg4znv854hOPOZ93m/P1eu6MSJE4rH4xobG5NpmjJNU2vWrCl0agAAAAAAwGE/+tGPtG3bNoXDYT3yyCOFTgcAAAAAUCTKsij+8ssvKxQKLbpPWVdXl3w+nz7/+c/nMTMAAAAAAJArhw8flmVZOnLkCEVxAAAAAMCMshqf/tprr+nP//zP5ff7FY1GZVnWgr96e3vV0dGhlStX6plnntGVK1cKnT4AAAAAAGXprbfe0ubNm/Wd73wnZ9c4c+aM+vr6JEmRSCRn1wEAAAAAlJ6yKYo/99xz6ujoUCwWmyl8G4ax4K/kY8bHxxUMBtXc3KxXXnml0E8DAAAAAICyMzY2poGBAR0/fjxn1+jq6pr19WuvvZazawEAAAAASktZFMX37Nmj3bt3y7IsSZopfC9mboF8fHxcPp9Pd9xxh9577718pA0AAAAAQEXJVQf39u3bFY1GZ30WkOwaBwAAAACg5IviP/rRjxQMBiVpZvGbLI4n/3yjX8lzLcvSb3/7W7W1ten3v/99/p8MAAAAAABlLB6P62c/+5mjMR9//HH19vbOfCaQXN8fPnzY0esAAAAAAEpXSRfFL1++rK6urnnF8OQCuK6uTj6fT729vRoeHlYikZj5NT4+roGBAQWDQXm93lnnjo2NacuWLQV7XgAAAAAAlCu/3+9YrD179igUCs3qEE9upxYOhx27DgAAAACgtJV0Uby7u3vmz8lFb7L7OxgMamxsTC+99JIeeOABNTc3zzq3rq5OmzZt0tNPP62jR49qfHxcTz/99EycgYEB9hgHAAAAAMBhw8PD+od/+Ies4+zZs0fBYDBlQfzIkSN64IEHsr4GAAAAAKA8lGxR/PLlywqHw/MWvy0tLRoeHtbTTz+dVry6ujoFg0GdOHFCa9askWVZ8vl8jFEHAAAAACBLpmnO/NmyLAUCAf3yl7/MOF6yIH695AS45M3xAAAAAAAklWxRPBKJzDtWX1+v/v7+eV3h6fB4PIpGo9q0aZMsy1JXV1c2aQIAAAAAUPGam5t19OjRWVPeurq6dOXKlbRjXV8Qv347NcMwFAqFtGvXLkdzBwAAAACUvpItih8+fHjmz8nFbzAY1Jo1a7KOXVdXp2PHjqmurk79/f36X//rf2UdEwAAAACASub1emcVxoeHh7Vt27a0YixUEJekffv2URAHAAAAAKRUskXxWCw262vTNPXoo486Ft/tdqu3t1eWZWnXrl0Z3b0OAAAAAAA+dn1hXJL6+/v1zDPPLOncxQriwWAw7W3UAAAAAACVo6SL4smRa4ZhqLOz0/FreL1emaap8fFx+Xw+x+MDAAAAAFBpvF6vjhw5Mqug/bOf/WzRcxYbmU5BHAAAAABwIyVbFI/H47O+7ujoyMl1/H6/LMtSb2+vBgcHc3INAAAAAAAqSWdnp1566SVZliXLstTZ2an33nsv5WOfe+45BYNBGYYxr0M8EAhQEAcAAAAA3FDJFsVN01z0a6d4PJ6ZP4dCoZxcAwAAAACASuPz+bRv3z5J0vj4eMqb3Z977jl1d3fPFMOljwvi3d3d2rt3b36SRVG6cOGCVq9enfLX888/X+j0AAAAgLLy/PPPL/j++8KFC4VO74aqC51ApkzTnLWveENDQ06uc33cEydO5OQaAAAAAABUokAgoOHhYR04cEDDw8PasWOHDh06JMkemd7T0zPr8cmR6YFAgII4lEgkdO7cuZTfu3LlSp6zAQAAAMrblStXFnz/XQpKuih+vbGxMa1YsSJn17Msa1YRHgAAAAAAZC8UCikWi+nYsWPq7e1Ve3u7jh8/rr6+vpkiuPRxh7jP56MgDkmSy+XSrbfemvJ7ufyMCAAAAKhEK1as0KpVq1J+78KFC0okEnnOKD0lWxTv6upSOBye+ToWi2nNmjWOX+f6QvjcfcwBAAAAAED2+vv71dLSorNnz6q7u1uSUhbE/X6/9u/fv2is7du36/Lly/rpT3+a26RRcLfeeqs++OCDQqcBAAAAVISnnnpKTz31VMrvrV69uui7yEt2T/EtW7Zo06ZNM1/39/fn5Dp0hwMAAAAAkHv9/f2qq6uTNL8gbhjGkgriktTb25uzzwgAAAAAAKWpZIviknTs2LGZBXNfX19OrnH48OGZP7vd7qxiuVwu3XHHHVlmBAAAAABA+TFNU0eOHJlVEE/q7OxcUkE8Kdv1OwAAAACgvJR0UdztdmtgYEArVqxQLBbTK6+84mj8M2fOKBqNyjAMGYah9vb2jGNdvnxZ0scj3wAAAAAAwGxer1cvvfTSzNrZsix1dnbOumF9Mcm1NwAAAAAA1yvporhk30l+7NgxWZal7u5uvffee47F9vv9kj4uZHs8noxjjY2NSeJudQAAAAAAFuPz+eTz+WRZlrq6unTkyJElnxsOh3OYGQAAAACgVFUXOgEneDweHT16VFu3blVbW5sGBgb0yU9+MquYBw4cUCQSkWEYM0XxPXv2ZByPvckBAAAAAKXqO9/5jo4fP56368XjcRmGoXg8ru3bty/6uKQTJ07M+hoAAAAAgKSyKIpL9oi13t5edXV1yePxqKenR4888khGsY4dOya/3z9TEDcMQ16vVytWrMgo3pUrVxQMBiVJDQ0NGcUAAAAAAKBQjh49qmPHjuX1mpZlKRKJpPV4AAAAAABSKdmieHt7+4J7hY2Pj8+MW3O73WkXolN1dZ84cUJ//ud/vuQYyXHp19+lbhhGWnmgdF24cEGrV69O+b2nnnpKTz31VJ4zAgAAAMrX888/r+effz7l9y5cuJDnbMpTZ2fnvGlq+ZDOtZJrbsuy6BgHAAAAAMxSskXxhoYGRaPRecevXwRLdoF8fHw87fjXL/Qty8o4TqrcUP4SiYTOnTuX8ntXrlzJczYAAABAebty5cqC77/hjO3bt+uxxx6TxNoWAAAAAFB6SrYo3tXVNXOXepJlWTPjzrNdpKe6Gz2bmIxxqywul0u33npryu9lOoYfAAAAQGorVqzQqlWrUn7vwoULSiQSec6o/NTV1cnj8Sgajc67Gb2YULAHAAAAAKRSskXxbdu2ye/3zzrm5OKXhTSyceutt+qDDz4odBoAAABARVhsi6LVq1fTRe4Qr9c7M7GtublZXq9Xbre7sEl9JB6PKxaLpbUHOQAAAACgcpRsUbyurk5er3dWt3gx3qWeRJEdAAAAAFDKOjo61NPTI9M09Zvf/KbQ6aQUDodnxrwDAAAAAJBUskVx6eMR6pJdEO/s7FRHR4caGhoKnNnHxsbGNDAwoHA4TGEcAAAAAFCy2tvbJUmmaRY4k4Vdv/c5AAAAAABJJV0U93q9M3/u7u7W3r17C5jNwnbt2iWPx6PHHntMY2NjhU4HAAAAAIC01dXVFc249IXU1dUVOgUAAAAAQBFyFTqBbDQ3N8/8efPmzQXM5MaKPT8AAAAAAG6kmLvEk4q9cA8AAAAAyL+S7hSXJI/Ho7feeqvoF73J/OLxeEHzAAAAAAAgU3v27Cn6CWhdXV06c+ZModMAAAAAABSRki+Kt7W1KRqNFjqNGyqmfc4BAAAAAMjEAw88UOgUbigUChU6BQAAAABAkSn5ovju3bvV3t6u9vb2QqeyqLq6OgUCAa1cubLQqQAAAAAAAAAAAABAxSj5onhzc7N27dpV6DSWZN++fYVOAQAAAAAAAAAAAAAqiqvQCQAAAAAAAGe89tprOnv2bKHTAAAAAACgqGTVKf7aa6/JNE2tWbPGoXQAAAAAAECmfD6fzpw5I7fbrfb2dpmmqZaWFpmmKbfbrYaGBpmmqRUrVhQ6VQAAAAAA8iarojiLbQAAAAAAisfY2Jgsy9L4+LgikUjKxwQCAe3duzcn1798+bJ6e3vV3t6ujRs35uQaAAAAAACkK6uiOIttAAAAAACKRzwel2EYsixLlmXJ4/HM3LDudru1cuVKeb3enF0/FovJ5/PJMAxJkmma8ng8Mk1Tmzdvlmma3DwPAAAAAMi7rIriLLYBAAAAACg+hmEoGAzqa1/7Wl6vu2nTJh05ckT9/f3q7e3V8PCwhoeHZ9btSS0tLfr1r3+d19wAAAAAAJUrq6J4EottAAAAAACKg2VZMgxDPp8vqzivvfaaPv/5z6d9Xmdnpzo7OxUKhXTmzBn19vZq3759isfjs3IEAAAAACBfXNkGSC5knVhsZyK50B4bG9Pw8LD27dunurq6me715C8AAIBSZFnSL9+T/ulfpT3/U/rb79u//9O/2sd5mwMAmMswDLnd7qynpnV2dmrlypV65plndOXKlYxiNDc3KxAIaGxsTJs2bZq5iX1sbCyr3AAAAAAASEfWRXEW2wAAAM6bnJK+9zPpL/9e8v536ekf2IXwQ2/avz/9A/v4X/69/bjJqUJnDAAoBm63W5K9vZgTxsfHFQwGFYvFso4VDAa5aR0AAAAAUBBZFcVZbAMAADjv1Dmp41lp9w+lMxftY5akyWlpKmH/nnyXc+ai/biOZ+3zAACQpIaGBkdjJNf/2fB6vTN/vn6UOgAAAAAAuebInuJOLbaTi2IW2wAAoOKMjEijo3rz/H/Rjv/vpzSZMGTJuOFpyeL40DlLW/+bpUP/r9/q7tv+f1Jjo9TUlNucAQBFy4l1tRMxAAAAAAAoBlmPT5dYbAMAAGRlZERau1anvA9qx49W69qkpWnrxgXx601bhq5NWtrxo9U65X1QWrvWjgsAgAOcuBlecm7SHAAAAAAA6XCkKO40FtsAAKCijI5q8o9Tevy+H2jSVaOEqyqjMAlXlSZdNXrivoOa/OOUNDrqcKIAgEri1Nr8eqV8Q3w8Hndku7dykYupfEz6AwAAAJArjoxPdwKLbQAAUMkOrtuldxs2yDKyu2dx2lWjkw2f0cF1u/SwQ7kBALBixYpCp5B3kUhEoVBI0Wg0ZTHc4/Fo+/bt8vl8JfH5Q19fn7q7u+X1ehUKhbKKFY/HVV9fP+tY8jWY+/lO8vjcgvfY2FjK4+Pj4yXxegIAAAAoLUVTFL9eJS62AQBA5bIsKfTprzoaM7z+ST1k/ecSdiUHACC1XBQmc3FDvNP6+vq0a9euG3YtR6NRRaNRdXd3KxAIKBgM5ifBNIXDYXV3d888n1x1uyfj0+0NAAAAoBgVzfj0Sl1sAwAAvD26XLG6O7LuEk+yDJeG3Wv1zuhyR+IBAEpHch1MYTJ98XhcXV1d6urqmnn9AoGABgYGND4+LsuyNDw8rFAoNG+7tp6eHrW1tRXN6x6Px9XT06P6+nr5/X7H88plJzdd4gAAAAByIatPXllsAwAAZG/w4v8lw0o4GtOwEhr88E8cjQkAQLaKueDZ1tamvr4+SZJpmhofH1cwGJTH45nJ2zRN+Xw+DQ8Py+fzzTo/Go1qy5Yt+U57Xg5+v1/19fWzusMBAAAAoNIVTad4LhTzYhsAACBpaLxW1YkpR2NWJ6Y0NEanOABUquR+zdnIxfS1ZMxiW693dXXNjBV3u90aGBi4YY6hUEidnZ2zjiWL0vkUj8cVDofV0tKitrY2hcNhSXYBv9he56WgkA8AAAAgFxzZU5zFNgAAQOYmplyyDGd3/7YkXZ0q6/sfAQALsCyLwmIaenp6ZjrEJenAgQNL/hzhwIEDs86VPt7De+6Idaf19fUpFAopEonMOu71etXd3S2v1yu/3z9TJM+V5E0E0uyCdvKzorn/Ld7oMyQ+wwEAAACQC1kXxVlsAwAAZKe2OiHDshyNaUhaXu3sSHYAQPFLFhTHxsb03nvv6ZOf/GRhE5rDiZvqnRSPx9Xd3T3ztWma87q/F+N2uxUIBNTT0zPreHd3t3p7ex3Lc65YLKaurq5Zxzo7OxUMBmcV4/NRYG5oaMj5DQAAAAAAkK2s2ofmLraLTbEttgEAAFJZVz+hKZcjA3xmTLmqta7hqqMxAQClIx6PyzRNrVy5Uv/1v/5X7dmzR6+++qrOnj1b6NSKyt69e2d9ncno8z179sw71tfXNzOOPReSRehkUX58fFy9vb0FKU7T2Q0AAACgFDjy6Wtyse12u9Xe3i6Px6PNmzfL4/FozZo1TlwCAAAgP0ZGpNFR5+I1NkpNTYs+ZOPN/ynLcHbUuWW4tPGmPzgaEwBQ/OLxuIyPtuSwLEvj4+OKRCLzRmybpjlr7d7e3q4VK1bkJb9iEY/H53V4p9MlnuR2u+XxeBSNRmcd7+vrUyAQyCrHxQwMDMjj8eQs/lLlYjs8AAAAAHBaVkVxFtsAAKCsjIxIa9dKExPOxaytlU6fXrQwvqHxqszLv9aZFZ9ypDhuWAmZl3+jOxvpFAeASnb9en2u4eFhxWKxWfthJ290N01TbW1tOel0Tk50K4ZC6tzPLtxud8ad1l6vd15RvL+/P6dF8WIoiAMAAABAqXBsTieLbQAAUPJGR50tiEt2vNHRRYvihiH5f/WP2v3Z7zp2Wd/JF2QYjzoWDwBQupLr9bnmrt+TN7qnsn379pkb3U3TzHgqXDHdvH748OFZX7e3t2ccq6OjY17X+UKvZblhfDoAAACAUuDs5pVisQ0AAJCJnUMH9P11Pg3Vr9e0qybjOFWJSbWO/0oPDoUlURQHgEqV6ob1pOS6PdX6PdV5lmWpr69v1o3ukmbW7OlMhRsbG1vwc4N8m/uZRDad1wsV1KPRaNl3dNOIAAAAAKAUOFIUZ7ENAACQnRprSvt//hVt/dK/y5JLCVdV2jFciWnVJCb14s93qtqazkGWAIBSEQgE5Pf7FY/HNTY2pmg0OjPF7cSJEylvIjcMY8G1e6r1+8DAgKLRaMr1e3t7u1paWuat36/fhq2QotHovNegpaUl43gLdUvHYrGyL4oDAAAAQClwpCjOYhsAACB7reMndeinX9SOL/xEk6pJq2O8KjGpmsSkDv30i2odP5nDLAEAxSy5jdi+fftmHd+yZcusry9fvqwTJ07MrN+Tf55robW7dOP1+0IWu7E+X06cODHvWLYdzx6PZ97zzsVWccWG8ekAAAAASkFWRXEW2wAAAM66+z9e19F/vktP3HdQJxs+I0myDNeCjzeshCSpdfxXevHnOymIAwBkmuYNH1NXV6ctW7bMW7+fOXNGsVhM0WhUx48fVzQaTVnYzWT9njyvGNbpAwMD844t5XVbTKqi+vHjx7OKWQpWrlxZ6BQAAAAA4Iay7hRnsQ0AAHADp06l9f3W8ZM6+uO7dHDdLoU+/VXF6u6QYSVUnZiSJcmQNOWqlmW4ZF7+jXwnX9DOoQOqsaZy9hQAAKUhHo9nVaRsbm5Wc3NzyvX73LV7uuv3YpIq92w7nlN9PpJqcl45uNHzCofD6u/vVzQa1djYmOLxuNxut0zTVHt7uzo6OtTZ2ZmfZAEAAABAWRbFWWwDAAAswVe+kvYpNdaUHj61Xw+d2q93Vm7UYONmDdWv19XqP9HyqT9o3fhJbRw9rjsvDYp3QwCA6+VinHVy/f7AAw/MOv7WW2/pxIkTGh4eVjQaXXQLteslJ88VSqrPGLIdn57qdS/088yH5POOx+Pq7u5WOBxO+bh4PK5oNKpoNDrzmGAwqEAgkK9UAQAAAFSwrDvFWWwDAADkjiFpw6VBbbg0WOhUAAAlIBAI5HWc9aZNm7Rp06ZZxy5fvqxYLKYTJ05oYGBgwS3UCikXe32net3LtVN8ru7ubvX09GR0XigUUn9/f9bj6wEAAABgMVkVxVlsAwAAFKnaWqmxsdBZAADybN++fYVOQXV1dTPr9127ds0cj8Vi6urq0ltvvVXA7BaW7U3/uWgaKFbXNx/4/f6sYsViMbW0tKi/v19erzetc69du6Zf/OIXaZ3T1NSkpqamtM4BAAAAKsnIyIhGRkbSOufatWs5ysY5WRXFWWwDAADk2A9+ILW2pn9eY6PEB74AgCJimqZ6e3v1qU99qqAd1Pm8dqVNrjNNU52dnWppaVFDQ8PMfuL9/f2KRCKLntvV1aWBgYG0OsY//PBD3XPPPWnl+I1vfEPf/OY30zoHAAAAqCTf+9739K1vfavQaTgu6/HpxapYFtsAAABZaW2VPJ5CZwEAgCNM05Rpmjpz5kyhU3FctnuSl5K5n7MkP4PxLPCeJRAILGnP8WRhHAAAAACc5ip0ArmUXGwDAAAAAIDisGXLFlmWVbDr57N7u1wL5de/hp2dnRoeHl6wIJ7kdrsVCoUWLXpHo9EbdpQDAAAAQCbKtlM8acuWLTpw4ECh0wAAAAAAAJJCoZBCoVDBrs80OecEAgEFg8G0zvF4PBoYGFBbW1vK7weDwSXvLX7TTTfp1VdfTev67CcOAAAALO7hhx9e8nvypC9/+cv68MMPc5SRM8q+KF7oxTYAAAAAACgebrc75fF4PL7g95y+Vqnzer1Zdft7PB4Fg0F1d3fP+146neLLli3T5z73uYzzAAAAADBfU1NT2jeTLlu2LEfZOKesx6cDAAAAAABcL58jzct1fLoTAoHAgjcNMEIdAAAAgNMoigMAAAAAgIqXz73GYfP5fCmPx2KxPGcCAAAAoNxRFAcAAAAAABVjsfHp2UhVVDdNM6uY5W779u0pj7PvOwAAAACnURQHAAAAAAAVLxed4m1tbY7HLCcej6fQKQAAAACoEBTFAQAAAABARUnVwZ1td3Kq8+kUv7FUr9FC3fwAAAAAkCmK4gAAAEmNjVJtbaGzAABgSV599dVCp1Awr732mq5cuZLx+akKsdnuYz08PLyk62C2VAVwXjcAAAAATqte6gNfffVVffnLX85lLkXrtddeU3t7u1asWFHoVAAAQC41NUmnT0ujo+mfe+qU9JWvOJ8TAAApnDlzRp2dnXrsscf04osvFjqdvNq9e7eee+45DQwMaOPGjRnFSFV0TVXUTgd7ijunvb290CkAAAAAKDNLKoqz2M5usQ0AAEpIU5P9CwCAItbc3Kx9+/Zp9+7disVi+ulPf1rolPJi27Zt+tGPfqRdu3ZltUZPtdd3tp3ic8/3er1ZxasUc8fOezwexqcDAAAAcNySxqcnF9svvfSSvvCFL+Q6p6Kxbds2Pffcc1kvtgEAAAAAcFogENADDzygo0eP6q677tLvf//7QqeUM1euXNHmzZv1ox/9SFu2bNFLL72UVbxUHdwnTpzIKubconhHR0dW8SrF3A777du3FygTAAAAAOVsyXuKs9gGAAAAAKC49Pb26oEHHtCJEyfU3Nysn/3sZ4VOyXGDg4Nqa2vTwMCANm3apKNHj2YdM1UXdzwen9e1vFSpzi23TvFYLKZIJOJozFSvm8/nc/QaAAAAACClsae4ZC+2u7q69KMf/UjNzc3q7e3V/fffn6vcCmJwcFBdXV0aHh6Wx+NxZLENAADybGQks33BF9LYyEh1AEDRun6t7vV61dXVpXA4rBUrVhQ6taw9/vjjCofDsixLHR0d+pd/+RfHYnu93nlF3kgkos7OzrRjze0yd7vd8ng8WeVXTOLxuFpaWuR2uzU+Pu5Y3LmvfyAQYHQ6AAAAgJxYcqd4UvIu9LGxMXm9Xu3YsUNXrlzJRW559/jjj6utrU3Dw8Pq6OjIenQaAAAogJERae1aqa3NuV9r19pxAQAoUr29vXr66adlWZZ6e3vV3NysV155pdBpZezVV1/VypUrZwrifr/f0YK4JHV1dc07dvjw4Yxi9fb2zvo63W7nbPczzzW32y2v16t4PK6enh7H4u7du3fmz6ZpKhgMOhYbAAAAAK6XdlFcYrENAACK2OioNDHhbMyJiRt3njc2SrW1zl63ttaOCwDAEgSDQR05ckSWZWl8fFw+n08rV64sqfX6yy+/rD//8z9XV1eXxsfHZVmWwuGw9u/f7/i1tm3bNu9YX19fRrGOHDky6+s9e/Ys6bxIJKL6+nq1tLTIMAz5/f6Mrp8P3d3dM79nOmb+etFoVNFodObrUCiUdUwAAAAAWEhGRXGJxTYAAMAsTU3S6dPSwIBzv06fZmw7ACAtnZ2d+u1vf6tNmzbNW68/88wzOnv2bKFTnOfs2bP6zne+o5UrV8rv9ysWi8myLHk8Hg0PD+vRRx/NyXXdbnfKUenhcDitOJFIZFaR2OfzLWkEeDQaVUdHx6xzw+Fwyg72TKUqXo+NjWUUy+v1zjyvZIE8U/F4fNbzDIVCZbcHOwAAAIDiYliWZWUTIBaLqaurS2+99ZYd0DDkdrvl9/vl8/m0Zs0aJ/J0zNmzZ9XX16e9e/fOLA6Ti+1k1zuQqdWrV+vcuXNatWqVPvjgg0KnAwCVKRq1R547bWBAKqO9QQGgUlTye/RwOKzdu3crHo/LMIyZ4x6PR36/X16vt2Br9uTa/PDhw7O6hZMfUfT09OhrX/tazvOIxWJqaWmZdSzdfbPb2tpmnoPb7daZM2eWVBTv6upasDN9eHhYpmkuOYd0rmGapoaHhzOK193dPTM+fWBgIKN90+PxuLZs2TLzmoVCobTHzVfyv2sAAACgGJXCe/Ssi+JJLLaB0vhHDwBlr9KK4iMjNx7tno7GRrrTAZSVSn+PfvnyZX3729/Wc889N3Ps+jV7cq/ojo4Otbe3a+PGjTnJY3BwUCdOnFB/f/+8zurrP5bw+XwKBoOqq6vLSR6p9PT0zOt87uzsnLdP+FLOTadQfH0xfa7e3t6UXezpiMfjqq+vT/m9TAva199E4Ha71dvbm1aHdyQSmZkGIGVWEJf4dw0AAAAUm1J4j+5YUVxisQ2Uwj96ACh7lVQUHxmR1q51dg/12lrGtgMoK7xHtyXX6wcOHJg3Uvv6dbtkdxInf7ndbrW0tKihoUFut1sNDQ2SNNMJnYw1NjameDyusbExDQ8PKx6PKxaL6cSJE/Oul+pjCJ/Pp+7u7oJNb7u+AzrpRoXxuQXxdAu8fr9/wVHt2XSKx2IxRaNRdXd3zxSf53K73QoGg2pvb5/5e16qlpaWWXGvb4ZIlXMsFlMkElEoFJq5CcA0TfX392f8HPl3DQAAABSXUniP7mhRPInFNipVKfyjB4CyV0lF8Up6rgCQId6jz9fX16dwOKxIJDJzzDCMWevnuWv3TM2Nef3XyWLqrl27HLlWtlJ1jLvdbvl8Pm3evFmmaWpsbEzRaFShUGimMJxJx7Rkf8bR3Nw873OMQCCgYDC45Dj19fUp9w7PxFJGx6e6geB61xe65xbl3W639uzZo0AgkFWe/LsGAAAAikspvEfPSVH8eiy2UUlK4R89AJS9SioUV9JzBYAM8R59YZcvX1Y4HJ6Zsna9uev0pX50cKPzPB6PvF6v/H5/Ud6oHovF1NXVteBY87k6OzsVDAaz6ur2+/2KRCIyTVPd3d1pjxN36jOVpBv9XV+f81I5VQxP4t81AAAAUFxK4T16da4v0NnZqc7OzkUX23NlutieG6PYF9sAAAAAABRKXV2dnn76aT399NOSpLfeekuRSET9/f0pJ7EtxfXrebfbrfb2dnV0dMjj8WjLli1OpZ4zpmlqYGBAsVhsZtx3LBZTLBaT2+2WaZpqaGhQR0eHfD5fWmPHF7pef39/VjFy3OswTzLneDyucDis48ePKxaLzUzxS07+M01THR0d8nq9Ge1fDgAAAABOynmn+EKcWGxfrxQX2yg/pXAnDACUvUrqnq6k5woAGeI9enbOnDkzUxROrtsvXbo082e3262VK1fO/Dm5PRo3piOX+HcNAAAAFJdSeI+e807xhWzatEmbNm2auSNdYrENAAAAAEAxaW5uVnNzMzeeAwAAAABKWsGK4qmw2AYAAAAAAAAAAAAAOKmoiuIAAAAzRkak0dH0zzt1yvlcAAAAAAAAAAAli6I4AAAoPiMj0tq10sREoTMBAAAAAAAAAJQ4iuIAAKD4jI7mpCBuSXp75SYN3rRZQ/XrNVG1XLXTV7Vu/KQ2fnhcGy69JcPxqwIAAAAAAAAAComiOAAAKHuTRrUOrtul0Ke/qljdHTKshKoTU7IMQ4ZlacpVLctwybz8a/l/9Y/aOXRANdZUodMGAAAAAAAAADjAVegEAAAAculU/Xp1/NVx7f7sd3VmxackSZbh0mTVMk25ajRZtUyWYb8lOrPiU9r92e+q46+O61T9+kKmDQAAAAAAAABwCEVxAABQtt78s3u19Uv/rqH69bIM10zxeyHJxwzVr9fWL/273vyze/OUKQAAAAAAAAAgVyiKAwCAsnSqfr12fOEnuub6hKZdNWmdO+2q0TXXJ7TjCz+hYxwAAAAAAAAAShxFcQAAUHYmjWo9ft8PNOmqUcJVlVGMhKtKk64aPXHfQU0a1Q5nCAAAAAAAAADIFz7hBQAAZefgul16t2HDDcel38i0q0YnGz6jg3c+oYcbGx3KDgCA4nTlyhWFw2H19/drbGxMsVhMDQ0NcrvdMk1TDQ0Namtrk9fr1Zo1awqdLgAAAAAAS1awojiLbQAAkAuWpNCnv+pcQMNQ+Avf0UO318hwLioAAEXl8ccfVzgcnvnasixJ0vj4uCQpGo3Oerzb7ZbX69XWrVv1yCOP5C9RAAAAAAAyUJCiOIttAACQK2+v3KRY3R2OxbNkaHisRu+8L21ociwsAABF47HHHpu1Rpckw5h9K1hy3Z40Pj6uvr4+9fX1yefzqaurSz6fT5///Odzni8AAAAAAOnK+57ijz32mEKhkCzLmvllGMasX9d/z7KsmcW2z+dTVVWVduzYoddeey3fqQMAgBIweNNmGVbC0ZiGpMGzjoYEAKBoHDlyZN66XNKsdbmkRR/T29urjo4O3XHHHfrZz35WsOcCAAAAAEAqeS+Ks9gGAAC5NFS/XtWJKUdjVldJQ+cdDQkAQNGyLEvNzc3q7OyUz+dTZ2envF6vmpub593EPnfN/tvf/lZer1d33XWXfvnLXxb4mQAAAAAAYCvYnuJJlmXJNE15PB41NDRobGxM8XhcsVhMsVhs1mOvH992/WK7ra1NBw4c0Gc+85l8pw8AAIrMRNVyWYazu39blnT1mqMhndHYKNXWShMTzsWsrbXjAgAqRnt7uyKRiCR73d3b26sHHnhgwcdfvnxZkUhEhw8fViQSUTwenzlXstfrJ06ckMfjUTgcZhs0AAAAAEDB5b0ozmIbAADkUu30VRlz9j3NlmFIy5c5GtIZTU3S6dPS6KhzMRsb7bgAgIrR1dWlSCQiwzDk9XoXXaNLUl1dnR544IGZx505c0YvvfSSDhw4MGvNblmWfD6fhoeH9e1vfzvXTwMAAAAAgAXlvSjOYhsAAOTSuvGTmnI5+xZnalpad5ujIZ3T1EQRGwCQlW3btsnv92d8fnNzs4LBoILBoPr6+hQOh2fW/ZZlKRgMauXKlfq7v/s7B7MGAAAAAGDp8r6n+LZt27I6P7nYHhsb05EjR+T1emf2MUsutv/hH/7BoWwBAECp2fjhcVmGs29xLEkb1zgaEgCAolFXV6ddu3bNTGLLRmdnp44eParf/va3+vznPy/JnvAWCAT0s5/9zIl0AQAAAABIW96L4iy2AQBALm249JbMy7+WYSUciWdIarlFuvN2R8IBAFCUQqGQ6urqFI/HHVlPm6ap/v5+HT16VKZpyrIsdXV16fe//70D2QIAAAAAkJ68F8UlFtsAACB3DEn+X/2jozF9W+x9xQEAKGcHDhyQZVnq7u52LKbX69Vvf/tbPf300xobG9OWLVsciw0AAAAAwFIVpCgusdgGAAC5s3PogP5i7G1VJSazilPlktbfLj14r0OJAQBQxDo7O/X0009rYGDA8W3JgsGg9u3bpxMnTrDlGQAAAAAg7wpWFGexDQAAcqXGmtL+n39FNYlJuRLTGcVwGVJNlfTiI1J1lcMJAgBQpILBoD7/+c/nZFuyQCCgTZs2KRAI6MqVK47GBgAAAABgMQUriksstgEAwAIaG6Xa2qxCtI6f1KGfflHLEn9Mu2O8yiUtq5YOPSm1rsoqDQAASk5/f782btwor9erX/7yl47G3rNnjyzL0u7dux2NCwAAAADAYgzLsqxCJ9HW1qbBwUFFo1F95jOfcSxuX1+ftm3bpscee0wvvviiY3GBhaxevVrnzp3TqlWr9MEHHxQ6HQAobSMj0uho1mFOXarVE8fW6OSl5ZIMLfbGJ7lt+Prb7Q5xCuIAUPp4j56Zy5cvy+Px6OzZs4pEIrr//vsdi1tfXy/DMDQ+Pq4VK1Y4EheVhX/XAAAAQHEphffoRVEUZ7GNclEK/+gBoBJNTkkH35BCESl20S5+V1dJliUZhjQ1LVmSWm6RfFuknfdINdWFzhoA4ATeo2fu8uXL+vznP6/BwUF1d3fr29/+tiNxXS6XDMNQOBzWI4884khMVBb+XQMAAADFpRTeoxd0fHpSXV2dotHozHi2Z555xrG4Sb29vY7EBAAApaemWnr4fun//Hfp2P8jfWen9H/fJ+242/79Ozvt4//7v9mPoyAOAIC9ph4YGNDXvvY17du3T3fddZfee+89x+IfOXLEsVgAAAAAACymKDrFr9fd3a3nnntO7e3t6u3t1Sc/+cms4iXvQPd6vfqXf/kXh7IEUiuFO2EAAACASsJ79Bt79dVXtXfvXklSQ0ODTNNUW1ubvF6v1qxZI0k6duyYurq6dPnyZfn9fu3bty+jaWzJiW6SVF9fr0uXLjn2PFA5kv+uXS6Xbr311pSPeeqpp/TUU0/lOTMAAACgfD3//PN6/vnnU37vwoULSiQSRb32znsf1I0W28FgUFu3blVXV5dM08x6sS1JlmXpxIkTjj4PAACAkufQvu0zGhulpibn4gEA8uLRRx/V5cuXZVmWDMOY932Px6P29nYFg0H19vbqpZdeUigUkt/vl8/n08aNG5d8rVgs5mDmqHSJRELnzp1L+b0rV67kORsAAACgvF25cmXB99+lIO9FcRbbAAAARWBkRFq7VpqYcC5mba10+jSFcQAoMc3NzXrrrbdkGIZSDZMbGBhQNBqddcyyLIVCIYVCIXk8Hm3fvl1er/eGa/ZQKCRJMgxD7e3tjj0HVKbFOsUzaa4AAAAAsLAVK1Zo1apVKb+X7BQvZnkfn97W1rboYlvSrGJ58jHJY+ksth977DGFw2HGpyNvGM0IACgZ0ajU1uZ83IEByeNxPi4AZIj36DfW19enbdu2pbxxPen69XvycamOSfa63TRNbd68eebG9xUrVsyMTk8+tre3V1/+8pedfjqoAPy7BgAAAIpLKbxHz3un+J49e7Rt2zZJWnDBvdhie+4d6osttpMFcUny+/05eT4AACB9liW9PSINnpWGzksTk1JtjbTuNmnjGmlDk7TI5/IAAMBBnZ2dam5u1tmzZyVpwRvYpdnr+FQ3tEsfr9v7+vpmnWua5sxjDcOgIA4AAAAAyJu8F8VZbAMAULkmp6SDb0ihiBS7KBmSqqvsIrlhSFPTkiXJvFnye6Wd90g1eX+3AgBA5QmFQtq6dasMw1BHR4deeuklNTQ0KBaLKRaL6fjx44rFYopGoym3Kkt10/vc9f7w8PCsG9+rqqpkmqZM05TH41FLS4va29tlmiajrwEAAAAAjirIx8wstgEAqDynzkmPvyy9e930HEvS5PT8x565KO3+ofT916X9j0qtqbeqAQAADvF6vdq1a5defvlldXR0qLm5WZK0adMmbdq0SQ888MCsx585c0bRaDSj9XvyuGVZGh4eViwWUyQSmfV9t9st0zTV3t6utra2mT+zfgcAAAAAZCLve4on+f1+vfzyywoGg/ra17626GOzXWxL8/cmvx6LbTilFPZMAIBCePO0tOMFuwA+nVj6eVUuqaZKOvSkdPfa3OVXkdhTHECF4D360l2+fFlr1qzRTTfdpF//+tcZxch0/b7QRxOp1vDJG9337dunNWvWZJQnShv/rgEAAIDiUgrv0QtWFGexjXJUCv/oASDfTp2Ttj4rXZuSEhm863AZ0rJq6ejX6Rh3FEVxABWC9+jpiUQi2rp1q5577jn93d/9nWNxc7F+D4VCevTRRx3LEaWDf9cAAABAcSmF9+gF26Wzrq5Ovb292rp1q/7hH/4ho8V2c3OzmpubHRvjlmqxndyz3Ov1stgGACBNk1P2yPTJ6cwK4pJ93uS09MQr0tFn2GMcAIBc8nq9evrppxUIBNTZ2alPfvKTjsRdaP3+1ltv6cSJExoYGNCJEycUjUZnfX+x7dMGBgZYpwMAAAAAlqRgneJJ3d3d+s53vqNYLObYYnshmS62DcOQz+fT/v37c5ofSl8p3AkDAPn0vZ/Ze4M78WbDkLTvr6WH73cgGOgUB1AxeI+emZaWFjU0NOj48eN5v/aZM2cUiUQ0MDCgSCQy7yb35NrdNE395je/yXt+KDz+XQMAAADFpRTeoxe8KC6x2Eb5KIV/9ACQL5Yl/eXfS2cuOlcUN2+R/vd/k1Lcx4Z0URQHUCF4j56ZM2fOKBaLacuWLYVORZcvX565sb2/v18nTpxQPB6XYRgaHx/XihUrCp0i8ox/1wAAAEBxKYX36EUxgDRVMTpfmpubtWvXLu3atUvSwovtWCymK1eusNgGAGCJ3h6RYhedi2dJGv6d9M770oYm5+ICAID5kuPOi0FdXZ22bNmiLVu26Omnn5b08bZprNEBAAAAAEtRFEVxFtsAAJSfwbN2d7eTI2mMj+JSFAcAoLIV0+cIAAAAAIDiVxRF8WLHYhsAgPQNnZeqq6TJaediVlfZcQEAAAAAAAAAWCpXoRMAAADlaWLS3lfcSZYlXb3mbEwAAAAAAAAAQHmjKA4AAHKitkYyDGdjGoa0fJmzMQEAAAAAAAAA5Y2ieBmIx+OKxWKFTiMjucg9Ho87Gi9XMQGg3K27TZpycHS6ZMdbd5uzMQEAAAAAAAAA5Y09xUtQJBJRKBRSNBpNWVD2eDzavn27fD6f3G53/hNcRK5zj8fjqq+vn3UsGaehoSHl8bkF77GxsZTHx8fHi+71BIBCsizp7RFp8Ky9z/fEpN0dvu42aeMaaeMnJYenp8uSHRsAAAAAAAAAgKWiKF5C+vr6tGvXrht2LUejUUWjUXV3dysQCCgYDOYnwUUUMvfkNen2BgBnTE5JB9+QQhEpdlEyJFVX2UVyw7C7uS1JzTdJjX8qXfq9M8VxQ5J5i3Tn7Q4EAwAAAAAAAABUDManl4B4PK6uri51dXXNFHYDgYAGBgY0Pj4uy7I0PDysUCgk0zRnndvT06O2traCFYTznXsuO7npEgcA6dQ5qeNZafcPpTMX7WOWpMlpaSph/54sgJ/9UBp1qCCe5Nvi/D7lAAAAAAAAAIDyRlG8BLS1tamvr0+SZJqmxsfHFQwG5fF4Zgq1pmnK5/NpeHhYPp9v1vnRaFRbtmzJd9qSSjt3AMBsb56Wtj5rj0q3dONit5PF8CqXtP526cF7HQwKAAAAAAAAAKgIFMWLXFdX18ze2263WwMDAzfsWA6FQurs7Jx1LBqNyu/35yrNlEo591QYvw6gkp06J+14Qbo2JU0n8nttlyHVVEkvPmKPaYdDGhul2lpnY9bW2nEBAAAAAAAAoIiwp3gR6+npmemylqQDBw4seYT3gQMHZp0rSeFwWN3d3fPGlOdCMeSeLMRLswvaY2Nj845df3yxeABQiSanpMdftkejJ5xs/16CKpddED/0pNS6Kr/XLntNTdLp09LoqHMxGxvtuAAAAAAAAABQRCiKF6l4PK7u7u6Zr03TnNdBvRi3261AIKCenp5Zx7u7u9Xb2+tYnqkUS+4NDQ15uQEAAMrdwTekdz9wdhy6ocXjJbcNb11ld4hTEM+RpiaK2AAAAAAAAADKHuPTi9TevXtnfZ3J+PA9e/bMO9bX1zcz0jxXiiV3OrsBIHuWJYUizsZs/FOp+Wb7z4bsTvDqjzrCk8Vw8xZp319LR5+hIA4AAAAAAAAAyA6d4kUoHo/P65JOp9M6ye12y+PxKBqNzjre19enQCCQVY4LKabcGxoa0r4uAGC2t0ek2EVnY47+3h6HbhjS4Flp6Lx09Zq0fJm07jZp4xrpztvt7wMAAAAAAAAAkC06xYtQJDK7Jc/tdmc8Btzr9c471t/fn1GspSjl3AEA8w2e/bh72ymGpF++J21okh68V/r2Dul/PGj//uC99nEK4gAAAAAAAAAAp1AUL0KHDx+e9XV7e3vGsTo6OuYdm1u4dlIx5c74dADI3tB5qbrK2ZjVVXZcAAAAAAAAAADygaJ4EZpb+PV4PBnHWqgoPXcsuVOKKXfGpwNA9iYm7X3FnWRZ9rh0AAAAAAAAAADygaJ4kYlGo4rH47OOtbS0ZBxvoW7pWCyWccyFlHLuAIDUamucH2VuGPb+4QAAAAAAAAAA5ANF8SJz4sSJecey7XhO1a2di8JyseXO+HQAyN6626SpaWdjTk3bcQEAAAAAAAAAyIfqQieA2QYGBuYdM00zq5ipCtPHjx/PKmYqxZb7ypUrs7o2AEDauEZyeHq6rI/iAnNZlvT2iDR41t53fmLSnlaw7jb7v5kNTc5PLgAAAAAAAABQ/iiKF5lUXdDZdjynKkzPHXPuhGLI/UbPKxwOq7+/X9FoVGNjY4rH43K73TJNU+3t7ero6FBnZ2dWOQNAOdnQJJk3S2cuOlMcNySZt0h33u5AMJSNySnp4BtSKCLFLtr/nVRX2UVyw7CnC1iy/1v0e6Wd90g1vIsFAORZPB7X2NhY1jd/VxpeNwAAAADFgI8Ti0yqwnK2I8hTFabHxsayiplKseWePDcej6u7u1vhcDjl4+LxuKLRqKLR6MxjgsGgAoFARjkDQDkxDLsIufuHzsX0baHbtyyMjEijo1mHOXWpVo8fW6N3Ly2XXQ63C+CTKcb2n7lo/7f4/del/Y9KrauyvjwAAAuKRCIKhUKKRqMp17sej0fbt2+Xz+crie27+vr61N3dLa/Xq1AolLPrlNvrBgAAAKA8UBQvMrnY6zvVGPF8dYpnK9vcu7u71dPTk/Z1u7u7FQqF1N/fz93sACreznvsIuTQeWk6kXmcKpddxHzwXudyQ4GMjEhr10oTE1mFefPP7tWOL/xEk64aWa4b3ymRnFYwdF7a+qx06Enp7rVZpQAAwDx9fX3atWvXDdeeyZuru7u7FQgEFAwG85NgmsLhsLq7u2eeTy7W7lL5vW4AAAAAygtF8RKQ7Z3ThbzzOt+5X99F7vf7s7p2LBZTS0uL+vv75fV60zr32rVr+sUvfpHWOU1NTWpqakrrHADIh5pquyt367P2OOtEBnPUXYZUUyW9+Ig9FhslbnQ064L4qfr12vGFn+ia6xNKuNL7j2I6Yf+3uOMF6ejX6RgHKsnIyIhGRkbSOufatWs5ygblJh6Pa9euXerr65s5FggEtH37dpmmKbfbrVgspkgkomAwOKu43NPTo0gkomPHjhVF93M8Hlc4HNbevXtzclP83GuVy+sGAAAAoHxRFC8iuV6oXs/p8enFnrtpmurs7FRLS4saGhpm9hPv7+9XJBJZ9Nyuri4NDAyk1TH+4Ycf6p577kkrx2984xv65je/mdY5AJAvravsrtwdL9hjrdPpGK9y2QXxQ09SvIRt0qjW4/f9QJOumrQL4kkJS5qcsvTE/+eqjvpHVdPMjWVAJfje976nb33rW4VOA2Wqra1tpmBrmqYGBgbmFWpN05TP55PP55Pf75+1TVc0GtWWLVs0MDCQz7RniUajCoVCC24flgvl8LoBAAAAKH+uQieA3Mt2X+9CSjf3ucX55IJ8eHhYwWBQPp9PnZ2d8vl8CgQC6u/v1/j4uHw+36Ixu7q6MkkfAMrK3Ws/7so1lNz9eWHJx7Suss9jzDWSDq7bpXcbNmjaVZNVnGnL0MnRWh38q3+wR7oDAJChrq6umcKu2+1OWdidKxQKqbOzc9axaDSa9dSydCW7wltaWtTW1jZTcE52aedSKb9uAAAAACoLRfEi4nT39mKcLpQXS+7X59HZ2anh4WF5PJ5F47ndboVCoUXvSo9GozfsKAeAStC6Sjr6jLTvr6Xmm+1jhuxO8OqPOsKTxXLzFvtxR5+hQxwfsySFPv1VR2OG73hC1oejjsYEAFSOnp6eWaO/Dxw4sORi8oEDB+YdC4fDOdu3+3p9fX3q6OhQfX29/H7/zDW9Xq/6+/s1PDysbdu25ez6pfq6AQAAAKhMjE8vIvkcQe60Yss9EAgoGAymdY7H49HAwIDa2tpSfj8YDC55b/GbbrpJr776alrXZz9xAKWiplp6+H7pofukd96XBs9KQ+elq9ek5cukdbdJG9dId94uGTdqJ0fFeXvlJsXq7nAsnmW4NOxeq3dGT2mDY1EBFKuHH354ye/Jk7785S/rww8/zFFGKHXxeFzd3d0zXye33loqt9utQCCgnp6eWce7u7vV29vrWJ5zxWKxeRPNOjs7FQwGZ239latO8VJ93QAAAABULoriRWShxWo8Hnd8IZuvePnO3ev1yrKsjGN7PB4Fg8FZi/ukdDrFly1bps997nMZ5wEApcAwpA1N9i9gqQZv2izDSsgynBtYZFgJDX74JxTFgQrQ1NSU9s2ky5Yty1E2KAd79+6d9XUmI7z37Nkzr7jb19enWCw2q0DtpGRct9stn8+nPXv25HxU+vVK9XUDAAAAULkYn15E8rn3t9PXKuXc5woEAgt+mMAIdQAAsjNUv17ViSlHY1YnpjQ0ttzRmACA8hePx+cVZdPpdk5yu90pt+26frR4LgwMDGh8fFzBYDCvBfFSf90AAAAAVCaK4iUgn/t1O61Uc/f5fCmPs78ZAADZmahaLsvhufqWpKtTvK0FAKRn7k3Pbrc74w7lVGP9+/v7M4q1VKkKyvlQ6q8bAAAAgMrEp4dFZLER5NlIVZh2ehRZKeeeyvbt21MeL7a90wEAKDW101dlZLHVSSqGpOXVCUdjAgDK3+HDh2d93d7ennGsjo6OecfKddIYrxsAAACAUsSe4iUgF93WbW1tjsdMpVRzL9Qd9wCA4mVZ0tsj0uBZaei8NDEp1dZI626TNq6x91Z3uAG6YG74XC27EJ3yXElvr9ykwZs2a6h+vSaqlqt2+qrWjZ/Uxg+Pa+34SU25nH0LOuWq1rqGq47GBACUv7nF12zWgQsVhqPRaNmtL3ndAAAAAJQiiuJFxjTNeSO6s+1OTnV+LrqtSzn3VFI9n3zu0wYAKA6TU9LBN6RQRIpdtIvB1VV24dgwpKlpuxBs3iz5vdLOe6SaEn2HteTnWvcX8rc+rp1DB1Rj2fuDTxrVOrhul0Kf/qpidXfIsBKqTkzJMgwZlqUpV7Usw6VVv39PluHssCLLcGnjTX9wNCYAoLxFo9F5682WlpaM4y20VozFYmVV3OV1AwAAAFCqGJ9eZFIVfLPdx3p4eHhJ18lWKeeeSqrFeb6uDQAoDqfOSR3PSrt/KJ25aB+zJE1OS1MJ+/fkIPAzF+3HdTxrn1dq0nqulz+h3Z/9rjr+6rhO1a/Xqfr16vir49r92e/qzIpP2ecaLk1WLdOUq0aTVctmCuHn/svtdpXdoRHqhpVQS/y07mykUxwAsHQnTpyYd6yhoSGrmKmKuNmuiYsNrxsAAACAUlWifUzlK1XRNVVhOB352pe7lHNfqmz2SgMAlJY3T0s7XphdDF5M8jFD56Wtz0qHnpTuXpvLDJ2T/nM1JMPQUP16eb90QjIMTRuupXWAJx/j4L7ivpMvyDAedSweAKD8DQwMzDuW7VozVXH4+PHjWcUsNrxuAAAAAEoVneJFJtV+2dneIT33fK/Xm1W8hZRy7qnMHQnn8XgYnw4AFeLUObtIfG1Kmk6kd+50wj5vxwul0TGe1XN11eha1Sd0zbVM066a9E42jKwL41WJSa0f+6UeHApnFQcAUHlSrVWzXe+lKg5nu6VYseF1AwAAAFCqKIoXmVSLwVTjydIxd9Ha0dGRVbyFlHLuqcztUt++fXverg0AKJzJKenxl+2u6USGNduEZZ//xCt2vGLlxHOVYXeNZ3xuhoVxV2JaNYlJvfjznaq2pjO7PgCgYqUq7mY7BjxVcTjV9LNSxusGAAAAoFRRFC8yqTqh4/F4xndJpzo3V93Whco9FospEolkdI10ru3z+Ry9BgCgOB18Q3r3g/S7pueaTkgn37fjFSunnmtWMiiMVyUmtSzxRx366RfVOn4yR4kBAMpZLvasXrly5bxj5dbxzOsGAAAAoFRRFC9CqQq/mRZ953Zqu91ueTyejGItRb5zj8fjamlpUVdXV0bXWMjcnAOBAKPTAaACWJYUcvY+K4WPObp9tmNy8VyzYlkyrMWr84aVkGEl1Dr+Kx3957t093+8nqfkAACVINs1X6WuGXndAAAAAJSC6kIngPm6urrmFWUPHz6szs7OtGP19vbO+jrdbudYLJZyLPpC8p272+2W1+tVJBJRT0+PAoFA2tdJZe/evTN/Nk1TwWDQkbgAgOL29ogUu+hcPEvS8O+kd96XNjQ5F9cJTj/XrHw0fv2234/o3J9+UoaVUHViSpYkQ9KUq1qW4ZJ5+TfynXxBO4cOqMYq4rn0AICils8u5HIaA16Mr9u1a9f0i1/8Iq3YTU1NamoqsjdmAAAAQBEZGRnRyMhIWudcu3YtR9k4h6J4Edq2bZv8fv+sY319fRnFOnLkyKyv9+zZs6TzIpGIurq6Zha9Pp9PoVDohucVIvfu7m5FIhF1d3fL5/NlfZd5NBpVNBqd+XopzxsAUB4Gz9pFWCcbu42P4hZbUTwXzzUbhpXQ3w4+q02jxzXYuFlD9et1tfpPtHzqD1o3flIbR4/rzkuDynD3cgAAci7bvbUrVTav24cffqh77rknrXO+8Y1v6Jvf/GbG1wQAAADK3fe+9z1961vfKnQajmN8ehFyu90pO6vD4XBacSKRyKw7uZdaMI5Go+ro6Jh1bjgcXtKI8kLk7vV6Z77X3d2d1nXmisfjs55nKBTK2R7sAIDiM3Reqq5yNmZ1lR232OTiuWajOjGl0/XrteHSoB48fUDf/j9f1f/4hU/f/j9f1YOnD2gDBXEAgEPy2b1dToVyXjcAAAAApYyieJFKNa473YLv9Y93u91LHgF+/ejw6/X19SkWi93w/ELknhytHg6HZ3V5pyMej2vLli0zzzEUCqU9bh4AMMfIiBSNOvcrzbE96ZqYdH7/b8uSrhbh9KBcPNdsWJKuVv9JodMAAFSAfI4BLye8bgAAAABKGePTi1RyH+vri8PJLua5e22n0tPTM6s4fOzYsSWPFV+s8B2NRm+4x3ghcvf7/erp6ZEkbdmyRb29vWl1eEciEfn9fgriAOCkkRFp7VppYsK5mLW10unTUo72gaytmdne2jGGIS1f5mxMJ+TiuWbDkLR86g+FTgMAUAEWWl/G4/Gst+Na6rVKUTG+bjfddJNeffXVtGKznzgAAACwuIcffjjtKcpf/vKX9eGHH+YoI2dQFC9igUBAly5dmin2Sna39o2Kyz09PbMK0qFQSB6PZ8nXbW9vX7Dbeqlx8p27aZoyTVOxWEzxeFwdHR3yeDzy+/3yer0pC/mxWEyRSEShUGjm+Zqmqf7+/hsW/gEASzA66mxBXLLjjY7mrCi+7jZpatrZmFPTdtxik4vnmo0pV7XWjZ/M7OTaWqmx0dmEAABlK5+juctpDHgxvm7Lli3T5z73uRxnAwAAAFSWpqamtG8mXbasCLuC5qAoXuSCwaBWrlw5q1Dc19en+vp6+Xw+bd68WaZpamxsTNFoVKFQaKbb2e12p90xnbzmkSNH5o1GCwQCaRWL8517Z2fnrCJ8NBqV3++f+fr63Od2w7vdbu3Zs0eBQGDJ1wMAlJ+Na+wx3k6yPopbbHLxXLNhGS5tfOFvpZseS//kxkZZtzfp7fekwbP2fukTk3Y3/Lrb7Oe6oam4OuMBAMVnbGysrDq784XXDQAAAEApoCheAgKBgDo7O9XV1TXT0RyPx2cVgOfq7OxUMBjMqOPZ7XZrYGBAfr9fkUhEpmmqu7s7o3Hi+czd7/crGo0qEomk/H6qsfAUwwFgCUZG7O7sdJ065XwuObahSTJvls5cdKZgbEgyb5HuvN2BYA5z+rlmY+Z12tpqf5GGySnp4BtSKCTFLtqnV1fZ+6Ubht0Nb8l+rn6vtPMeqYZ3wABQ0RYbA56NsbGxecfKaQoZrxsAAACAUsZHgiXCNE0NDAwoFovNjPuOxWKKxWJyu90yTVMNDQ3q6OiQz+fL+i7t5BjxUso9mXM8Hlc4HNbx48dnxqknr9XQ0CDTNNXR0SGv15vWWHkAqEi52Be8iBmGXTjd/UPnYvq2FGeHci6eazYyeZ1OnZMef1l694OPj1mSJlOMhT9z0X6u339d2v+o1Loqq3QBAGUoVXE2W21tbY7HLDa8bgAAAABKAUXxEmOapoLBYKHTyEi+cne73XR+A4BTcrEveJHbeY9dOB06L00nMo9T5bILrw/e61xuTnPquWYj09fpzdPSjhfsAvhSOt2Tjxk6L219Vjr0pHT32nSzBQCUC9M0500Ty7bjOdX55dbxzOsGAAAAoFS5Cp0AAABAMamptjuJa6okV4Yd3i7DPv/FR+xR3sXKieeajUxfp1Pn7IL4tan0i/nTCfu8HS/YcQAAlSlV0TXVllvpGB4eXtJ1ShmvGwAAAIBSRVEcAABgjtZVdifxsmq7kzkdVS77vENPlsaI7qyfa1V+X6fJKXtk+uS0lMhwM/SEZZ//xCt2PABA5UlVdE1VnE1HJeyNzesGAAAAoFQxPh0AACCFu9dKR79uF05Pvm8fW6wGm2y0bl1ldz6XQkE8KdvnKuXvdTr4hr2HeIb18BnTCTvfg29ID9+fZTAAQMlJtWd1th3Pc8/3er1ZxStGvG4AcAMjI/Y2ZE5pbJSampyLBwBABaMoDgAAsIDWVdLRZ+zCaSgixS7aRd3qKsmyJMOQpj7a09q8RfJtsffprinBd1jZPtd8vE6WZcd3UviY9NB9do4AgMqRqhP5xIkTWcWcW9zt6OjIKl4x4nUDgEWMjEhr10oTE87FrK2VTp+mMA4AgANK8CNbAACA/KmptjuJH7pPeud9afCsNHReunpNWr5MWnebtHGNdOftpV9Yzea55uN1envELrg7xZI0/Ds73w18xgQAFSVVN3I8Hlc8Hpfb7U47XvLcG12j1PG6AcAiRkedLYhLdrzRUYriAAA4gKI4AADAEhiGXTithOJpNs81l6/T4Fm7Az3b0enXMz6KWwl/rwCA2bxeryKR2SNIIpGIOjs70441t1va7XbL4/FklV+x4nUDAAAAUIpchU4AAAAAWIqh8/ZIdidVV9lxAQCVp6ura96xw4cPZxSrt7d31tc+ny+t87Pdlzufiul1AwAAAICloigOAACAkjAxae8r7iTLske8AwAqz7Zt2+Yd6+vryyjWkSNHZn29Z8+eJZ0XiURUX1+vlpYWGYYhv9+f0fXzqRheNwAAAABIF0VxAAAAlITaGuf3bTcMe89zAEDlcbvdKUd+h8PhtOJEIpFZ+2L7fL4l7a8djUbV0dEx69xwOJyyEztTc/frlqSxsbGsYhb6dQMAAACATFAUBwAAQElYd5s0Ne1szKlpOy4AoDIFg8F5x7q7u9OKcf3j3W53ypip7N27N+Xxvr4+x8appyqApyqUp6uQrxsAAAAAZIKiOAAAKCmWJf3yPemf/lXa8z+lv/2+/fs//at93Onx2igeG9dITv/1Wh/FBQBUJtM05xVj4/H4kru1e3p6FI1GZ74+duzYkrudFyt8Xx8zU/F4POVY81gslnX8Qr5uAAAAAJCJ6kInAAAA8mBkRBodTf+8U6eczyVDk0a1Dq7bpdD//AvFLkuGpOoquwhuGHbHryXJvFnye6Wd90g1vNMpKxua7L/fMxedKY4bksxbpDtvdyAYAKBkBQIBXbp0ST09PTPH+vr61NXVpd7e3gXP6+npmdXtHAqF5PF4lnzd9vb2BYvT6cSZK1n0Xqxze8uWLQoGg2pvb5dpmhkVpAv1ugEAAABAJvioGACAcjcyIq1dK01MFDqTjJ2qX6/H7/uB3m3YIF22N5W2JE2mGKV95qK0+4fS91+X9j8qta7Kb67IHcOwb3jY/UPnYvq2OL9POQCg9ASDQa1cuXJWsbavr0/19fXy+XzavHmzTNPU2NiYotGoQqHQTKe32+1Wb2+vvF5v2tc8cuTIvHHmgUBApmkuOU59fX3aI9Hj8bj8fv+84263W+Pj40uOU4jXDQAAAAAyYVgWQ0YBp6xevVrnzp3TqlWr9MEHHxQ6HQCwRaNSW1uhs8jYm392r3Z84SeadNVo2lWz5POqXFJNlXToSenutTlMEHk1OSV1PCsNnZemE5nHqXLZN0z0f92eOACgfPEeHemIxWLq6upa8njxzs5OBYPBtIrYc6/n9/sViURkmqa6u7vl8/nSimE4fHdXJh8T5ft14981gKKUq7X3wIDERA0AQJErhffodIoDAICidap+vXZ84Se65vqEEq70KpfTCXu0+o4XpKNfp2O8XNRU2xMAtj5r//0mMri902XYN0y8+AgFcQDAbKZpamBgQLFYTKFQSNFoVLFYTLFYTG63W6ZpqqGhQR0dHfL5fFnvg22apvr7+7OKUQy9Dvl+3QAAAAAgXRTFAQBA/v3gB1Jr66IPmZyWHv/ROk2OLVfCyqwDKmHZcZ54RTr6DHuMl4vWVfYEgB0v2H+/6XSMXz9BgBslAAALMU1TwWCw0GmUHF43AAAAAMWKj4YBAED+tbbecPzbwZ9J716y9w7PxnRCOvm+dPAN6eH7swyGonH3WnsCwBOv2H+/0uL/rSRvq2hdZXeIUxAHAAAAAAAAKoer0AkAAADMZVlSKOJszPAxOy7KR+sqewLAvr+Wmm+2jxmyO8GrP+oITxbDzVvsxx19hoI4AAAAAAAAUGnoFAcAAPlVWys1Ni76kLdHpNhF5y5pSRr+nfTO+9KGJufiovBqqu0JAA/dZ//9Dp6Vhs5LV69Jy5dJ626TNq6R7rxdMjKbwg8AAAAAAACgxFEUBwAAmVnCvuApNTZKTYtXpgfP2h2+TjZ2Gx/FpShengzD/rvl7xcAAAAAAADAXBTFAQBAZpawL3imhs5L1VXS5LRzMaur7LgAAAAAAAAAgMrCnuIAAKDoTEw6v/+3ZdkjtQEAAAAAAAAAlYWiOAAAKDq1Nc7v/2wY9h7TAAAAAAAAAIDKQlEcAAAUnXW3SVMOjk6X7HjrbnM2JgAAAAAAkqTGRqm21tmYtbV2XAAAkDX2FAcAAEVn4xrJ4enpsj6KCwAAAACA45qapNOnpdFR52I2NtpxAQBA1iiKAwCAorOhSTJvls5cdKY4bkgyb5HuvN2BYAAAAAAApNLUlLKIbVnS2yPS4Flp6Lw0MWlvG7buNvvm7Q1Nzm8hBgAAZqMoDgAAio5hSH6vtPuHzsX0beFDBgAAAABA/kxOSQffkEIRKXbRvmG7usoukhuGvc2XJfumcL9X2nmPVMMn9gAA5AR7igMAgKK08x7pL1ZLVVm+W6lySetvlx6815m8AAAAAAC4kVPnpI5n7Zu9z1y0j1mSJqelqYT9e3Iy2pmL9uM6nrXPAwAAzqMoDgAAilJNtbT/UammSnJl2OHtMuzzX3zEvhsfAAAAAIBce/O0tPVZe1S6pRtvC5Z8zNB5+7w3T+c+RwAAKg1FcQAAULRaV0mHnpSWVaffMV7lss879KQdBwAAAACAXDt1TtrxgnRtSppOpHfudMI+b8cLdIwDAOA0iuIAAKCo3b1WOvp1u7BtyP61mORjWlfZ5929Nvc5AgAAAAAwOSU9/rI9Gj1xo/bwBSQs+/wnXrHjAQAAZ1AUBwAARa91lXT0GWnfX0vNN9vHDNmj0atd9u/JYrl5i/24o8/QIQ4AAAAAyJ+Db0jvfpB+h/hc0wnp5Pt2PAAA4IzqQicAAAByrLFRqq2VJiaci1lba8fNo5pq6eH7pYfuk955Xxo8a++3dvWatHyZtO42aeMa6c7bJSPDPcgBAAAAAMiEZUmhiLMxw8fsNTBrXAAAskdRHACActfUJJ0+LY2OOhezsdGOWwCGIW1osn8BAAAAAFAM3h6RYhedi2dJGv6dfVM4618AALJHURwAgErQ1FSwIjYAAAAAAOVu8Ky9rVeGW4mnZHwUl6I4AADZoygOAECpGBkpm25vAAAAAADKydB5qbpKmpx2LmZ1lR0XAABkj6I4AAClYGREWrvW+X3BT5+mMA4AAAAAQJYmJu19xZ1kWdLVa87GBACgUlEUBwCgFIyOOlsQl+x4o6MUxVFamJgAAAAAoAjV1kiG4WxMw5CWL3M2JgAAlYqiOAAAAEoDExMAAAAAFKl1t0lTDo5Ol+x4625zNiYAAJXKVegEAAAAgCXJ5cQEAAAAAMjCxjWSw9PTZX0UFwAAZI+iOAAAAAAAAAAAWdjQJJk3S05NUDcktdwi3Xm7QwEBAKhwFMUBAAAAAAAAAMiCYUh+r7MxfVuc36ccAIBKRVEcAAAAAAAAAIAs7bxH+ovVUlWWn7pXuaT1t0sP3utMXgAAgKI4AAAAAAAAAABZq6mW9j8q1VRJrgw7vF2Gff6Lj0jVVc7mBwBAJasudAIAAAAAAABAui5cuKDVq1en/N5TTz2lp556Ks8ZAYDUuko69KS04wVpclqaTiz93CqXXRA/9KQdBwCAYvL888/r+eefT/m9Cxcu5Dmb9FEUBwAAAAAAQMlJJBI6d+5cyu9duXIlz9kAwMfuXisd/br0xCvSyfftY9Yij082lbeusjvEKYgDAIrRlStXFnz/XQooigMAAAAAAKDkuFwu3XrrrSm/t2LFijxnAwCzta6Sjj4jHXxDCkWk2EW7+F1dJVmWZBjS1LRdLDdvkXxb7D3Ja/jEHgBQpFasWKFVq1LfuXXhwgUlEmmMRykA/hcLAAAAAACAknPrrbfqgw8+KHQaALCgmmrp4fulh+6T3nlfGjwrDZ2Xrl6Tli+T1t0mbVwj3Xm7XSQHAKCYLbZF0erVq4u+i5yiOAAAAAAAAAAAOWIY0oYm+xcAACgMV6ETAAAAAAAAAAAAAAAgVyiKAwAAAAAAAAAAAADKFuPTAQAoApYlvT3y8f5iE5NSbc3H+4ttsKSFthezJL29cpMGb9qsofr1mqhartrpq1o3flIbPzyuDZfeWvBcAJJOncrsvMZGqYn5hwAAAAAAAECxoygOAEABTU5JB9+QQhEpdtEufFdX2UVyw5Cmpu2it1n3F/K3Pq6dQwdUY03Z5xrVOrhul0Kf/qpidXfIsBKqTkzJMgwZlqUpV7UswyXz8q/l/9U/zjoXwHW+8pXMzqutlU6fpjAOAAAAAAAAFDnGpwMAUCCnzkkdz0q7fyiduWgfsyRNTktTCft366PHnrn8Ce3+7HfV8VfHdap+vU7Vr1fHXx3X7s9+V2dWfMo+13BpsmqZplw1mqxaJsuw/zd/ZsWnZp0LwCETE9LoaKGzAAAAAAAAAHADdIoDAFAAb56Wdrwwu/C9GEuGZBgaql8v75dOSIahacM1U/he9NyPHjNUv15bv/TvOvTTL+ru/3g9y2cAAAAAAAAAAEBpoFMcAIA8O3XOLohfm5KmE+mdO+2q0bWqT+iaa5mmXTXpn+v6hHZ84Sd0jAMAAAAAAAAAKgZFcQAA8mhySnr8ZbtDPLGUFvFUDLtrPBMJV5UmXTV64r6Dmlz+X6TGxgyTAAAAAAAAAACgNFAUBwAgjw6+Ib37Qfod4k6adtXo5MqNOviD96SmpsIlAgAAAAAAAABAHlAUBwAgTyxLCkUKnUWSoXC0QVam3epAITQ2SrW1hc4CAAAAAAAAQImpLnQCAABUirdHpNjFQmdhsyQN/056531pA83iKBVNTdLp09LoaPrnnjolfeUrzucEAAAAAAAAoOhRFAcAIE8Gz0qG7IJ0MTBk50RRHCWlqYmx/wAAAAAAAADSwvh0AADyZOi8VF1V6Cw+Vl1l5wQAAAAAAAAAQDmjKA4AQJ5MTEpWEW3ibVnS1WuFzgIAAAAAAAAAgNyiKA4AQJ7UTvxexuRkodOYYRjS8mWFzgIAAAAAAAAAgNyiKA4AQJ6sWz6uKVd1odOYMTUtrbut0FkAAAAAAAAAAJBbFMUBAMiTjTf/pyyjeP7Xa0nauKbQWQAAAAAAAAAAkFvF88k8AABlbkPjVZmXfy3DShQ6FRmSWm6R7ry90JkAAAAAAAAAAJBbFMUBAMgTw5D8v/rHQqcxw7fFzgkAAAAAAAAAgHJGURwAgDzaOXRAfzH2tqoSkwXLocolrb9devDegqUAAAAAAAAAAEDeUBQHACCPaqwp7f/5V1STmJQrMZ1ZEMuyf2XAZUg1VdKLj0jVVZldHgAAAAAAAACAUkJRHACAPGsdP6lDP/2iliX+mHbHeFViUsum/5jZuS5pWbV06EmpdVVapwIAAAAAAAAAULIoigMAUAB3/8frOvrPd6l1/FcyrIQMK7Ho45OPaR3/lSL/3K7Ij9s/PleLd40bH/1qXSUd/bp091rnngcAAAAAAAAAAMWOojgAAAXSOn5SR398l/b929+o+cpvJdnF75rpa6qevqaa6WszxXLz8m+079/+Rkd/fJdax0/OPrfuj/a5skejV7vs342PrmPeIu37a+noM3SIo4I1Nkq1tc7GrK214wIAAAAAAAAoatWFTgAAgEpWY03p4VP79dCp/Xpn5UYNNm7WUP16Xa3+Ey2f+oPWjZ/UxtHjuvPS4EyRe965Bx/VOzd5NHhWGjovXb0mLV8mrbtN2rhGuvN2yZh7MlBpmpqk06el0VHnYjY22nEBAAAAAAAAFDWK4gAAFAFD0oZLg9pwaTD9cw1pQ5P9C8AimpooYgMAAAAAAAAViPHpAAAAAAAAAAAAAICyRVEcAAAAAADgBuLxuGKxWKHTyEguco/H447Gy1VMAAAAAJAYnw4AAAAAADBPJBJRKBRSNBpNWVD2eDzavn27fD6f3G53/hNcRK5zj8fjqq+vn3UsGaehoSHl8bkF77GxsZTHx8fHi+71BAAAAFD6KIoDAFDBLEt6e0QaPCsNnZcmJqXaGmndbdLGNfY+5YZR6CwBAADyp6+vT7t27bph13I0GlU0GlV3d7cCgYCCwWB+ElxEIXNPXpNubwAAAADFiPHpAABUoMkp6Xs/k/7y7yXvf5ee/oH0T/8qHXrT/v3pH9jH//Lv7cdNThU6YwAAgNyKx+Pq6upSV1fXTGE3EAhoYGBA4+PjsixLw8PDCoVCMk1z1rk9PT1qa2srWEE437nnspObLnEAAAAAuWBYlmUVOgmgXKxevVrnzp3TqlWr9MEHHxQ6HQDFJhqV2tqcjzswIHk8S374qXPS4y9L7370Y2qxNwLJJvG/WC3tf1RqXZVxlgAAFATv0bFULS0tM6PGTdPUwMDAogVav9+vcDg865jH49HAwEAu00ypELkbORontJSPqfh3DQAAABSXUniPTqc4AAAV5M3T0tZn7VHplhYviEsfP2bovH3em6dznyMAAEC+dXV1zRSV3W73DYvKkhQKhdTZ2TnrWDQald/vz1WaKZVy7qkwfh0AAABALrCnOAAAFeLUOWnHC9K1KSmR5pyY6YS9//iOF6SjX6djHAAAlI+enh719fXNfH3gwIElj/A+cODArHMlKRwOq7u7e96Y8lwohtyThXhpdkF7bGxs3rHrjy8WDwAAAACcRlEcAIB8aWyUamuliQnnYtbW2nFvYHLKHpk+OZ1+QTwpYdnnP/GKdPQZqYZ3EQAAoMTF43F1d3fPfG2a5rwO6sW43W4FAgH19PTMOt7d3a3e3l7H8kylWHJvaGjIyw0AAAAAAJANPs4GACBfmpqk06el0VHnYjY22nFv4OAb9h7iGdbDZ0wnpJPv2/Eevj/LYAAAAAW2d+/eWV9nMj58z5498wrLfX19isViOS0WF0vudHYDAAAAKAUUxQEAyKempiUVsZ1kWVIo4mzM8DHpofskw3A2LgAAQL7E4/F5BeF0Oq2T3G63PB6PotHorON9fX0KBAJZ5biQYsq9oaEh7esCAAAAQL65Cp0AAADIrbdHpNjF7LvEkyxJw7+T3nnfoYAAAAAFEInMvmvQ7XZn3Nnt9XrnHevv788o1lKUcu4AAAAAUAgUxQEAKHODZyWnG7qNj+ICAACUqsOHD8/6ur29PeNYHR0d847NLVw7qZhyZ3w6AAAAgFJAURwAgDI3dF6qrnI2ZnWVHRcAAKBUzS38ejyejGMtVJSeO5bcKcWUO+PTAQAAAJQCiuIAAJS5iUl7X3EnWZZ09ZqzMQEAAPIlGo0qHo/POtbS0pJxvIW6pWOxWMYxF1LKuQMAAABAoVAUBwCgzNXWSIbD89MNQ1q+zNmYAAAA+XLixIl5x7LteE7VrZ2LwnKx5c74dAAAAAClgKI4AABlbt1t0tS0szGnpu24AAAApWhgYGDeMdM0s4qZqjB9/PjxrGKmUmy5r1y5MqtrAwAAAEA+VBc6AQAAcsGypLdHpMGz9t7XE5N2x/S626SNa6QNTc53TxerjWskh6eny/ooLgAAQClK1QWdbcdzqsL03DHnTiiG3G/0vMLhsPr7+xWNRjU2NqZ4PC632y3TNNXe3q6Ojg51dnZmlTMAAAAApIOiOACgrExOSQffkEIRKXZRMiRVV9lFcsOwO5wtSebNkt8r7bxHqinz/xtuaLKf75mLzhTHDUnmLdKdtzsQDAAAoABSFZazHUGeqjA9NjaWVcxUii335LnxeFzd3d0Kh8MpHxePxxWNRhWNRmceEwwGFQgEMsoZAAAAANLB+HQAQNk4dU7qeFba/UO7ACzZReDJaWkqYf+eLAqfuWg/ruNZ+7xyZhj2DQBO8m2pnE57AABQfnKx13eqMeL56hTPVra5d3d3q76+fsGC+GLntbS05OQ5AQAAAMD1yrw3DgBQKd48Le14YXbhezHJxwydl7Y+Kx16Urp7bRoXHBmRRkczyHQBjY1SU5Nz8ebYeY/0/dft5zudyDxOlUtqXSU9eK9zuQEAABSDbEeQZ3t+Ia+d7vnXd5H7/f6srh2LxdTS0qL+/n55vQ7fyQkAAAAAH6EoDgAoeafO2QXxa1NSIs354NMJe7T6jheko1+3C743NDIirV0rTUxklG9KtbXS6dM5K4zXVEv7H7VvALCs9F8nSXIZUk2V9OIj9kh6AACAUpSL7u2FOD0+vdhzN01TnZ2damlpUUNDw8x+4v39/YpEIoue29XVpYGBgZT7my/k2rVr+sUvfpFWjk1NTWrK4c2oAAAAQKkbGRnRyMhIWudcu3YtR9k4h6I4AKCkTU5Jj79sd4hnUuiV7PMmp6UnXpGOPrOEPcZHR50tiEt2vNHRnHaLt66yO+KTHfXpdIxXueyC+KEnl3jjAAAAQIXJdl/vQko397nFedM01dvbK4/Hk/LxgUBgSXuOJwvjS/Xhhx/qnnvuWfLjJekb3/iGvvnNb6Z1DgAAAFBJvve97+lb3/pWodNwHHuKAwBK2sE3pHc/yG4kuGSff/J9O145u3vtxx3xhuxfi0k+pnWVfV5aI+YBAACKkNPd24txulBeLLlfn0dnZ6eGh4cXLIgnud1uhUKhRYve0Wj0hh3lAAAAAJAJiuIAgJJlWVLI4c/MwsfsuOWsdZXdEb/vr6Xmm+1jhuxO8OqPOsKTxXLzFvtxR5+hQxwAAJSHfI4gd1qx5R4IBNTb25vWOR6PZ9HCeDAYzDYtAAAAAJiH8ekAgJL19ogUu+hcPEvS8O+kd96XNpT5NoM11dLD90sP3Wc/38Gz0tB56eo1afkyad1t0sY10p23S8aN2skBAABKiNvtTnk8Ho8v+D2nr+V0vHzn7vV6ZWVxJ6nH41EwGFR3d/e876XTKX7TTTfp1VdfTeva7CcOAAAALO7hhx+W1+tN65wvf/nL+vDDD3OUkTMoigMAStbgWbuj2cnGbuOjuOVeFE8yDPu5VsrzBQAAyOfe305fq5RznysQCGjv3r0pu98jkciSPoRbtmyZPve5z+UgOwD5YFn2ze7Jm7QnJqXamo9v0t7QxE3aAAAUQlNTU9o3ky5btixH2TiHojgAoGQNnZeqq6TJaediVrsSGhoclf7LBws/6NQp5y4IAACAojA2NuZ4t3W+lGruPp9PPT09847HYrECZAMgXyanpINv2NuhxS7aN6dXV9lFcsOQpqbtm9/NmyW/V9p5jz3tDAAAIBu8nQAAlKyJSef3/7Ymp3S195+lJ33OBgYAAEBRWGwEeTbGxsbmHTNNM6uYc5Vy7qls3749ZVG82PZOB5ClkRFpdFSSdOpSrR4/tkbvXlr+0TcNWUp9s/uZi5Z2/1D6/r9c1f4tZ9W6csL+RmOjxFYIAAAgTRTFAQAlq7bG+VFqhqTlU39wNigAAACKXqrCcLba2tocj5lKqebu8Xhyfg0ABTYyIq1dK01M6M0/u1c7vvATTbpqZLluvJi3ZD9m6MMabf3hGh366Rd193+8LtXWSqdPUxgHAABpcRU6AQAAMrXuNnusmpOmXNVaN37S2aAAAAAoKqm6oLPtTk51fi66rUs591RSXacUR8EDWMDoqDQxoVP167XjCz/RNdcnNO2qSSvEtKtG11yf0I4v/ESn6tdLExMznecAAABLRac4kAMXLlzQ6tWrU37vqaee0lNPPZXnjIDytHGNvc+YkyzDpY2jxx2OCqCYWZb09og0eFYaOm9vzVBbY994s3GNtKHJ+akUAJz1/PPP6/nnn0/5vQsXLuQ5G5QC0zTn7Vud7T7Ww8PDKa/jtFLOPZVUBfB8XRtAfkwa1Xr8vh9o0lWjhKsqoxgJV5UmVaMn7juooz++S+mV1QEAACiKAzmRSCR07ty5lN+7cuVKnrMByteGJsm8WTpz0ZniuGElZF7+je68NOhANADFbnJKOviGFIpIsYv29gnVVXaR3DDsSRSW7J8zfq+08x6phnfPQFG6cuXKgu+/gVRSFV1TFYbTka99uUs596Vqb28v2LUBOO/gul16t2GDLCO7oaXTrhqdbPiMDq7bpYcdyg0AAFQOPtYDcsDlcunWW29N+b0VK1bkORugfBmGXaja/UPnYvpOviAaQoHyd+qc9PjL0rsffHzMkjSZYkuGMxftnzPff13a/6jUuipvaQJYohUrVmjVqtT/OC9cuKBEIpHnjFDsUu2XnW239dzzvV5vVvEWUsq5pzJ3dLvH42F8OlBGLEsKffqrjsYMr39SD1n/ydodAACkhaI4kAO33nqrPvjggxs/EEDWdt5jF6qGzkvTWXzeXZWYVOv4r/TgUNi55AAUpTdPSztesAvgS5kykXzM0Hlp67PSoSelu9fmMkMA6Vpsi6LVq1fTRY55UnVBnzhxIquYcwvLHR0dWcVbSCnnnsrcLvXt27fn7doAcu/t0eWK1d3hWDzLcGnYvVbvjJ7SBseiAgCASpDdzBoAAAqsptru3KypklwZ3ibuSkyrJjGpF3++U9VWijZRAGXj1Dm7IH5tKv0baaYT9nk7XrDjAABKV6pO6Hg8Pq9realSnZurbutC5R6LxRSJRDK6RjrX9vl8jl4DQGENXvy/ZFjOTmwxrIQGP/wTR2MCAIDyR1EcAFDyWlfZnZvLqqWqNP/PVpWY1LLEH3Xop19U6/jJ3CQIoChMTtkj0yenpcRSWsRTSFj2+U+8YscDAJSuVIXfTIu+czu13W63PB5PRrGWIt+5x+NxtbS0qKurK6NrLGRuzoFAgNHpQJkZGq9VdcLZN87ViSkNjS13NCYAACh/FMUBAGXh7rXS0a/bBXJDuuHeYoYsGVZCreO/0tF/vkt3/8fr+UgTQAEdfMPeQzybrRYk+/yT79vxAAClK1WB9/DhwxnF6u3tnfV1ut3O6e4Jnu/c3W63vF6v4vG4enp6MrpOKnv37p35s2maCgaDjsUGUBwmplyyDGd3/7YkXZ3iY20AAJAe3j0AAMpG6yrp6DPSvr+Wmm+2jxmyR6tXu+zfk0txs+6P2vdvf6OjP76LDnGgAliWFHJ24qvCx+y4AIDStG3btnnH+vr6Mop15MiRWV/v2bNnSedFIhHV19erpaVFhmHI7/cv6bxC5N7d3T3ze6aj2q8XjUYVjUZnvg6FQlnHBFB8aqsTMhx+02xIWl7t7Eh2AABQ/iiKAwDKSk219PD90v/579Kx/0f6zk7p/75P2nG3/ft3dtrH//f/+109fGq/aizmHwOV4O0RKXbR7ipxgiVp+HfSO+87FBAAkHdut1udnZ3zjofD4bTiRCKRWUVin8+3pBHg0WhUHR0ds84Nh8NLGlFeiNy9Xu/M95IF8kzF4/FZzzMUCuVsD3YAhbWufkJTrmpHY065qrWu4aqjMQEAQPmjKA4AKEuGIW1okh68V/r2Dul/PGj//uC99nGHp7cBKHKDZ2+8rUK6jI/iAgBKV6px3ekWfK9/vNvtXvII8OtHh1+vr69vSePUC5F7crR6OBye1eWdjng8ri1btsw8x1AolPa4eQClY+PN/ynLcPYjaMtwaeNNf3A0JgAAKH8UxQEAKAa1tVJjY6GzAMrW0HmpusrZmNVVdlwAQOlKtY/13C7mxfT09MwqDh87dmxJXeLS4vuIL6XgXIjcrx/vvmXLFkUi6e1NEolE1NbWNnNdCuJA+dvQeFXm5V/LsJwZd25YCbXET+vORjrFAQBAepydXQMAQKX7wQ+k1tb0z2tslJqanM8HgCRpYtL5/b8tS7p6zdmYAID8CwQCunTpknp6emaO9fX1qaurS729vQue19PTM6vTOhQKyePxLPm67e3tCxa/lxon37mbpinTNBWLxRSPx9XR0SGPxyO/3y+v1yvTNOedE4vFFIlEFAqFZp6vaZrq7+9P+XgA5cUwJP+v/lG7P/tdx2L6Tr4gw3jUsXgAAKAyUBQHAMBJra1SGh+GAsiP2hrnt00wDGn5MmdjAgAKIxgMauXKlbMKxX19faqvr5fP59PmzZtlmqbGxsYUjUYVCoVmOr3dbrd6e3vT3hM7GAzqyJEjs/b0luxCdzrF4nzn3tnZOasIH41GZ3WQX5/73G54t9utPXv2KBAILPl6AErfzqED+v46n4bq12vaVZNxnKrEpFrHf6UHh8KSKIoDAID0UBQHAABA2Vt3mzQ17WzMqWk7LgCgPAQCAXV2dqqrq2umozkej88qAM/V2dmpYDCYUcez2+3WwMCA/H6/IpGITNNUd3d3RuPE85m73+9XNBpdcHR6qrHwFMOBylZjTWn/z7+irV/6d1lyKeFKf18jV2JaNYlJvfjznaq2HH5jDwAAKgJFcQAAAJS9jWskh6eny/ooLgCgfJimqYGBAcVisZlx37FYTLFYTG63W6ZpqqGhQR0dHfL5fEveP3yx6/X395dU7smc4/G4wuGwjh8/PjNOPXmthoYGmaapjo4Oeb3etMbKAyhPreMndeinX9SOL/xEk6pJq2O8KjGpmsSkDv30i2odP5nDLAEAQDmjKA4AAICyt6FJMm+Wzlx0pjhuSDJvke683YFgAICiY5qmgsFgodPISL5yd7vddH4DSMvd//G6jv7zXXrivoM62fAZSZJluBZ8vGElJEmt47/Siz/fSUEcAABkZeF3HQAAAECZMAzJn95Wrzfk2+L8PuUAAABAOWsdP6mjP75L+/7tb9R85beS7OJ3zfQ1VU9fU830tZliuHn5N9r3b3+joz++i4I4AADIGp3iAIDK1Ngo1dZKExPOxaytteMCKEo775G+/7o0dF6aTmQep8olta6SHrzXudwAAACASlFjTenhU/v10Kn9emflRg02btZQ/Xpdrf4TLZ/6g9aNn9TG0eO689KguAcVAAA4haI4AKAyNTVJp09Lo6POxWxstOMCKEo11dL+R6Wtz0qWJSUymKPuMqSaKunFR6TqKudzBAAAAMrKIjekG5I2XBrUhkuD6cXkhnQAAJABiuIAgMrV1EQRG6gwraukQ09KO16QJqfT6xivctkF8UNP2nEAAAAA3AA3pAMAgCJBURwAAAAV5e610tGvS0+8Ip183z62WNN4cmRj6yq7Q5yCOAAAAJAGbkgHAABFgKI4AAAAKk7rKunoM9LBN6RQRIpdtIvf1VX2aHXDkKam7WK5eYvk22LvSV7Du2cAAAAAAACg5PCxHgAAACpSTbX08P3SQ/dJ77wvDZ6Vhs5LV69Jy5dJ626TNq6R7rzdLpIDAAAAAAAAKE0UxQEAAFDRDEPa0GT/AgAAAAAAAFB+KIoDAAAANzIyIo2OOhevsZF9FQEAAAAAAIA8oSgOAAAALGZkRFq7VpqYcC5mba10+jSFcQAAAAAAACAPXIVOAAAAAChqo6POFsQlO56TnecAAAAAAAAAFkSnOAAAc1iW9PaINHhWGjovTUxKtTXSutukjWvsfYcNo9BZAgAAAAAAAACApaAoDgDARyanpINvSKGIFLsoGZKqq+wiuWFIU9OSJcm8WfJ7pZ33SDX8nxQAAAAAAAAAgKLGR/kAAEg6dU56/GXp3Q8+PmZJmpye/9gzF6XdP5S+/7q0/1GpdVXe0gQAAAAAAAAAAGliT3EAQMV787S09Vl7VLol+9diko8ZOm+f9+bp3OcIAAAAAAAAAAAyQ6c4AKC0jYxIo6MZn37qUq12/GidriUMJaz0NgqfTtij1Xe8IB39Oh3jAAAAAAAAAAAUI4riAIDSNTIirV0rTUxkdPqkUa3H/+q4JuunlXDVZBQjYdkj1p94RTr6DHuMAwAAAAAAAABQbPjoHgBQukZHMy6IS9LBdbv0bsMGWUZ2u4lMJ6ST70sH35Aevj+rUAAAAAAA5JVlSW+PSINn7W3CJial2hpp3W3SxjXShibJSG+wGgAAQNGhKA4AqEiWpNCnv+pozPAx6aH7+LAAAAAAAFD8Jqfsm7tDESl2UTIkVVfZRXLDkKam7bWzebPk90o772E6GgAAKF28jQEAVKS3V25SrO4Ox+JZkoZ/J73zvn0XPQAAAAAAxerUOenxl6V3P/j4mCV7e7C5zlyUdv9Q+v7r0v5HpdZVeUuzsoyM2BPxnNLYKDXxAQUAAEkUxQEAFWnwps0yrETWo9OvZ8geN0dRHAAAAABQrN48Le14wS6AW0t4fPIxQ+elrc9Kh56U7l6bywwr0MiItHZtVlvEzVNbK50+TWEcAICPOFcJAACghAzVr1d1YsrRmNVV9ocEAAAAAAAUo1Pn7IL4tSlpOpHeudMJ+7wdL9hx4KDRUWcL4pIdz8nOcwAAShxFcQBARZqoWi7L4c2/LUu6es3RkAAAAAAAOGJyyh6ZPjktJZbSIp5CwrLPf+IVOx4AAECpoCgOAKhItdNXZVgZfgqwAMOQli9zNCQAAAAAAI44+Ia9h3i6HeJzTSekk+/b8QAAAEoFRXEAQEVaN35SU65qR2NOTUvrbnM0JAAAAAAAWbMsKRRxNmb4mB0XAACgFDhbDQAAoERs/PC4LMPZe8MsSZ/5pPTL96TBs/b+4hOTUm2NXSzfuEba0GR3lAMAAAAAkC9vj0ixi87FsyQN/0565317nQsAAFDsKIoDACrShktvybz8a51Z8SnHiuONfyr5wvYHDYak6ir7rnnDsLvILUnmzZLfK+28R6rh/8IAAAAAgDwYPGuvU51s7DY+iktRHAAAlAI+jgcAVCRDkv9X/6jdn/2uYzFHfy9d+r39Z0vS5PT8x5y5KO3+ofT916X9j0qtqxy7PAAAAAAAKQ2dt2/cTrVOzVR1lXTqHNPSAABAaaAoDgCoWDuHDuj763waql+vaVeNIzFvdNd98vtD56Wtz0qHnpTuXuvIpQEAAICKcuHCBa1evTrl95566ik99dRTec4IKF4Tk87v/z2dkA7/m/Tya0xLAwCgEjz//PN6/vnnU37vwoULec4mfbwVAQBUrBprSvt//hVt/dK/y5JLCVdV3q49nbA/LNjxgnT063SMA0WtsVGqrZUmJpyLWVtrxwUAABlLJBI6d+5cyu9duXIlz9kAxa22xvmO7YQl/f6jt8hMSwMAoPxduXJlwfffpYCiOACgorWOn9Shn35RO77wE02qxrGO8aVIWPaHBk+8Ih19hrvmgaLV1CSdPi2NjjoXs7HRjgsAADLmcrl06623pvzeihUr8pwNUNzW3WZ3b+cb09IAACgfK1as0KpVqe9wu3DhghKJRJ4zSg8fvwMAKt7d//G6jv7zXXrivoM62fAZyTBkaeFb6A3deEz6Uk0npJPvSwffkB6+36GgAJzX1EQRGwCAInPrrbfqgw8+KHQaQEnYuMa5dWwmmJYGAEDpW2yLotWrVxd9F7mr0AkAAFAMWsdP6uiP79K+f/sbNdf9UZJd/K6pkqpd9u/JMnnzzVLjn2qRsnn6wsec398NAAAAAABJ2tBk7+/t8AT1tFw/LW1yqoCJAACAikSnOAAAH6mxpvTwqf166OCjeucmjwbP2iPerl6Tli+zx81tXCNZCcn7rHPXtSQN/0565337gwoAAAAAAJxkGJLfa+/vXUhMS0ufJentlZs0eNNmDdWv10TVctVOX9W68ZPa+OFxbbj0VkFvdgAAoFRQFAcAYA7DsIvTCxWo/+lfnR2hLtnxBs9SFAcAAAAA5MbOe6Tvv27f/D1d4C0/w8ekh+6z199IbdKo1sF1uxT69FcVq7tDhpVQdWJKlmHIsCxNuaplGS6Zl38t/6/+UTuHDqjGogUfAICFMD4dAIA0DZ2XqqucjVldZccFAAAAACAXaqql/Y/a24O5CliMvn5aGlI7Vb9eHX91XLs/+12dWfEpSZJluDRZtUxTrhpNVi2TZdgf7Z9Z8Snt/ux31fFXx3Wqfn0h0wYAoKhRFAcAlK7GRqm21tmYtbV23EVMTDq//7dl2WPaAQAAAADIldZV0qEnpWXVUlUBPxk2rIQGo5cKl0ARe/PP7tXWL/27hurXyzJcM8XvhSQfM1S/Xlu/9O9688/uzVOmAACUFsanAwBKV1OTdPq0NDrqXMzGRjvuImprnB/xZhj2vuUAAAAAAOTS3Wulo1+XnnjF3t9butH2YJb9AAcXwtWJKQ2NTDsWr1ycql+vHV/4ia65PqGEK70RddOuGllyaccXfqKj/3yXWsdP5ihLAABKE0VxAEDhjYzkvbCdjXW3SVMOr92npu24AAAAAADkWusq6egz0sE3pFBEil2UDNlbe1mWXf+emrZr4X9aM63//KOhhOHcPmKWpKtTDDG93qRRrcfv+4EmXTVpF8STEq4qTapGT9x3UEd/fJdqHM4RAIBSRlEcACqEZUlvj0iDZ+29qycm7Y7ndbdJG9dIG5oWvuk7m3NvaGREWrtWmpjIMEAKtbV2B3mOCuMb19zoLvr0WR/FBVBacvrzEQAAAMihmmrp4fulh+6z9/dOvqe9es2eZJZ8T/s//9eY/umXbiXkXFHckLS8OuFYvHJwcN0uvduw4Ybj0m9k2lWjkw2f0cF1u/SwQ7kBAFAOKIoDQJmbnFrand/mzZLfK+28x14YZ3vuko2OOlsQl+x4o6M5K4pvaLKf85mLzhTHDUnmLdKdtzsQDEBe5OXnIwAAAJAHhmGvczcssIR+q2FCUy5n38xOuaq1ruGqozFLmbWyUaE7/9bRmOE7v6qHVtaKe3QBALDx0RwAlLFT56THX5be/eDjY5akyRSjv89clHb/UPr+69L+R+1jmZ7busrJZ1F8DMMucu3+oXMxfVvoJgVKRTY/W8v95yMAAADKz8ab/zPr7uW5LMOljTf9wdGYpextNSm2wrl4luHS8Io79I4hbXAuLAAAJY2NWwCgTL15Wtr6rD36zNKNO5qTjxk6L3n/m+T975mdu/VZ+9rlbuc90l+slqqy/D9plUtaf7v04L3O5AUgt7L52VopPx8BAABQXjY0XpV5+dcyLGfGnRtWQi3x07qzkU7xpMGzcryj2/goLgAAsFEUB4AydOqctOMF6dqUNJ3mmnU6IV2bzuLcKfvap86ld26pqam2uz5rqiRXhitXl2Gf/+Ij9thlAMUt65+tFfLzEQAAAOXFMCT/r/7R0Zi+ky8wLe06Q+ed/1ygusqOCwAAbBTFAaDMTE7ZY30np6WEExtepylh2dd+4hU7l3LWuko69KS0rDr9jvEql33eoScZpwyUAid+tlbSz0cAAACUl51DB/QXY2+rKjGZVZyqxKTWj/1SDw6FHcqsPExMSpbDn+FYlnT1mrMxAQAoZRTFAaDMHHzD3uc23S5GJ00npJPv27mUu7vXSke/bhe2Dd143FnyMa2r7PPuXpv7HAFkz6mfrZX08xEAAADlo8aa0v6ff0U1iUm5EtMZxXAlplWTmNSLP9+paiuzGOWqtkaOd84bhrR8mbMxAQAoZRTFAaCMWJYUihQ6i4+Fjzl/p3Mxal0lHX1G2vfXUvPN9jFD9mj0apf9e3Jta95iP+7oM3SIA6UiFz9bK+XnIwAAAMpH6/hJHfrpF7Us8ce0O8arEpNalvijDv30i2odP5mjDEvXutukKYfvE5iatuMCAABbdaETAAA45+0RKXax0FnYLEnDv5PeeV/a0FTobHKvplp6+H7pofvs5zx41t676+o1+87sdbdJG9dId97u/N3fAHLL6Z+tlfbzEQAAAOXj7v94XUf/+S49cd9BnWz4jCTJMhbuuzIse9RS6/iv9OLPd1IQX8DGNfY6wUnWR3EBAICNojgAlJHBs3ZHcrE0Hxqyc6qkoo9h2M+3kp4zUO5y8bO1En8+AgAAoMBGRqTR0fTPO3Vq1pet4yd19Md36eC6XQp9+quK1d0hw0qoOjElS/Z73SlXtSzDJfPyb+Q7+YJ2Dh1QjTXlyNMoRxuaJPNm6cxFZ9YdhuxJdXfe7kAwAADKBEVxACgjQ+el6ippski25qqusnMCgFKWi5+t/HwEAAAoXpZlTwtKTgCbmLT3fE5OANvQVIITwEZGpLVrpYkJR8LVWFN6+NR+PXRqv95ZuVGDjZs1VL9eV6v/RMun/qB14ye1cfS47rw0qFJ7qQrBMCS/V9r9Q+di+raU4H+nAADkEEVxACgjE5PFtUetZdnjwwGglOXiZys/HwEAAIrP5JR08A0pFLG3zzFk38xoWXZxcWra7uI1b7YLmDvvsbfSKgmjgASNSQAAgMFJREFUo44VxK9nSNpwaVAbLg06HrvS7LxH+v7r9o0Y04nM41S5pNZV0oP///b+PsqN+77zfD/VDzLpxFZ1k7ITS1YstI/NNi2aRpM6mejYV1mivfbsgzMzaEk3I/nETgiMtNljn+wN2nQy985sNqOgJ5OJ5+RaF604uzY1WUnAnbFnJrGHgM449jiZGxIwLYkiZS8ghbZsRyIbkDU2afZD3T9AQA2g0A1UFVBVwPt1Th+pQVTVD9U//Kq+9f09vN+7sgEAMAq6L/gCAAidPdPB6gVsGPX1tAEgzAbRttI+AgAABMv5F6XF362P1H3+pfprluqzBW1s1f/b6Cf5/Ev19y3+bn07wAvTU9LDvyZNT0oTDuOPCaO+/Wd+td6hAwAAvCYsfRkBAD048JZ6z/Wg2Ni0dGDjolS63P1NbWuTAUDQDKJt3dis7xfB5Wba1JGcchUAgBH29eekez/dmvjeSeM9F74nfeB3pcc+Lt35zkGWEONi/uZ6fWrUx35GjE9O1BPij328vh8AANCKpDgAjJDDb+stgB8WS4YOf+KXJKZRAxBig2hbrev7RfC4mTZ1pKdcBQBgRJ1/sZ6AvLYhbfV507e5Vb/O3/tp6dRvkYiEN+58Z70+PfhZ6dx36q/tVDUbfS3nb66PEKceAgBgj+nTAWCEHLq1/qA9CIPPDGtLc7XndDsJcQAh53Xbakiae7N0+1s92iE842baVKZcBQAgfNY3pAf+uH6d7jch3rBl1bd/8LP1/QFemL9ZOvUp6fd+WbrtTfXXDNVHgk9dHxHeiE8ib66/79SnSIgDALATxiUAwAgxjPrIs0/+qd8lqUuc+3QgEvQA4MYg2tbEMabPDho306bGfkeScX20WJ/bMuUqAAD+Ofk16dnvup8VaHOrPqL35Nekj/2i8/30tATLdy5Kly71v3OWLgud6al6ffroXdLT33mtXly5Ju294bV6cftbiS0AAOgFSXEAGDH3v0/6/FfrgVI/a095aXJrXfPVZ/SRC6v+FAAAPOZV2zo5UR+98ZH3e1c2uOd22lSnS84z5SoAAP6xrPqSJ15afbKewOw3QdnzEiyz60p++V/o/qc/o2kr5MPS9+yR9u/3uxShYBj1DhGHbvW7JAAAhBtJcQAYMdNT0sO/Vh95ZlnOp4BzamJrU9Nb6/rMV+7XlOU0TQAAweJF2zph1Kc5/Myv1h9yIhi8mDbVje1Trp76FGuMAwAwLE9drCegvWJJKv+t9PSp8zp005Wd3/z970u1miTp/H+9UQ+cv1PP/si8/o9GcwmWds+vTemTR/+lPj/3UT38lfs0Xz3n3Qdw6tFHpfn5/rfbv1+6lSwvAAAYHh65AMAImr+5PhVrYxrYfkY1Tk5Ik4aa08D2te3Wuqa31vXYlz8UjOAcADzktm2dnqxvz2jgYPFq2lQ3vJpyFQAA9O7sC/UR2V7eAxjWls5+/F/q0HOP9PT+r//M+3XvB7+k9YlpWRO7Dy+3ZEiGoQszB/WBD/+1Hvvyh3TnD77qttjuzM9L0ai/ZYB00eG0+t3QaQEAMIJIigPAiLrznfWpWB/8bP1Bu7RzsN8Iv+dvro9ilPrZ1pIsS/PVZ/SZr9zvf0KcadgADIjbtpWEeLAMYtpUN5xOuQoAAPp34Xv12XvsRmQ7NbW1oQszB3t67/mZg7r3g1/StYnXaWuiv2mENiemZWlC937wSzr1xTv8j8Hhr4sXpXe+U7p61bt97tkjPfcciXEAwEghKQ4AI2z+5vpUrD2tTfZmKXGsvm5uY+rWnre98SdK/Plv6P4Lj3i7rhnTsAEIILdtK4LD62lT3WhOufod1osEAGAYrq7X7928ZEm6MvX6Xd+3bkzpgbse1frEdN8J8YatiUmta1oP3nVSp75wh6asDT217706e9NRXZg5qKuTe7Vn84oOVM/p8MundejyN0S/uxF16VLXhLglOasXV6/KevmSnrJu1dkX6p1Irq5Le6alA2+RDr+tfs9KZ04AQJjwaA4ARtz0VH0q1o/eVX/Q3ghmrlyT9t7wWjBz+1s7g5met335WRn/4mHvC880bAACyk3biuAYxLSpbhiql4mkOBBMtVpNa2trikQifhelb36WPcznDaNtz7T392mGpL0bP971fScPHNezs4dkGROujrc5Ma1nZt+jB+86qaf2R1W58R0yrC1NbW3IMgwZlqWNiSlZxoQir3xLyWf+0PvO7AikdWNKJw8cV+bdn+i7XjS3/T/fpcorO3QAfpOUjNEBGAAQHlyuAGBMGEb9IfuOD9q7rEFlSDok6dBPS3pH2z9eknThvGflBIAw6altRWANYtpUN6Ym62UCEAyFQkGZTEalUkmVSqXj36PRqO655x4lEgmZpjn8Au7Az7KH+bxhvBx4Sz2556WNiSkd2GUqc0tS5t2f8PCohr4Quae+rJkky5jQ+uQNHe96/o1v1yd/4Y/0+QMJPfyV+5hyfYSdnzmoB+56VM/OHmq+1mu9kPTatq/Ue41Ysr9ffv4l6ZN/Kn3+q9LDv8ZSUQCA4CMpDgCoG8QaVAAABNggpk11w7Lqsw0A8Fcul9Px48dVq9V2fF+pVFKpVNLy8rJSqZTS6fRwCrgDP8se5vOG8XT4bd7PFmMZEzp86fSO73lq33tVubG9t7kLRiNxufOw98ao9AszB/WBD/+1Hvvyh3TnD77qXTkQCF//mffr3g9+SesT0z3NRLC9XsQ+fEYyDG0aE71te/2/F74nfeB3pcc+Lt35TjelBwBgsNzN0QMAGB07rEEFAMAoGsS0qW4YRn36fQD+qNVqWlpa0tLSUjOxm0qlVCwWVa1WZVmWyuWyMplMx1TgKysrWlhY2DUhPCh+lj3M5w0DcPGiVCp593Px4sCKeujW+vTPXt0KGNaW5mrP6fbLZ3d839mbjsqwtjw6av82J6Z1beJ1uveDX9L5mYO+lQPeOz9zUPd+8Eu6NvE6bU5M97Xt5sS0rk2+Ttcmbuh/2y3p2oZ076el8y/2tSkAAEPFSHEAAAAAY2kQ06a6sbFZLxMAfywsLDSn+45EIioWix3Te0ciESUSCSUSCSWTSa2urjb/rVQq6dixYyoWi8MstiR/yx7m8waPDWL2sT17pOeek27dZa2aLkuB7cSQlHznfn3ypbfKq9R44tynd93ThZmDmtrasJ3Keli2Jia1rmk9eNdJnfrCHawxPgLWjSk9cNejWp+Y1tbEpLOduOgtumXVp1h/8LPSqU+xxjgAIJi4PAEIBMuSnroonX2hPu3S1fX66K0Db6lPaXbo1mCN5MJwWJb01N9QLwAAgzGIaVPdsFQvE4DhW1paaiZ2TdO0Tey2y2QyWltbUy6Xa75WKpWUTCaVyWQGWdwWfpY9zOetwa9Y1M1xAxs/D2L2satX6/vdKSnuIhl/vzGlz//SaV2YOdj36NjtJrfWNV99Rh+5sCpL9SnSz950VBdmDurq5F7t2byiA9VzOvzyaV2d3CsrAIHs5sS0zs2+RycPHNfHzj/sd3Hg0skDx/Xs7KGepj0flM0t6dx3pJNfkz72i74VAwCArgzLCtIqekC43XLLLXrxxRd1880367vf/a7fxQmF9Y36zXKmIFVeqvfNnpqsB/mGUR8xZak+pVkyJt3/Pnqb7spBD3lJ0vnz0n33eV8eB9aNKZ08cFyZv/sHqryyh3oBABgIy5J+/rel51/yPzluSIq8Wfqr36HDl9e4R8duVlZWtLy83Pw9m80qHo/3tG2tVtPMzEzH6+VyuWOq8EHws+x+HtuL77Vfsaib4wY+fi6VpIUF7/f76KPS/Hz3f3cZy56/vsb2tYnXORphO7G1qRu2fqI//3e/oNNv/gVl3v0JVW58hwxrS1NbG7IMQ4ZlaWNiSpYxoTf+pKr/Ov0GbU34H8Qa1pYir3xbf5U74HysfLEoRaNeFgt9sool/Xz6p/X8G9/ua1Jc4p4WAMZZGGJvkuKAh8LwpQ+S8y9KD/yx9Oz1U7VTY9S4j37XLdLDvybN3zzo0oXUIKarG7LzMwf1wF2P6tnZQ5JhyNohNKdeAADc+pP/JH3yT4ORFP+9X2ZUzSBwj46dtCdnI5GIyuVyX/tYXl7WyspKy2vxeFzZbNaTMnbjZ9n9Pm9uv9f9x6KW3rXvih4+9oLm9zmPtc5f3qMHnnybnr28V5LR13ElbdtWu8RJ9T2/66dqenj+65r/6Vfq/2Ca0s/+rLPC79+/+xTmg0qKD8HXf+b9uveDX9L6xHRfI8Ynt9Y1vbWu9Ncf1Oq7P1GPY6WdE5PWliQjUBnDJ//te3Vol7XQuyIp7rtv/sfziuV26Djigyf/cX3WCgDA+AhD7O1/l0QAY+nrz0n3frq+3lAvD6Eb77nwPekDvys99nHpzncOsoQhNYjp6oZo+4OIXno3Uy8AAG7d/z7p81+tX0s2t/wpw+REvWPXR97vz/GBcfbQQw+1/J5MJvvex4kTJzqSu7lcTpVKZaCjxf0se2DO2/p6PRHbh69/76d17394u9a3du6A21CPOQxdeHlaH/jTt+mxL39Id/7gq30dU2qLdSb6O27sTyOSYWjTmOhx2/p7Lrz60/rAf/lvHJe5xQ03SP/m3+ycVD9/3t0xfHTnD76qU1+8Qw/edVLnZt8jaefEtmHVbxrmq88o8cynlbrzMz3HsfJ5JG87w9rS2f1HnSXF9+ypd5iAr86+9FMyrC3fR4k3GLJ09gWDpDgAIHAYKQ54KAw9YYLg/Iv1BOa1DWnLQQs0YUg3TEmnfouRwR1C3DPf9ZR11AsAQeV0WYtuehmphb64vTdxg+vX4HGPjm7spvB2Ou35wsKCSm3J2XQ6rVQq5aqM3fhZ9iCct+b3WlI/32qvpsk+9cU7NF89N7TjqvHozsHIYqdlHlfNpbzap0BXffR+Ywr0udpzSpz7tI7+7V/q7/6Pf+n8bxsA05vX9Cu3VvTP/scf978x96WBcOJfvaTPnTW1PnmD30WRdL1O/Z2f6J8df4PfRQEADFEYYm9GigMYqvWN+jR165vOHzpvWfXtH/ysdOpTrCU9CtaNKT1w16Nan5h2/CCBegEgkAaxrMWePdJzz/EA0kPzN9dnG2nMYtPPiPHJCWnSkGTUt+t32+nJ+rFJiAPDVygUWn43TdPxyO5YLNaR3M3n8wNLivtZ9iCeN0vSU/veq7M3HdWFmYO6OrlXezav6ED1nA6/fFqHLn9DG17EHBOTWte0HrzrpE594Q5NWRtDOa6babadlLnb0Xo5z2Hfdtra0MfOP6yPnn9YT+87rLP769tdmXq99m78uL7dpdO6/fJZbRhTWvyl0+7+tgFgSbryxv1SlBHfYXV1Y0JWgKbjtyT9+OLf6pv/8bs6+9JP6UJ1j65uTGjP1JYOzFzV4Tf9SIf2X5Hxg+9LtVrrxqYp62d+Vk9d2jta265XZLzStp0k60ZTT01Hgldetg3+ttQptg1SnWpcgtbXO7YPGlIGAIbq5Nfq67a5HYS1uSWd+059f6y9GX4nDxzXs7OHXE/1Rb0AEDiDWNbi6tX6fkmKe+rOd9ZHaz/42fq1ROpljdl6Mvszv1r/f6fbkhAH/PH444+3/H7kyBHH+1pcXOyYCrw9eewlP8setPP2J/MPdI7qNQwZltUc1Rt55Vs6dKnkTcwxMa1nZt+jB+86qaf2R4d23GGWOfnMH+r+C49o2tqQtMPo6RHdVqpfqw9dPrvjlOJexbF+MyTtnfJpDRl4Ys/UlowATQa7ZUzo3//NPv3rH8zs8t37Mxff27BtO9nS1gS/vGwb/G2pU2wbpDpV307b7qWCiunTAQ+FYXoIP1mW9PO/LT3/kvukuFQP3CJvlv7qd1x1nB8tIZw+3ZL080vP6fk3vt2ThwnUCwCBMqh2uViUolHv9wutb9Q7V2UKUuWl+nVlarJ+H2MY0sZm/do192Ypcay+JnljdhI322JwuEdHNzMzM6ptG0WRSqWUTqcd7ctuSnFJKhaLig6gvfaz7EE4b43v9Q173qQb/+H3Je28/rOsLTW7JHkRJFiNFb+t4R7XjR7L3Fgr+11rT+nhr9wnSXrgrkf17Oyh+m5GfNtep5j3Oo71k2Ft6ffv+o4+ct/P+V0UOPS5kxf1m39xS3DqYg9LPgTlO+/Htr9Z+if659F/Eprysm3wt6VOsa3X2zqtUxe+cFR/a20EOvYmKQ54iAduO/vm30ix/837/T75j6VDozZYzun6s+fPS/fd53153Hj0UWl+vus/f/PlvYrluv+7UyNZLwCED0nx0LIs6envSGdfkC58T7pyTdp7g3TgLdLht0m3v7X7cz4328J73KPDTqlU0kJb+5zJZJRIJBzv07D5YmezWcXjccf7tONn2YNy3hrf64nX36zZX+Z7PQiTW+ua3NqUDEObxoQ2J6ZHftvprXU99uUP6c4ffHXX939z33sV+3ulXd8XFk/Gz+vQf+t9XI7h+OZ/PD+Q5yrDENb2wum2E1sb2jImNWFtamui996xYfysbEudYttwbuumTl167G3a/PH3Ah17My4BwNCcfaHeR97LnjjG9f2OVPJzEOvP+ml+fsfEzdm/oF4AwMhw2qmrm/37fZsm3jDq1xEn1xI32wIYjjNnznS8Njs762qf0Wi0Y33sSqXiap92/Cx7mM8b+rM5Ma1N4/pjwz57coV1W0sTuveDX9KpL96x64jxszcdlWFteTsyt4fRtV7PPmBYW4q88m3dvv+K633BP4f2X1HklW+FcuaCsLYXTrfdmpiSLKuvRJPbY7LtaG9LnWJbr7d1U6csub83GTSS4gCG5sL36lOIrm96t8+pyfp+R8og1p8NMOoFAIyIQXTq2rNHeu451k8H4LlisdjxWiQScbVPu+Tw6dOnXe3Tjp9lD/N5gwNukq4h3HZrYlLrmtaDd53UqS/c0bLGeLsLMwc1tbWh9ckbHB+v3YS1qZ9ef1U/fN22dZhVT4E31u2ce+Xbuv3yN/TFyN2ePXhOfOszMm76XzzZF/xhGFLymT/UJ3/hj/wuijMhbC982TZs5WXb4G8btvKybTi2DTiS4gCG5ur6ax2fvWJZ9SlJEV7UCwAYEYPo1HX1an2/JMUBeMxuJLJpmq72aZcc3r72tlf8LHuYzxvQi82JaZ2bfY9OHjiuj51/uOv7rk7uleXxA+MJa0v/w/M5fez8Z3R2/1FdmDmoK1Ov196NH+tA9ZwOXzqt2y+f1YYxpW+bB3Rh5mBf06G2mzQsze+7qo988X/hXmsE3H/hEX3+QMJ1vQAAYJSRFAcwNHumve9kZBj1NToRXtQLAIBrIzRtO4DhsEvuup0G3C45vLa25mqfdvwse5jPG9CP1YMf10fPP9x1LPaezSsyPO7dbUh6/caPdejyWR26fLbr+6atDT38lfv0gQ//tSxNaGtisu9jTRjS9JShz/zPr9fUzdzzjAIv6kVPU/gDABBiJMUBDM2Bt0gbHk6RLdX3d+At3u4Tw0W9AAC4wrTtABwYxJrV+/bt63htWCPF3eq17GE+b0CvLGNCZfOdenrf4a7J6QPVc9roc63N3WxMTuvA//RL0v/7fbu+d17SY9/7ru79D2/X+palTav3JObkhDQ9KT32cWn+ZuflRYDs3y/t2aP56jk99uUP6d4Pfknrmu5rxPjk1romtzYlQ9o0JhltDgAYSSTFAQzN4bdJHs+SLev6fh1vb0lPXZTOvlBfg/rqen3k8oG31Pd76FY6yLplWdJTf9P9HB/+ueDVCwAIut3a1m7XrzBe93b9rJcuyeiSELckPbXvvTp7U30K0quTe7Vn80p9CtKXT+vQ5W/YjwDzcdp2N3+jMP59gSBxOw242+39PLab7cN83oBuDGtLZ/cf7ZoUP/zyaVnGhKfHtGTo8Pt/Trr153p6/51R6dR7pQc/K537TmMf3TVuAeZvlj7zqyTER8qtt9Y7dF66pDslnbr8gh588m06d7n+6H+n9ecNWZJlab76jD7zlfslSQ/edVLnZt9T33anem5tSTK4wQQAhAZJcQBDc+hWKfIm6fmXvEmCGpIib5Zuf2v/265vSCe/JmUKUuWl+r6mJusPkw2jPtLYkhSZXVfy4Pd1//wlTTuYearDGE3Hum5M6eSB48r8n+9S5ZXu5/i2m6T9b5Auv+p/vQCAoOu1bY28SUrGpPvfJ01P9XHda9suFJ/1xncpOf+A7r/wiKatjdZt3/0JVW58hwxrS1NbG7IMQ4ZlaWNiSpYxocgr31LymT9s2da3z+vibxTGvy/gp2GOQvZ6GnA/yx7m8wb0a2prQxdmDnb990OXv6HIK9/S8298uyfJcadx7PzN0qlP9Xgf8GYpcYz7gJF1663N503zkk79Yo/14safKPHnv9FyP3zqC3fY30urvp/GvfSN117Rq9Nv0JZBhQIAhANXLABDYxj1B7Gf/FPv9pk41n+H1PMvSg/8sfTsd197zZK0bjOF9/OXJ/XJr96iz39hTQ9/5T7NV8+5Ku+4TMd6fuagHrjrUT07e0h6pf4H6naOX3jZ+5HiTuoFAARdP23r8y/Vr7ef/6r0m/+D9M//fY/XvW3bPfxr/o0g6uuzvvI6ffIX/kifP5DQw1+5T5Je2/Y6y5jQ+uQNndu+8e0t27q+zjvU171J299Icr4tI8QAb7ldW9tPfpY9zOcNo8uSdGXq9V3/3ZCUfOYP9clf+CPPjuk0jp2ekj72i9JH75Ke/s5rM8ZcuSbtveG1GWNufytx8jjpuV68/KyMf/Fw67bWhj52/mF99PzDenrfYZ3dX5916crU67V348f1WZcundb/Pv+gHnvHr2jLh88HAIATJMUBDNX976s/iL3wPWnTxV3z5ET9Qe5H3t/fdl9/Trr30/UHxb0kYhs9vi/MHNQHPvzXeuzLH9KdP/hq/wVu8HE61mH5+s+8v75+1cR0Tz3mvUyIO60XABB0TtvW8y9Kv/KwNGH0eN27/t8L35M+8Lv1tSbvfKfTUjvT/2etT9l4YeagYh8+IxmGNo2J3rb1+jrvQN/3Jtf/e+F7Uux3VF/3cSs8f18gCIY5CtnrhK+fZQ/zeQP6ZUjau/HjHd9z/4VH9PkDCV2YOehq/WWv4ljDqM/Qd2h0HzfAgV3rxaUdtpV06PLZrssI7Nm8IsPyepgDAACD4+3iNwCwi+mp+sik6cn6A3onJoz69p/51frUT706/2L9ofO1jf4T8psT07o28Trd+8Ev6fwOU6iNrEcflYrFXX/Onzqnez/8n3Rteq+rhwJOOK0XABB052cO6t4PfknXJl7Xd9u6ZbX+t1ebW/Xr5b2frl8/h8XNZ92cmNa1ydfp2sQNzrb14Trv6t5kS7q26WJbH/6+QFAMcxpwr/lZ9jCft9Cz6mv+Yng2JqZ0YJcZZKatDT38lfs0vbWuiS2bKVp6QByLMDtQPaeNCcbcAQDCg6sWgKGbv7k+MqkxKqqfB7mTE/WA8bGP9zfl5/pGfWrR9c3+EwMNWxOTWte0HrzrpE594Q7na4+eP+/u3/0wPy9Fozu+ZX1DeuB3pXXL+Tl2ymm9AICgWzem9MBdj2p9YlpbE8N9Urpl1a+bD362vlbloNee9OSzupgTtOM673hPvfHi3sSNYf99gSAxTdP29Vqt1vXfvD6W1/sbRtnDfN7CbHJrXZNbm/WZQYzJoXc+HleWMaHDl07v+r756jk99uUP1We50XRffx/iWITd4ZdP9zQ7EwAAQcFVC4Av7nyndOq36oGfofrPThrvmb+5vl2/U32e/Fp9rU03U7ZL9ZFk52bfo5MHjjvfyX33SQsL3X/uu89dIX3i1TnebtD1AgCC7uSB43p29pBvD8A3t6Rz36m38YPm92eVPLrO92gQ181+DfPvCwTJMKfm9vpYfpY9zOfN1vXR14a1S0NsbXk7UrvH4xrWlgxrS/PVZ1T44hEVvnBE89Vnmq8PtcxjxrC2NFd7Trd3mTK63Z0/+KpOffGO1/4+uyxqQhyLUXHo8jcUeeVbu7dJAAAEBElxAL6Zv7k+Mun3flm67U311wzVe0pPXe8x3UiKRt5cf9+pT/Xfg9qypEzBy5JLqwc/7ula2GE3iHO8/w2DrRcAEHSWpMy7P+F3MSRJq08O9rl6kD6rdP06P8jPO4DrphuD/vsCYTHMNbO95mfZw3veLP1S5XHd9sP/S1I9ETq9eU1Tm9c0vXmtmeSZe+Xb+qXK47smOr0+buSVb+v3/vLXdeoLd2i+ek7z1XM69YU79Ht/+es+lHn8JM59etdO2tu1/H1u/Ikk4liMPkNS8pk/9LsYAAD0jEnyAPhqekr62C9KH71Levo70tkXpAvfk65ck/beIB14i3T4bdLtb3U+I+pTF6XKS96V2TImVDbfqaf3HdahHnuOh9qePdL+/Tu+xetzLEmXXq1PI2cYg6kXABB0T+17ryo3vsPvYsiSVP7b+nX60K2DOUZQPqu07Tp/6bwODegYg7huOjWMvy8QNDtNA+6GXXI4Eom42mc7P8se5vPWbnJrXfPVZ/TwV+7TpLWpp/cd1tn9R3Vh5qCuTL1eezd+rAPVczp86bRuv3xWG8aUvm0e0IWZg65mNOn3uO2hzrS1oY+df1gfPf/w0Mo8bhp/o49cWO1722lrQx97/n/XR//nT+pp41biWIyF+y88os8fSNDWAABCgaQ4gEAwjPqD2EE8jD37Qr33qpd95A1rS2f3Hw1XUvzRR+trg/dr/37p1p3/MAM5x5K++TfSR97PQ3oA4+nsTUdlWFuBWKfPUL2tH1R7HKTPKl2/zj/1Qx26qdT/xj5dN90wZOnsCwbXW4y9QYx4XlhY8Hyfdvwse9jO28TWpqa31vWZr9yvKWtTknTo8tkdY7tpa0MPf+U+feDDfy1LE9qamBzKcbsxhlTm5jQiTjK4brZtXiGHu+2EYWl6elKfeeB1mvrtv3ZwbEn798u49VYdEnEsxkOo2xo/tw1bedk2+NuGrbxsG/xtR7QHH0lxACPvwvekqUlpfdO7fU5tbejCzEHvdjgM8/NSNDqQXQ/kHE/W9wsA4+rCzEFNbW1offIGv4sy8DY5SJ9Vun6d/zf/RUp9ov+N9+yRnntux8T4IK6bbkxtruvCcz+R3v8Gv4sCDE0kElGlUml5ze2IZ7vtBzHi2c+yh/m8SfVRwNNb63rsyx/SfPVcX9vOV8/psS9/SPd+8Eta13RfIyLdHNdWLx2ev/99zddqeqz2dd371C9q3drSptV757PJrXVNbm1KhrRpTPb9eR1vOyFNGkZ92636z7C2nZ409NjHDc2/8129bwiE3f799fvXq1cd78Jt++hLW+PTthNbG9oyJuv/neg9NRPGz8q21Cm2Dee2bupUGJbuCcZQDAAYoKvr3q+TaUm6MvV6b3caYgM5x1Z9mjkACLXGQyYHrk7ulRWQnrmDbpOD9Fkll9f5q1elS5d2fssArptuWJKufOdvpVKp/5+LF/0uPuCIXdK1Pdnbr3K53NNx3PKz7EE7b1MTlgxZuz6AM2TJsLY0X31Gp754h+78wVcdlfXOH3xVp754h+arz8iwtoZ23BZ79kjve1+9w/NOP//dfyf9w3+oO/+nRZ36f05p/pYJGdp9/LRxvdzzN62r8MsVFf7vFc3ftN77ee66bS/Hra+xXfjHUuG36//fe5ndb3vqt6Q737nLBsCoufXWeofOYrH/n0cfbe6mo320du6V0njPfPUZFb54RIUvHBmLbd9VfVr/R+Hv6V3Vp0NRXrYN/rbUKbb1els3dWr/lYCsE7cDRooDGHl7pr2f7cOQtHfjx97uNMQGco6N+rprABBqjYdMuyRJ7ez5d6+XcTEYmdNBt8l7Nq/ICFCWeNDX+T3Tup5YCEZHAEPS3vyfSb/zif437mFkPBBEdklXu+RsP4a1NrafZQ/aebvpRkP/6y8byhSkykv19mxq8rUZHzc26x1/Im82lIhWdf9bLU3/9uddlXde0qlNSye/U1OmODu04zb1sExHR5lvlk59Sjr5NfVwrqTEMUP3v+/1mp6qj5g+9Yu9bmsocUwOt9X1baXp608r+yuzd9sCY+fWW53dy7WNMp+vntOpL9yhkweOK/PuT6hy4ztkWFua2tpo3vluTEzJMiYUeeXbSpz7tO6/8IimrQ1JGqttP3Dxz0JVXrYN/rbUKbYNQp267foxg8ywrAA9fQJC7pZbbtGLL76om2++Wd/97ndlWdJTF+vrRl74Xn1U0J5p6cBbpMNvq68vFaBBUa4F9fN+7i+k33zU6qFveu8Ma0u//5//kT7y3CN9b2tJemrfe3X2pqO6MHNQVyf3as/mFR2ontPhl0/r0OVvdC2pm21VLA5s+vT6OfZ+TfHfv7++pjgAjKPPnbyo3/yLWwKxzrYhS//8PkOH37bDdf5SScYR+zVgd7t+feOmo0rd+XAgPqvk7jovaddr7uf+7Zp+88/Msfm83bi5d+xn2/Z7dECSVldXlUwmW16LxWLK5/OO97mwsKBSqeTZ/rrxs+xBOW92sffT33mtTbhyrd6Zq9Em3P7WwcSifh3XDTdlHrdtAfTg4kXbDsCWJT19aa/Ovvx6XVjbqysbE9o7taUDs1d0+KYf6/b9V2T84PtS+xIapinrZ3529LZdr8h4pW07SdaNpp6ejgSvvGwb/G2pU2wbpDrViL0/9CG9+NJLgY696QMJDMif/KceeiS/SUrGwt8jeX2jxx7YPn3ew3u+L0s/6+k+LWNChy+d7mubdWPKvneVYciwrG29q76l5DN/2NKjy822w3D4bd4mxKX6/g6/zeOdAkCIHH7TjwKTNLVk6F/+uw29+MOp7tf5G9+l5PwDjq5fN7/6N4H5rJKz63w/Dr/+b2UZswPbf78G/Xnbubl3dLItYMduJPKZM2dc7bN9GvHFxUVX++vGz7IH9bwZRr0zzKEhT1rh13HdcFPmcdsWQA+6jDI3JB26/tOv0dx23odjsu1ob0udYluvt/WgTk33vna5XxgpDnio0Vv9hjfcrBvvqfeE2ekL1uiM/K5bpId/rT6lWdicf1F64I+lZ693/Ani57WKJf18+qf1/Bvf7skDd8PaUuSVb+uvcgd6Hnt+fuagHrjrUT07W7987FSOxjod71p7Sg9/5T5JcrztfPVc/R8GPLWpZUk//9vS8y95kxw3VJ/G7q9+h177AMaX19cv5wWpt+yGoR1nXTFkSZbl6Pola0vNOwWfG34n1/kOu4ycDszfVsP5vNu5uXeUnG174f9zi/72B4wURyfDpr2pVqsyTbPvfdVqNc3MzLS8ViwWFR3QTE1+lj0I540ZIAAAAIBgCcM9enCGYwAjZGOr/pBut+Rg4z0Xvid94Helrz83+LJ56evP1ct94XvB/ryGISWf+UNP95k49+meHxx//Wferw98+K91YeagLGNi14ffjfdcmDmo2IfPKPZLxf633f8efeDup/T1f/9c/UH1gNf6NIz6aCwvJY75nhcBAF8N4vrlmGHsugyJJcPx9UvGRKAa/X6u804E6m8rDz7v+fNSqbTrz9f/w7f0gd/Z0oUXrb7vHWO/I8X+N2f3nZdedfPhMMpisc4b2EKh4Ghf7aOlTdMcWEJc8rfsYT5vAAAAAMYXSfERUKvVOqYbCws/yz7QY/c5VHZzS7q2Id376fromTA4/2K9vNc26uXvhx+f9/4Lj+hda09pcmvd1X4mt9Z1cO2b+siF1Z7ef37moO794Jd0beJ12pzob/qQzYlpXZt8na5N3ND/tpaha1sTuvfP36Hzb44ONCHecP/76qOxJl1eWSYnpINvZS1xAJC8u3451piTug+bE9O6NvU6XZvs//pVP5Z/E1n1e513w/e/rTz8vPfdJy0s7PhzPvYR3fv/vUXX1i1tWn3WqS3p2qbz+06mRkM3S0tLHa89/vjjjvaVzWZbfk8kEn1t329s6mfZg3TeAAAAAKBXJMVDqFAoaGlpSXNzczIMQzMzM83/NwxDCwsLWllZUa1W87uoHfwse9DP25YlrW9KD362vlZikK1v1KeuXN+sl9uJYX/eaWtDD3/lPk1vrWtia9PRPia2NjW9ta7PfOV+TVm772PdmNIDdz2q9YlpbU1MOjqmDMPxyLmhn+Op+tSm05PShMPhZhNGffvP/Gp9fVAAGHdeXL/kdLUkBwnx1xiS47HHLsYsW5bjz9vvdd4tz/62Ifi8ntwTuUFWHF3cfffdHa/lcjlH+3riiSdafj9x4kRP2xUKhZbYNJlM9rSdn2UPwnkDAAAAgH6RFA+RXC6nmZkZLS4uKpfLde1JXiqVtLy8rJmZGS0vLw+5lPb8LHuYztvmlnTuO9LJr/ly+J6d/Fp9Lcd+R+q0q39eSyf/9GJPU27qz/5M+tf/uvXnz/5s9+3On5ckzVfP6bEvf0g3bP2k71FZk1vrumHrJ3rsyx96bZ3uXZw8cFzPzh7qf5Sch4Zdp+Zvlh77uHTDVP8jxicn6ts99vHhrTcPAGHg5vo1sbXR8t+euUqI+2Nya103bP5kaNd5L7i+NwnJ5w3CPRFgxzRNxePxjtdXV/ubPaFQKLR0rk4kEj2tr10qlbS4uNiy7erqqu1I7HZ+lt3v8wYAAAAAThiW5XToCIalVqvp+PHjLT2vU6mU7rnnHkUiEZmmqUqlokKhoHQ63ZH0jUajevLJJ30JLv0sux/HvuWWW/Tiiy9q4vU3a/aXv9t3maX62KjIm6W/+p0enkVfvChduuToOLb27991mm3Lkn7+k+t6fm1q17VFe2FYW4q88m39Ve7AQNfu3O78zEE9eNdJnZt9jyTtuM6pYdUz/wfXvqnPfOX+nh8cW5J+fuk5Pf/Gt+++juqA9VWnPHL+xfoI9XPfqf++04WmUaSDb62PECchDgDXlUr1qaevc3r9+n+U/ql+P/r/6mk7WVtqtsy+J8XrV4/6hOrdy2Jcf9/Bn6rqM/N/KUl68Pwv6NyPZq7vZZdtLavv6/yuHn1Ump/v/u/nz9enHG/86uLeRNLA72vcCMI90dqf3qKtH7+om2++Wd/9rrN7dIyuSqWiubm5ltdM01S1Wu15HwsLCyqVSs1tn3/++Z7iyKWlpa4jrMvlsiKRyI7b+1l2P48tvRZ7870GAAAAgiEM9+gkxUNgbm6umbCNRCIqFos7BorJZLKjh3Y0GlWxWBxkMW35WXY/ju1FUrzhyX8sHdopP33xovTOd0pXr7o6Tos9e6TnntsxMf7N/9/3Ffvjn/XumNc9+W/fq0OXz3q+327WjSmdPHBcmXd/QpUb3yHD2tLU1oYs1R++b0xMyTImNFd7Tolzn9b9Fx7RtNX7KLtv7nuvYn+vNLDyO7FrnfLY+kZ9hHqmIFVeqp/XqcnXBh9ubNYflM+9WUocq69JPj01vPIBQOC1JcUl59evXre75dUX9N03vG34n3UHN7/6N3rxDT/X17V63ZjSydsfVOaDv6/K2nT3a9CNV5X489/o+zo/CG7uTQZ9X+NGEO6JSIpjNysrKx2zhcXj8Y71rnvZtlgsKhqN9nTc7Unhdtls1nY09m7Hl4ZTdr+PHYYHbgAAAMA4CcM9OknxgNvec9xtj/NEIqFMJjOIYu5ahmGX3a9je5UUN2Tp9/9vF/WRd13u/qa2EUaeKRalHR5GfO7kRf3mX9zi6Ugfw9rS7//nf6SPPPeIZ/vslSXp6X2HdXb/UV2YOagrU6/X3o0f60D1nA5fOq3bL591NIL9cwcS+s07H/Z9lHiDIen375c+8v7hH9uypKe/I519QbrwPenKNWnvDdKBt0iH3ybd/tYADEYEgCCySYo3OL1+7bZd6aY7lArS9cva0j//z/9I77102tG12jpT1NM3Rbtfg14uyThif4794ubeZFD3NW4E4Z6IpDh6sby8rJWVlZbXdkvwtid2M5mMEolEz8e065jd0MtI8QY/yu73scPwwA0AAAAYJ2G4RycpHmDtgWKvPcWl+tThMzMzHa/3E1i74WfZ/Ty2V0nx6c1r+pXzD+uf/ZdPON6HY7skxU/8q5f0ubOm1idv8OyQvn5eN3aYGvXEv3u9Pncx4ul5cmN6UvqVu6R/dq/fJQEA9GyHpPignPg7n9bnDvyj4Fy/3N4j7HJf48c5HjdBqFMkxdEru5HPpmkqkUjo6NGjikQiWltbU6lUUiaTac5MZpqmstmsYrFYX8er1Wq67bbbWtbVlurLfqXT6UCX3e9jh+GBGwAAADBOwnCPzkS1AVWr1VqCykgk0nNiV6oHl6lUqqPH9vLyck9TmbnhZ9n9PPbFixf1wx/+sOdj7cSSdGXq9Z7sq2/nz+/4z1cvvVGW0dlxwA1fP68b8/NdH7Rf/colWQEa/mxZ9dFxbl28eFF/8id/0vz9Yx/7mG7dZR16IGyo5xhnVyf3Buv6pZDeI6ApSHXqhz/8oS5evEibjq5SqZTi8biWlpaa05rXarWO+HC7eDyudDrtqPO5aZoqFotKJpMqFAqKRCJaXl52NGJ72GX389jbY2++1xhVxCQYB9RzjAvqOsZBWO7RSYoH1EMPPdTyezKZ7HsfJ06c6AhCc7mcKpXKQEeL+1l2P4998eJFvfrqq30fz44hae/Gjz3ZV992mZJ9z9/5tIwD/8jTQ/r6eQdkz9SWjABNxGEY9eli3bp48aL+6T/9p83fY7FYIC9ugBvUc4yzPZtXgnX90ujdI4ybINWpV199NbCBOYIjEomoWCyqUqkok8moVCqpUqmoUqnINE1FIhHNzs5qcXFRiUSip2W6djtePp8PZdn9Ovb22JvvNUYVMQnGAfUc44K6jnEQlnt0kuIBZNejup/Rzg2maSoajTZ7ajfkcjmlUilXZezGz7KH+by125iY0oHquaEcq18Hque0MeFt0xHkz+vUgbdOaeOp4DSxG5v19VMBANjJIK7zboziPcK4CVqdAnoViUT6nsI8KPwse5jPGwAAAIDRxtOJACoUCi2/N3pVOxGLxTqSu/l8fmDJXT/LHubz1s4yJvSeS6f1zX3v1dmbjurCzEFdndyrPZtXdKB6TodfPq1Dl7+hbhNRWpKeGtC2h18+LcuY8PzzHr502vn2cv55XR3z5b06+xfShe9JV9elPdP1xPPht0mH3zsr6889PqgLlurlAgAEh2VJT12Uzr5gfy05ZMnz69duBnGdd8PtPQJ65/R+yo97RwAAAAAAgH6RFA+gxx9/vOX3I0eOON7X4uJix+jp9uSxl/wse5jPWwtrS/uvvKzEf/O4Kje+Q4a1pamtDVmGIcOytDExJcuYUOSVbyn5zB/q/guPaNrakCStG1M6eeC4Mu/+xMC2ve2Vb2n/lb/V5T03efKA07C2FHnl27r98tm+t3XzeZ1qOWbuHTIkTU3WExuGUR+RbUm67SZp/xuky6/Wf/eTISnyZun2t/pcEACAJGl9Qzr5NSlTkCovqeu1JHLju5Scf8CT61evDl3+hiKvfEvPv/Htvicy3dwjoHdO76f8uncEAAAAAABwgqR4ALUnX6PRqON9dUsMl0olV/vtxs+yh/m8tTJ0ae+bdHnvTZLqI6TWJzsXg37+jW/XJ3/hj/T5Awk9/JX6OuAP3PWonp091HzPILZ94Y1vv57k9W7sWuLcp/ve2/mZg44/77zDaVhtjylpfbPzvS+87H8yfLvEsXqiBQDgr/MvSg/8sfTsd197rdu15PlXXufJ9asfhqTkM3+oT/7CHw38WL1wco+A3jm9n/rN0j/RP4/+E9/uHQEAAAAAAPpFUjxgSqWSarVay2tzc3OO92eapu3rlUrF8+Sun2UP83lrYV1PoxqGrF0eHDZG2lyYOajYh89IhqFNY6KnEThebCvLem1Im0OTW+uarz6jj1xY7Wu7r//M+3XvB7+k9Ynpvj/vBz7813rsyx/SnT/46mCP2dfeB2dyQpq/WfrI+/0uCdz4gz/4A/3whz/UG9/4Rv3Gb/yG38UBBmIc6vnXn5Pu/XQ9Ad7LdcKSIRmGLux/jz5w91N67L//v3TnW/7r7huePy/dd5/jct5/4RF9/kBCF2YOanNi2vF+3HB6j9C3/fulPXukq1cHe5wAcno/dX7m3fqV2L/VhLU59HtHAIB/xuFeDaCeY1xQ1zEOqOewQ1I8YM6cOdPx2uzsrKt9RqPRjvWxK5WKq33a8bPsYT5vTdsS4v3YnJjWpjE19G1lGK4ebk5sbWp6a12f+cr9mrJshsd1cX7moO794Jd0beJ12pqY7OuYmxPTsjShez/4JZ364h09j7hzc0w/TRjS9KT0mV+tT8uL8PqDP/gDvfjii7r55pu5icPIGvV6fv7FekL82oa01WfPqU3LkLVl6N4/f4dO/Va9s9MgTVsbevgr9+kDH/5rWZpwdu1zeF8jOb9HcOTWW6XnnpMuXep/W5edDwbi0Uel+fnu/369zG7ubbYmpiTLqv+3Hy7vHd3UKQCAe6N+rwZI1HOMD+o6xgH1HHZIigdMsVjseC0Sibjap11y+PTp0672acfPsof5vEly/5DPzcNBt9s6eLg5ubWu6a11PfblD/U1Fey6MaUH7npU6xPTjpPTWxOTWte0HrzrpE594Y5d12j14phOTU5Ik4YkQ9rcqv/0s+30pPTYxwefPAEA7Gx9oz5l+vpm/wnxhi2rvv2Dn5VOfUqaHvBd/Hz1nB778ofqI4k13deI8cmtdU1ubdavX8Zk39s6uUdw5dZb6z+jYH5e2mlWo/37tb73p93f27i5Z3V47+imThmBmcMHAAAAAAD4Zff57jBUdiORu03l3Su75HD7VONe8LPsQTtvU1vrMqwtGdbOWUzD2pIa7wnrqJdGuS2rp89rWFuarz6jU1+8o+8pzE8eOK5nZw+5nsp1c2Ja52bfo5MHjg/tmNvt9pe+ngfX/M1S4R9Lhd+u/7/R57anfku6850eFBgA4MrJr9XXEO+nc5OdzS3p3Hfq+xuGO3/w1eszqzzT831N4zpf+OIRFb5w5LVtd0lKGrJc3SNA9Wng9+/f+T233qqTj/6Nnt33Ht+mxnd679hRp/rYdv+Vl7wqPQAAAAAACClGigeMXXLX7TTgdsnhtbU1V/u042fZg3bebrr6kv7Xv/x1Zd79CVVufIcMa0tTWxuyVE9YbkxMyTImdNsr39YPX2fq8p6bdl1DPNgs7b/yst64/sqOnzfyyreVOPdp3X/hkV1HaHceQcq8+xOelnr14Mf10fMPdz3zgzjm/jdIb9wrVV6qn5upydcGS21cX2M28mYpcUy6/32vjQQ89al6EiRT6H9bAIB/LKvedntp9Unpo3ft0J/Ow3Wy56vndOoLd+jkgeO73tfYXeeb2/7dP1DllT3dr183/kSJP/8NR/cII2e3KdC72b9/1xHvliVliu7ukb3h/N7RSX28bdzrFAAAAAAAICkeNINYs3rfvn0drw1rpLhbvZY9iOftY+cf1kfPP6yn9x3W2f1HdWHmoK5MvV57N36sA9VzOnzptCwZiv290u47CzpjQpde/2Y99m8/KEPq+nlvv3zWcer/qX3vVeXGd3hWZMuYUNl8p55++M906I6fsT/my3tVyXl3TEm69Gp9SnPDkM6+IF34nnTlmrT3BunAW6TDb5Nuf2tnomN6SvrYL9aTIE9/p79tAQD+eepivTOTVyxJ5b+tXwsOdct/9rBO9je+8Q396q/9WvP3z/7xH+u9732v7TrZ09ZGT/c1dtf55rYnf01P3xTtfv16+VkZ/+JhJ6dk9Ow2BboLXtdHx1zcO7qpjwAAAAAAYHyRFA8Bt9OAu93ez2O72T4I582QdOjyWR26fNb23z93ICHD2pJlhH8lA8Pa0jf3H9VHnnuk6+d14+xNRz0/V4a1pbM/fVCHoj9nf8y/qP8NvVyF0pD0zb+RPvL+HZIZO21v1Ldzsi0AYPjOvjCYa8nZF3a5FuyyTvaPfvxjfWP77+98566J2N3ua3bcdrfrV/f8PTw0iProlNt7Rzf1EQAAAAAAjB+S4gEyiNHb3Xg9fbqfZQ/iefu+pFt6eN8PK4/rRxf/zFWZguTXN/6rPjWgfQ/qXP16bkuf+qR9ov2HV6Qf/USeZzJ+/d9In9rr4T6H6Nq1ay2///2///d1ww03+FSa8fH973+/+d9bbumldYEb1HN/jGo9D+q1pGs9X193WbguPvQhaXqHNaz9Oq4bISzzQOqjC4O8d9zu+0M4BgD/cK82HKN6rxZUxCT+oJ4PF/XcP9T14aKu+4N6Plzt9TyoSIqPAbdra/vJz7L3e+xbb71VhmHIsixtSXqxl42uvVL/GRGvXv8ZiAGdq1clvTrkP8GrPxrgeRqyl19+2e8ijJWtrS29+GJPrQs8RD0fLup5b7y+lgy8nr/k05zdfh3XjTCW2aGB3jvaMAxDt+6y7jqA4Nsee0vcqw0b92r+oJ4PF/XcH9Tz4aOu+4O6PlzU8+ELcuxNUjxAvB69vROvk81+lj0o5+3WW2/V3r17deXKlWZw3o83vOENeuMb3+imeAAAAMBI++EPf6hXX+0/lW4Yhvbu3RvYwBxA7xqx99WrVzU5Oak3velNfhcJAAAAGHsvvfSSNjc3tWfPnsDG3iTFA2SY04B7zc+yB+m8/ehHP9LFixd18eLFvre99dZbA9tQAAAAAEHAvTYAqR57AwAAAEA/SIoHiGmatq/XarWu/+b1sbze3zDKHrTzxgM3AAAAYDC41wYAAAAAAE5M+F0AvGaY62d7fSw/yx7m8wYAAAAAAAAAAABgsEiKh8Aw18z2mp9lD/N5AwAAAAAAAAAAAOANkuIBstM04G7YJYcjkYirfbbzs+x+n7daraZKpeLqWEAYUNcxDqjnCJow18kwlx3DRV0BMGy0OwAAIAwa9yxucx0A6kiKh8AgRjwvLCx4vk87fpZ9UMcuFApaWlrS3NycDMPQzMxM8/8Nw9DCwoJWVlZCfaGq1WpaWVnR4uKiVldX/S4OfDLqdT2Xy2lxcVEzMzN+FwU+Cls9r9VqyuVyWlpa0sLCQktZG2VfWlrS6uoqD3pDKmx1crswlx3DFba6QtsLOBeU70/Y2h2ES1DquZ1cLqe5uTklk8mhHhcAwsrvNj2XyymZTGpmZqblmI3fG8fP5XKeHxsYCxYCJRKJWJJafrLZrKt9ptPpjn3m83mPSvwaP8s+rGP/1E/9VMdrO/2kUilXZRi2bDZrxWKxjs8Ri8X8LhqGKJvNWqZpjmRdL5fLViKR6Ph8GD9hq+fVatVKJBJ9lbfRfheLRd/Kjd6FrU5uF+ayY7jCVldoewHngvL9CVu7g3AJSj23k8lkWuo+z3XgVrVatbLZrBWPx61oNNryLNY0TSsSiVjxeNzKZDJWuVwemWNjfPjdpju5ZzFN00qn0x58eoybMLWrjZyVaZqe7I9MQMDYJSTdNmx2jfkgKrKfZR/WsbcHycVi0apWq5Zl1RNtmUzGNjkfjUab7wuiarVqpdPpjouuaZrNz4nxUK1WrXg8PrJ13bIsKxqN2t5AYnyEsZ5nMpm+gzIe7oZHGOvkKJQdwxXGukLbCzgXhO9PGNsdhEsQ6nm7bs93JJLicM7PRKHfSUqMD7/bdLvcRj8/kUiE+xb0JCzt6iAHtpEUDxi7CplIJFztsz0Q9KrytPOz7MM6di8XGLuyRKNRV2UZFLvR8NFo1PUoe4TT9odBo1bXLav7DW4kEvG7aBiisNXzVCrlOjDbfgOL4AlbndwuzGXHcIWtrtD2As4F5fsTtnYH4RKUet5QLBZ3fcDN9QhO+Jko9DtJifHhZ5terVZtO+c5+SExjt2EqV0d5MA2kuIBY1cx3d64tlegQd0I+1n2YRx7amqq5wuLXULdbZLeS8ViseOCG41GBzKtPsJhe501TXNk6npDtVrtOgURD7vGR9jquV3HpfabwUgk0tf0WkH8fo6zsNXJbmUIW9kxXGGrK7S9gHNB+f6Erd1BuASlnlerVduZDrodm6Q4+uVnojBoHU8wuvxu0+3uPRr7yOfzzRlzq9Wqlc/nu76/8ROPxwd1qhByYWpXBz2wjaR4wOTzedvG1432RntQ60z4WfZBHHvv3r0t+7vvvvt63rZardp+cf1ef8Gy7BsV1h4Zb+03gP3MFBDkur7dTr3mSYqPhzDW824PZrsdN5/P9zQFEh2ggiGMdbIhzGXHcIWxrtD2As4F4fsTxnYH4eJ3PW+sq9m+fSwWa+7D7ngkBtEPPxOFficpMV78btOd5G12W3ucpQPQLkzt6jAGtpEUDyC7P7jTqS/sgrpBNox+lt3LY7/wwguuz5td7xu/e2u1X7QjkQgB/phr/5456XEVxLq+XbFYbLl48nBg/IS1nm+vr6Zp9txel8vlHaffoiOI/8JaJy0r3GXHcIW1rtD2As75/f0Ja7uDcPGznpfLZdv62V4Gu3pM3It++Jko9DtJifHiZ5u+/b4lEon0lXvYKXFIJxC0C1O7OoyBbSTFA8iux6fTNZ7bR1B7Ne9+N36W3ctj33333S372bt3b9/7CFov8/bGLxqNss4IOoJlJ7MGBK2ut2vc4KZSKXrMj6mw1vPtAY6TDm07BWhB+X6Oq7DWScsKd9kxXGGtK7S9gHN+f3/C2u4gXPyu543nY6lUquszHZLicMvPRKHfHawwXvxs07PZrKv7jO3bb//xaoppjI6wtKvDGtg2IQTO0tJSx2uPP/64o31ls9mW3xOJRF/bVyqVvt7vZ9m9OnatVtMTTzzR8tr999/f935M01Q0Gu14PZfL9b0vt5aWllqOG41GVSwWZZrm0MuC4KjValpZWWl5LR6P972fINX1dqurqyqVSjJNU+l02u/iwAdhrue1Wk1Svbx2x95NPp/v+m+FQsFpseBS2OtkWMuO4QpzXaHtBZzz8/sT5nYH4eL3daJYLKparSqdTvNMBwOz/Xnwk08+qUgk0tN2kUhE5XK56/tLpdKuz5r9PDbGj59temPbeDzecz3fLh6PKxaLdby+trbW974w2sLSrh4/flySlEqldOTIEc/2246keADdfffdHa85DcDak7snTpzoabtCoaCZmRnNzc3JMAwlk8metvOz7F4d2+6C5TSZZndh2uliOQjJZLLlPEQiERWLxaGWAcHUXtdN03R0EyYFo663q9VqzbarvZMNxkdY6/n2m8per93tIpFI1w5lfn8/x1lY66QU7rJjuMJaV2h7Aef8/v6Etd1BuPhdzyU5StoA/fK7k5Nfx8Z48btNP3PmjCTpnnvucXRsSbY5m8Z3CGgIQ7s6zIFtJMUDyDRN2x7Nq6urfe2nUCi0NIKJRKKnXqSlUkmLi4st266urtqOxG7nZ9m9Ova/+lf/quX3m2++2XHv28XFxY7XhnkDtrq62vH5SQ6ioX0mBTc9sPyu63YavctisZjtg60GetePtrDW80ZwFolEXD346tapjSDJP2Gtk1K4y47hCmtdoe0FnPP7+xPWdgfh4nc9B4bBz0Sh30lKjBe/2/RSqSTJ2cw2DXYdAOk8he3C0K4Oe2AbSfGAsusNsby83Nc+tr+/nx4WDz30kO3ruVyup+kQ/Cy7F8f+y7/8y5bf/8E/+Ad9bb9dt0C8cdEbpEql0nFRTqfTXBjR1P5gx03d8LOu2ykUCs0ZEjKZjC9lQDCEtZ43rrc7dejoRbfPy3Ra/glrnZTCXXYMV1jrCm0v4Jzf35+wtjsIF7/rOTAMfiYK/U5SYrz42aZXKhVFo1GlUilXx7Yb6ON0phyMpjC0q8Me2EZSPKAikUhHgrdWq/U0WluSVlZWWgK2J598sudKs1Piu5cg0M+yuz32xz/+cW1ubra8dvDgwZ62tdOt3MNYw6b9M5um6fpCi9FRKpU6Llpzc3OO9+dnXbfTuFCn02luBsdY2Ot5NBrt+fq1E7tyz87Out4v+hfmOhnmsmO4wl5XaHsB5/z6/oS93UG4cJ3AqPM7UejXsTGe/GrTG8ubup0m2i4h2esyuBgPQW9X/RjYRlI8wFKpVEcSM5fL7dpQr6ystIyOzmQyffUC2WmasV7341fZ3R67fep0yX1QYlf+QQfTjTUYtnM6PQZGU2Pdmu3CWNftrKysqFKpKBKJ0BFkzIW5nicSCRWLRdc3rZL9Z6aziD/CXCfDXHYMV5jrCm0v4Jyf358wtzsIF64TGBd+dv6g4wmGZRTa9PZ7oGg06snnwWgJcrvqx8C2qaEcBY6l02nt27evJVGcy+U0MzOjRCKho0ePKhKJaG1tTaVSSZlMphmomaapbDbbd0OYTqf1xBNPdPQ0SqVSfVVMP8ruxbHbuf0y2jUMp0+fdrXP3dhNGU9yENsVi8WO18JY19tVKpVm/WfadIxqPe+XXa9NN6On4FyY62SYy47hoq7U0fYCzvX7/aHdQRhxnUBQJRKJrmvH9mt2drbj+fJO7bOfxwbc8KtNb3/2+cgjjwz8mAiXILerfg1sIykeAqlUSvF4XEtLS83Rv7VaTSsrK123icfjjntXmKapYrGoZDKpQqGgSCSi5eVlR1+eYZfd7bHf9KY36aWXXmp5ze1aBXafY5Br2KysrHTsPx6PD+x4CCe7TiBhq+t2Gr3L4vE4PSMxsvW8X3bl4/vhjzDXyTCXHcNFXamj7QWc6/f7Q7uDMOI6gXHgZ+cPOp5gmPxo03O5XMtMsel02tWa0cBuvGxX/RzYRlI8JBrrTFQqFWUyGZVKJVUqFVUqFZmmqUgkotnZWS0uLiqRSHgSAObz+VCW3c2xFxYWOpLibqeAsPs8g1zDxq4RueeeewZ2PIST3YOjsNX1drlcToVCQRI9I1E3ivW8X+1LaUj1z0Cg5I8w18kwlx3DRV2h7QXccPL9od1B2HCdwLjws/MHHU8wLH606bVaTcePH2/+nkgkmCUWA+dlu+rnwDaS4iETiUSUTqf9LoYjfpa912MPYo2wffv2dbw2qB7mhULB9jPYjRSv1WoqFArK5/NaW1tTrVZTJBLR3NycYrEYwdiIC3tdt9O4GcxkMp52rkF4jWI979fjjz/e8VpY7yNGQZjrZJjLjuGirtD2Am44+f7Q7iBsuE5gHPjZ+YOOJxgmP9r048ePN+9LUqkU1xAMnJftqt8D20iKA7twm1wbZnLObpR4e8NUq9W0vLys1dXVHfdlmqZOnDhBL7MxEqa63m55eVm1Wk3RaNSzdVIwmsJcz51ob+sjkQjfkYAJc50Mc9kxXONWV2h7Aee8+v6MW7uDcOE6gXHgZ+cPOp5gmIbZplcqlZalYjOZDNcPDIWX7arfA9smhn5EIKCG2et7UNOuNXrYbHfkyJHm/6+urmpmZmbXhLj0WvJ8bm5uID3v4Z9RqOvbVSoVraysSGLadLxm1Oq5E7lcruM8DHudHrwmzHUyzGXHcFFXaHsBN5x8f2h3EDZcJzAu/Oz8QccTDMug2vTGbLCNn1wup6WlJc3NzTUT4vF4vOW5PzBIXrWrQRjYxkhxYMDcrmXWq0qlYvtAYGFhobnOSC6Xc7TfhYUFFYtFRSIRD0qKUTWsut5uaWlJUn39HKbCwqD5Vc+dWF5ebvk9kUiwhtoIClOdbBfmsmO4wlRXaHsB54L0/QlTu4NwCVI9BwbFz84fdDzBMA2iTS8UClpcXNz1fblcrvmsPx6P68SJEzwXxUB41a4GZWAbI8WB64bZ63sQAbbdKPGGhYWF5kUyFospm82qXC7LsixVq1UVi0WlUqmu01XUarWeLsYIh7DX9e1yuZxKpZJM02QqLLQYpXruxMrKSsssH5FIhAcBPgtznQxz2TFc415XaHsB55x+f8a93UG4cJ3AuPCz8wcdTzAsg2rT8/l839vkcjktLCxocXGRGV/hOa/a1aAMbCMpDlw3zGnXBqFYLNq+nkwmValUFIvFVC6Xlc/nFY/Hm6O+TdNUNBpVOp3W888/37VBq1QqHQ0gwinsdb2hMQOCVF/DhHX/sN2o1HMn2ttr0zQdBVXwVpjrZJjLjuEa57pC2ws45+b7M87tDsKF6wTGhZ+dP+h4gmEZZJvemB49kUgon883B7ZZlqVyuaxMJtP1+X2hUNDCwkJzH4BbXrWrQRrYRlIcuG6nUdLDOpYbO/UCa1xEd5v+vHEB73Zh7WUtcgRf2Ot6QxDWIEFwjUo9d6LR87LhySefZPmLAAhznQxz2TFc41xXaHsB59x8f8a53UG4cJ3AOPCz8wcdTzBMg2zT0+m0LMtqJr+377exjnM+n1c+n7e9N6nVajp27BgdB+GaV+1q0Aa2kRQHrhvmVGiDOFa3pHgsFuu79042m+16USUxHn5hr+tSvddkoy5ms9mBHAPhNgr13Inl5eWWHsHZbJY1pQIizHUyzGXHcI1rXaHtBZxz+/0Z13YH4cJ1AuPCz84fdDzBsAy6Te91X7FYrOvMsduTkIBTXrWrQRvYNuV3ATBaGknTy5cvB6o30tzcnGKxmKML1Nramu+9V3rRbS01J9NRmKapEydO2E6Xns/nA9F4+Y267q/GjV0qlSLIGSDqebjkcjmtrKw0f89kMorH4z6WCL0Ic50Mc9kxXKNcV2h7AecG+f0Z5XYH4cJ1AuPCz84fdDzBsAStTW9MZZ1MJjv+LZfLqVarcT8ER7xqV4M4sI2kODz10EMPtVwYgsQ0TVWr1R3/3Y7bRJBdsnoQSTy7ckYiEcc3gYlEwjYpXigUHO1v1FDXOw2rrq+urgZmDZJRRz3vNKx63q9SqdTSgzOdTtOBKWDCXCfDXHYM17jVFdpewDmvvj/j1u4gXLhOYFz4mSgMWpISoyuobXrjGb7dvc8TTzwRiDIiXLxsV4M4sI3p0+GpxcXFQPY+Mk1Td999t6Ntu43AdmNhYcHzfdpx09CYpmm7tniQRov6ibreG6/req1Wa3bWeOSRRzzdt92xxh31vDfDatO7qVQqOnbsWPP3VCqlVCrlY4nQjzDXyTCXHcM1inWFthdwbhjfn1FsdxAuXCcwLvxMFAY1SYnRE/Q2vVu97za9OtCNl+1qUAe2MVIcnorFYjuO3Au6SCTSsTa328RYtxHcw+A2mRWNRhkZ3gV1vdMw6vrx48ebx2lf18SpXC4nwzBs/y2bzY51D2PqeSc/23Q7tVpNi4uLzXIlEolA3WiiVZjrZJjLjuEah7pC2ws4N4jvzzi0OwgXrhMYF34mCoOepMToCEObvri4aDvTY/v9EbATL9vVYQ9s6ycPxkhxYBu7INftxaNcLvd0HLcGMZrz6NGjtq8zgjb8wljXS6WScrmcZ/vD6AtjPe/XsWPHmp8pHo8rk8n4VhbsLsx1Msxlx3CNQ12h7QWcG8T3ZxzaHYQL1wmMAz8ThWFIUmJ0hKFN73aPEsTZHxFMXrer7QPbDMPo66exDvl2jYFt7T8zMzN95QxIigPb2F1A7ILhfgxrLbLZ2dmO19wmr7tdOLmghl8Y67rdGvfATsJYz/uxuLioUqkkqR6YZbNZX8qB3oW5Toa57BiuUa8rtL2Ac4P6/ox6u4Nw4TqBceFnojAMSUqMhrC06XZ5gZ1eB9p52a4GfWAbSXFgG7s1wtz2MG/f3m6dbi+EZUp2BEMY67pX06VjfISxnvdqcXGxubxFLBYLbGCGVmGuk2EuO4ZrlOsKbS/g3CC/P6Pc7iBcuE5gXPiZKAxLkhLhNwptut09EtDO63Y16APbSIoD29glls+cOeNqn+3B9OLioqv9dWO3X7cPAuxGmh85csTVPhEMYazriURClmW5+kkkEh37jcfjHe+rVqsql8s8/Aq5MNbzXiwtLTUDs2g0qnw+P/QywJkw18kwlx3DNap1hbYXcG7Q359RbXcQLlwnMC78TBSOQpIS4TDoNt3rtb7tZriRpLvvvtvT42D0DKJdDfrANpLiwDZ2CbBareZ4GnK7bQeVZItGox2vub3A2l1QeRgwGsJc14fBNE1FIhFmRgi5UaznyWSyOQVRNBpVsVgc6vHhTpjrZJjLjuEaxbpC2ws4N4zvzyi2OwgXrhMYF352/qDjCYZl0G36zMyM5yO47XIAsViM55rY0aDa1aAPbCMpDrSx+wI1God+tfdON03TNnnthW4juN0kxu0u+vF43PH+ECxhretAP0apni8vL2t1dVVSfUTUk08+ObRjwzthrpNhLjuGa5TqCm0v4Nwwvz+j1O4gXLhOYFz42fmDjicYlmG06bFYTLVazdM1l+2Smel02rP9Y/SMSrvqZGAbSXGgjd30Do8//rijfbVPN2HXw2Un/SS0TdO0TVg7fRAgdT4MiEajQ1u7HIMX1roO9GNU6vnKyopWVlYk1QOzYrFIj9+QCnOdDFLZEWxBqiu0vYA/hv39CVK7g/HBdQLjws/OH3Q8wbAMq02/5557JEkPPfSQZ/tsT7DH43E69KGrsW9XLQAtqtWqJanjxwnTNFv2Ua1We9oun8+3bJtIJHrerr3csVjMUdnL5XLHvvL5vKN9IZjCXNedSiQSHZ83Ho8P9Jjw1yjU80wm09zWNE2rXC47KD2CIsx1MghlRzgEoa7Q9gL+8eP7E4R2B+MlyNeJVCrl2bMhIJ1ON+tRJBIZapvo57ExXobZpm+/Z/HiWXt7PsA0Tb4r6Cos7eogn+FPdcmVA2OrMeK6vYfV6upqXz3EC4VCyzpkiUSip95lpVKpY93u1dVVra2tdfRYbxeLxRSNRlUqlVrKUalU+h7hnclkWn6PRqOsozZiwlzXnVpbW+t4zelagwiHsNfzXC6nZDIpqf5ZisViS3u+vUzb63fj9cZrdr9fvnxZElNqDVuY66TfZUd4+F1XaHsB//j1/fG73cF4Cfp1wi7GtYuFgd2srq5qeXlZUr2u5/P5obWJfh4b42XYbXpjWZZSqaSlpSU9//zzrup2o+zby893BXZoV+sMy7IsvwsBBE2lUtHc3FzLa6Zpqlqt9ryPhYWFZnLaNM2eL3BLS0td1xQpl8u7JrdLpZIWFhZaXovH430lGds/fz/lR7iEua47sb2sDWFeNwW9CWs9z+VytlOBeo1bweELa52U/C07wiWs9Zy2F3DO7+8P1ygMg9/1vBd218FIJKJyuey2WBgj2+v6sDt/+HlsjBe/2vTl5eXmVO1unktub+/tvitAQ9jaVbt7mVgspnw+737nnow3B0bQ9qkk1OcUDe3bFovFno8bjUZtp32TZGWz2Z72YTdVViaTcVwGpk0fbWGu6/3oNqWipEBNdYfBCFs9t1sOY1A/8EfY6mQQyo7wCVs9p+0FnAvK94drFAYpKPV8JzvFvdRp9CqbzfpWz/08NsaLn2369unapfo01v0+m4zH4662x/gIY7tqF9NHo1FP9s0VANiBXXJ5t4C6PZDuJxltWfbrJTR++rm42e0nnU7vuE25XCYhPqbCXNd3Uy6XrWw2a0Uika7HM03Tymaz3ECOuLDU82KxOLTAzOubVvQnLHUyKGVHOIWlntP2As4F7fvDNQqDELR63q7XuDeTyVjFYjGwa4jCf34mCsPQ8QSjwe82vdvx4/H4jh2YqtWqlclkLNM0m9skEolBniqEXBjb1UEPbOMKAOzCrqe5aZpWKpWystmsVSwWrXw+b6XT6ZbgwzRNRwnlarXacmFr/KRSqb73ZfcwIBqNWplMxiqXy1a1WrWq1aqVz+c7Hh5Go1EShGMmzHW9oVwuW6Zp2u633x+nnwvBFoZ67kX99eOmFc6EoU4GpewIrzDUc9pewLkgfn+4RsFrQavnXpbHNM0hnEGEgZ+JQr+TlBgvQWjTd2uXY7GYlUgkrEQiYcXj8Y6BbNFolBlAsKOwtavDGtjGFQDogd0I6p1+4vG4qy9muVy2YrGYJdWnP3HTS71YLPZV9kbDgvEU5rre2F8/dd3uZ/t7+C6MpqDXczc3oI16HIlEdq3fjR9Gifgv6HUySGVHeAW9ntP2As4F9fvDNQpeClo9d1Meux/AsvxNFAYhSYnxEYQ2PZ1O93Wfsv1+hQ586EWQ21U/B7YZlmVZAtCTSqWiTCajUqmkSqWiSqUi0zQViUQ0OzurxcVFJRIJmabpd1E72JVdkiKRiEzTVCwW0z333KNoNOpzSREEYa7rQK+o5wiaMNfJMJcdw0VdATBstDsA0BvDMBxv22hDZ2dntba21vHvtVqt47Vqtdrczs9jA34rFArKZrOqVCpaW1tTpVJRrVZTJBJp/iwsLOjuu++m3qJnQW5XK5WK5ubm+irLTmXIZrOKx+M97Y+kOAAAAAAAAAAAAABgZE34XQAAAAAAAAAAAAAAAAaFpDgAAAAAAAAAAAAAYGSRFAcAAAAAAAAAAAAAjCyS4gAAAAAAAAAAAACAkUVSHAAAAAAAAAAAAAAwskiKAwAAAAAAAAAAAABGFklxAAAAAAAAAAAAAMDIIikOAAAAAAAAAAAAABhZJMUBAAAAAAAAAAAAACOLpDgAAAAAAAAAAAAAYGSRFAcAAAAAAAAAAAAAjCyS4gAAAAAAAAAAAACAkUVSHAAAAAAAAAAAAAAwskiKAwAAAAAAAAAAAABGFklxAAAAAAAAAAAAAMDIIikOAAAAAAAAAAAAABhZJMUBAAAAAAAAAAAAACOLpDgAAAAAAAAAAAAAYGSRFAcAAAAAAAAAAAAAjCyS4gAAAAAAAAAAAACAkTXldwEAAAAwGJVKRbOzszJN0++iSJJqtZrW1taav0ciER9Lg14ErQ4BAAAAQFAELV4i5g6foNUhYNQxUhwAAPSkVCppbm5OtVqt521qtZpWV1e1uLiolZWVwRUOTaVSScvLy5qbm9Pc3JyOHz/ud5GalpaWmuWam5vzuzjowkkdyuVyWlhY6Kt9AAAAAPAaYu5wIOaGW8TcgH8YKQ4AAHZVKBS0uLgoSXrooYeUTqdt31er1XTmzBnl83kVCgWVSqXmv9Hr1XulUklnzpxRuVxWqVRSoVDwu0hdVSqVlvKlUikfS4MGr+rQ8vKyKpWKFhYWVCwW+b4DAAAAfSDmDiZibrhFzA0EC0lxAAix5eXlZk/gxs3Q7Oxsx/sa/9bem3D7lErt2t9rmqZmZ2eVyWQUi8Uclxnhk8vltLS0JKk+9VZ7cJ7L5fTQQw+pUqnQY3WIksmkVldX/S5Gz9rrzYkTJ3wqCRq8rEPZbFYLCwsE6QAAYGQRf2NQiLmDiZgbbhFzA8FDUhwAQmzfvn2KRqPNoGiQAVKtVlOtVmM9ojGzPTg3TVP5fL7jPWtra5qdnW0+EKpUKqpUKkMt5zhaWFhoeUAW5PPemNKvIR6PE7wFgJd1KBqNKpPJKJlMEqQDAICRRPyNQSDmDi5ibrhFzA0Ej2FZluV3IQAA3tnee327Rk/zxn8br7Wr1WpaW1uzDfBN01S1Wh1EsRFA26dvk6R8Pt/zKIW5ubmOG/14PK5sNutpGdEqqOe9vV0qFouKRqM+lgjduK1D23vCRyIRgnQAADDSiL/hBjF3+AT1vBNzhwcxN+AvRooDwIhJJpO2QXmxWOy7l3mjp+ny8rIk6ciRI56UEcFXKpVagvNUKtXXtH2xWCxU04yNiqCe9+1likajBOcB5rYOZTIZnTlzRqVSSZVKRceOHVOxWPSwhAAAAMFB/A2niLnDKajnnZg7PIi5AX9N+F0AAIC37KZvM03T0bRrpmkqlUo1b6aZum081Go1HTt2rPl7NBrtWJtqN/RS9UcQz/vq6mpLu8S6ZsHmRR3a3sO9VCo1p4MEAAAYNcTfcIKYO7yCeN6JucOFmBvwF0lxABgxa2trHa+57WHemO5tbm7O1X4QDseOHWsJqPyeBgzhtv3hjmmaisfjPpYGwxCJRJRKpZq/53K5QI6mAAAAcIv4G04Qc8NLxNzjh5gbcI6kOACMmFKp1PGa22mTGj3U6ak++lZXV1vqUCqV4u8OxwqFQstaWfRYHx/pdLql7Ugmk7YjqQAAAMKM+Bv9IuaGl4i5xxcxN+AMSXEAGDHlcrnjtaNHj7raZ2NqnyBOEwXv1Go1JZPJltcIqOBG+xSAiUTCp5LAD431MBuY0g0AAIwa4m/0g5gbXiPmHm/E3ED/SIoDwIjZ3kO0wW1P9X379kl6bRo3jKbjx4+3/J5KpXgQA8cqlYoKhULz90QiQX0aM4lEoqXneqFQUC6X87FEAAAA3iL+Rj+IueElYm4QcwP9IykOACPmzJkzHa+5nYorFosxpdeIK5VKHTfO9FiHG+091tt7MGM8tP/d2x8EAgAAhBnxN3pFzA2vEXNDIuYG+kVSHABGSK1W61g/xotAOhqNKp1O0+N0hD300EMtv8diMf7ecKxWq2l1dbX5eywW46HemLr77rtbfq/VavRcBwAAI4H4G/0g5oaXiLnRQMwN9IekOACMELte6m6nbsPos7thbl/nDOjH9uBcosf6ODNNU7FYrOW19geCAAAAYUT8jV4Rc8NrxNxoIOYG+kNSHABGSKlU6njt6NGjPpQEYWJ3sxyPx30oCUbF9joViUQ6AjSMl/YHfqVSqWXtOwAAgDAi/kaviLnhNWJubEfMDfRuyu8CAAC8Uy6XO16jpzp2097DeJyDqUqlolqtJtM0BzL1WGP/a2trmp2dHdhx/JTL5VqmkRxkj/XG3wrBZtemZDKZsW5rAABA+BF/o1fE3K8h5naPmBvtiLmB3pEUB4ARYjd925EjR3woCcKiUCh0rIMXtAc5lUpFlUql4/XZ2VnXZS0UCspmsyoUCrbHiEQiisfjSiaTjgLpxjpfjz/+uO1IkoZYLKZkMjkSowW291g3TVOJRMLT/bef02w2a3veVldXlc/nVSqVVKlUmg9DIpGI7rnnnp7Pda1W00MPPdTcz/Z9xWIx3XPPPQP9zjTq6JkzZ5oPeBoan2dxcVHxeDywD3sa52v7d4w1zgAAQNgRf6MXxNzE3F4j5vYWMTcwZiwAwMiQ1PJjmqbfRULAxePxjnqTz+dd7zeVSnXsNx6P972ffD7fsZ/GTzQadVy+dDptRSKRrvu2+4nH41a5XO5p/9Vq1fYc7PYTjUatarXq+HN5dd6dKhaLLcdOpVKu91kul61sNmulUikrGo12fL5sNtvy/nw+39Pf1jTNXet6Op3u6e8Wi8Vc/d3aVatVK5FI9F1/IpFIx/no16DqkF1b47asAAAAfiL+Ri+IuYm5vUTM7Q1ibmB8saY4AIwIux639FLHbuzWGApKvSkUClpcXOx43TRNxeNx3XPPPX3vc3V1VTMzM1peXrb9zuwkl8spnU73dIzbbrtNKysrfZevVCppYWGh7+2Con2tvBMnTjje19LSkgzD0NzcnJaWlrSysrJjz3+p/jdaXFzs6W9bq9W0uLjYtff00tJSz9PQFQoF3XbbbX3XKTvLy8uamZlpTrEYiUSUTqdVLpdVrVZlWZbK5bIymUxHb/lKpaKlpSUtLCx4UhYv2X2XH3/8cR9KAgAA4B7xN3pFzN07Yu7dEXMTc3dDzA30hqQ4AIyIbtNQAd20Twsl1YPfIKwXZRecRyIR5fN5VatVZbNZpVKpnvdXqVS0sLCgZDLZXBMrlUo192dZlqrVajPw6bbu0k7Bc/sxotFoy/4bx8jn80qn012/n5VKZaBrgg1KrVZrCXbj8birulQqlfrafmVlRUtLSy2vNaY628nS0lLHgyq7wH23fTUCfqca229/sJPJZFQul5VKpRSJRJrnIxKJKJFIqFgsKpvNduyrVCppbm7O9gGcX+we/AWpfAAAAP0g/kYviLmJub1EzE3MvRNibqBH/g1SBwB4yW7KoUwm43exEGCZTGZg0365mQ4qm812bJtOpx2XJZ/PW6ZptpSjl2m3isWiFYvFWspRLBa7vn/7Z45EIj2Vbaepwpzwcyq39mPvdK6c6Da1WSaTaTl2NBq1nSLMrr63/72q1WrLdHHxeLzjc+w2zZqT6euq1WrH9HP9THNWLpdb6vj2n36nZhxkHbIrn5dT4AEAAAwL8Td6Qcy9M2Jud8cm5u4dMTeAhikBAEbC6dOnO17LZrMqFosdr6+trTX/v9FrufFarVZr/n82m+3aexfhl8/nO17ze3TD6uqqkslk8/dIJKJsNtsxZZXT/aVSqZ6mY5PU7HW+tLTU7MHcazl6PUaj571dL/VcLqd4PN7TfoJge2/rWCzm+G/WTTqdbk5v1v56pVKRaZp65JFHup6zRCKhSCRi27O8UqkomUyqUCioUqkoGo0qm83afh9M01Qmk9Hc3Jzt321lZUUnTpzoq8f90tJSy2ijRCLR198+EonoySeftB1Vsbi4qHK57Pt3W6qXs31UVaFQCFU9BwAAkIi/0Rti7p0Rc/eHmLuOmLs7Ym6gB35n5QEA3mjv8ej2xzRNvz8SBmx779zGj1ejG5z0fG3vwR2LxVz1aC0Wiy37i0ajjvaTz+d76kne+My99ljfzu77m0gk+t6PX73W23uE99tTulfdemabpmmVy2VHZW3/icViPZenfVRD46efHud2fzOn9b7bZ+un7g+yDtmdLzcjUgAAAPxC/I1eEHP3hph7d8TcxNy9IOYGdsea4gAwIuzWNHMjkUh4uj905/Xfzs1x/erZmkwmW3oAN9Yec7o+Vq1W07Fjx1pee+SRRxztq3FOdivLvn37JNn3QN+N3TZnzpzpez9+2d5LPxKJDGyEy+zsrO3rxWKx57qbSCS6/i0ba+j1qtvohF73UavVWnr7S+7WhWv0zG9XKpU61mvzg13ZyuWyDyUBAABwh/gbvSDm7g0x9+6IuVsRc9sj5gZ2R1IcAEaAXaAVj8dlWVZPP9VqVdVqVeVyWeVyWcViUSdOnPDhk4yXlZUVzczM2E6/NGi1Wq05dd923QKgQVpcXGxO0WWapvL5fM9ToXVz/Pjxls8XiUQcTy3WCCp2OzepVErVatXRAy27gNavzhL9akx/1uDkAYUb3YLS3bax02+9i0ajtsfu9W/30EMPdbx2zz339FWGdt0+w7D/LnbsHjyE6UEUAACAFNz4u1araXV1VYuLix1JIAwfMXfviLl3RsxNzN0rYm5gd6wpDgAjoFQqdbx29OjRnrdv3DQ57SmJ3pVKJWUyGT3xxBPNANKPnuLb17Xbbph1oFKpaHFxsRnMNHoMuz0ftVqto4eu2/WTUqlUs1f6TpyeP7vPbPcAJYjaA8Jhj3Jx0qlkbm7O9nUnD3Gi0WhHQN7t+9XO7mGl23XhutX1SqWiSqXi6zpndt+hsNRzAACAhqDE37VaTWfOnFE+n1ehUGgpF7G9/4i5+0PM3R0xNzF3r4i5gd0xUhwARsDp06c7XnN7k4fBWFhY0OrqakeP6mHz+6a4UChoYWGhGdjE43GVy2VPzsUTTzzR8Vo/D6nspNNppVIpV/vYTRgfXJVKJRUKhebvgz5HdpyMtOhWz7zaVy/fr+3nbbf99atbkO73dG52dbzXhxkAAABB4Wf8ncvltLCwoJmZGc3MzDRHhdsl6v2yvLysubk5LS4udr3nHQfE3P0h5rZHzE3M3Q9ibmB3JMUBYATYBcB+9kxEd3Y3qEEKzIYxlVtjSr9GEJNOp5XNZj3bfyaT6XgtaJ1ESqWSVldXlUwmtbi4qJmZGdugzu8HKbtpn4osLMsueNk+dusBvxu7NdC8Ktfi4mLPxwQAAEB//Iy/19bWNDs7qyNHjigWiwUu7p+bm9PKyooqlYoKhULLtN2oI+YeDmJufxFzAwgqpk8HgBFgt5ZO0IJj1M3OznYEXUGaPn2QarWakslkx0MRu5EWbtg9pPJj3baGWq2mJ554QsVisWMtsDBrnzIvHo8HqoPHTvysDw12vda9On9HjhyxfT2IPcSD/hAKAACgnZ/xdyKR6Jg6eW5uLhAxxurqqm05ksnk0Kd7DgJi7uEh5g4eYu7gIOYGWpEUB4AR0H7DH7QeuthZL+tmea1bgLK2tjawIKvb1FW5XE7Ly8sd62Q5EZTgt1araXV1VY8//viOUxlGo1EdOXJECwsLWl5eDlWwEtYe60ExyL91t2uA398Pu88cloc6AAAADUGLv2OxWCBGYxeLxa7/ViqVfD9Pw0bMPVjE3NgNMXcdMTfQiqQ4AIQcU6eHS1CmT+92zEEGDbFYTKZp2q6xtLKyon379rleH6tb+Qf54KHd8vKyVlZWbP8tHo9rcXHRdqrDdDodqgB9+4O3aDQ6dg+53LLrQR6mv78Tly9f7ngtCCMIAAAAehXE+DsoCY+dpjgex1iBmHtwiLnRC2LuOmJuoBVrigNAyJ05c6bjtaNHj/pQEjjlxw3qTr3WB8U0TWWzWcXjcdt/3ymw7VW3XrnDCHxKpVJzDb3tIpGIstmsLMtSNptVIpHw/cGZW6urqy3nlB7r/bOrk15+/+weSPkdDNNrHQAAhB3xd3eJRML23s5tEjasiLm9R8yNfhBz1xFzA61IigNAyJXL5Y7X6D2K3fjRa71htyB9eXnZ82MOegqrSqWiY8eOdRwnkUioXC53/bxhtX3aPdM0R+7zDYPdd9DL759dMO73gyG7BxB+PzQAAADoB/F3d6Zp6vnnn2+uexyJRJTJZDyZsjuMiLm93z8xN/pBzF1HzA20IikOACFnN33bkSNHfChJq8b6TouLi1pYWOj6vkKhoGQyqcXFRc3NzckwDM3MzGhhYUFLS0vK5XIDDRobx19YWNDMzIwMw2j+zM3NaXFxUSsrK76vCzQsg+y1vl2j97adlZUVx0F6twAkn8872l+vFhcXO+ppLBZTJpMZ6HH9UCgUWr4P9Fh3pltgOsi2xu8e4vRaBwAAYRfU+DsoGiOVq9WqyuVy15hvnBFzO0PMjX4Rc9f5XSYgaFhTHABCzm76Nq9veEqlkiKRyK77rVQqKhQKymazKhQKzdftgqZaraZjx47ZPlSo1WoqlUoqlUrNtbASiYTS6bQnn61Wq2l5ebllfSY7lUql+ZmWl5cViUSUTqc976Hr1w1qNBrtOP/DXF+pEbza/R0a06H1O6qg27ncXh+9lsvlbIOqbDY7sGP6qf1vwoMuZ7rV1UZ765bdw7Z77rnH9X7dsCuT3z3pAQAA+hGk+BvBR8ztDWJuYm4niLnriLmBVowUB4AQq9VqHQGV11O35XI5LSws6Iknnuj4t0ql0hxl3RhZnUwmdw2GKpWKbrvtNtuEeDerq6uamZlpJsmdWl5e1szMTDMobCS6y+WyqtWqLMtSuVxWJpPpOJeVSkVLS0taWFhw1LN0dXXVdrtMJqPl5WUlk0klk0ktLS01R9g3RswPgt2IhsuXLw/kWN1kMhlPe693e3jU6OAwCHY90xtTBo6aRieRhm7rBmJ3sVjM9nWvRljYPWzrdsxhsSvT4uLi8AsCAADggN/xN8KHmNsbxNymfwUKMWLuOmJuoBVJcQAIMbuAw+up2xo3i3b7LRQKWl1d7Su5XSqVtLCw4Lh39NLSkqNpvmq1WnMq9IZMJqNyuaxUKtUS2EUiESUSCRWLRduex6VSSXNzcz31hG6MSp+ZmVEymbT93LlcTisrK1pdXdXq6qpyuZwKhUJztPyg1v+xm9bej2niM5mMUqmU7b85CdK7BSGDWsvObrTI0aNHB3Isv7Wfw0GsRTcuugWmXjwAtWuTY7GY7w9ThnHNAgAAGBS/42+EDzG3N4i54QQxdx3XE6AVSXEACDG7wGBubs7TYzRuFu16wN99993K5/PK5/PKZrNdg6yGQqHQTIhHIhGlUinl8/nmKO1yuax8Pt9MUnezsrLSktzeTa1W08LCQksSe6f1tbaLx+Mql8u2N7aLi4s7JsZXVlY0MzOjlZUVV1Okef03bbC7Me6ng4OX0um0Z0F6t+mquo3Ud8vub+tkeqphrS3nVK1Wa5l2LxaLMQ2XC90C5lqt5nrqQbvtB/WAqld23z3TNH1/aAAAANArv+NvhA8xtzeIueEEMTcxN2CHNcUBIMSKxWLHa14Gz5VKpZnAtmOaZksP4Xg8rkqlYjvFeS6X09LSkkzTVDqdtk1Im6apSCSiWCymdDqt1dVVLS8v2wZAy8vLikajPU1NtLS01HJzmEgk+loXPBKJ6Mknn7Tt5b24uKhyudz1HDVuwmdnZ2Wapm0yPx6P79jL2es1zBvs6krjbz6Im+bdOgY0Agi7c9TPemfxeFyRSMQ2IFhaWrL93njt9OnTff3dFhcXB7a2nFf7bV+HLig91p082AjKw5ATJ07Ynsfl5WVX9bR9esFYLObq2uBFHerWkx4AACAs/I6/ET7E3INDzD08xNydiLmB8GKkOACEmF1PdS+nxWkkt/u5sbObnqixFrdpmioWiz2N0JbUnMK820OBZDK56z6Wl5c7enA66b0ZjUZt17GS1HXN78ZI+Gw2q0wmo3Q6bRv4JpNJpVKprj+DfChid4NsV6+GJZ1Od/37rKys9PQ3b+zHTqlU8nyNdru/aT+9jpeWlrq+PyiBpCQ99NBDzf9vdF6BO93awlKpZNu5qBeFQqHl4ZRpml3brmGyW7dtVKc8BAAAoymI8XcYDCoRGRbE3O4Rc8MpYm5ibqAdSXEACDG7XoBe9jZu3JD3k5Tttv51IyHeb4I3EonY3thJ9WR7e0/a7Wq1WkcP6Hg87vgcJRIJ2/K7uZn2m12w6sV0bm4efKRSqa4B9urqak8Bdjwe79prvDFrgVe6TYm3U91svKexNn2xWPTkuzuoB065XK5l3371WB/0A4thPxAxTVPZbNb2344fP+5o6sH2h1jZbLavdndQdcjuwV+vHaQAAACCIIjxt9cqlYoKhULHT78xYiPmMgxDx48fd1SW7fvoFr/VajUlk0nNzc3JMAwZhqGZmRnNzc1paWlJq6urviflibndI+YeHmLu3RFzAyFnAQBCqVwuW5I6fryQz+etaDTa3Gc2m+1522w2a1uuTCbjqkzpdNp2v9FotOs2qVSq4/39fBY73T5fJBLpaXvTNDu2zefzrsrkRrVa7ShPLBZzvd9YLNaxX9M0+9pHt7954+9eLpd33cf2emxXnl7rZTabtaLRqO37M5lM12Ok0+mO95fLZSsejzfPdbVatSzLst2+WCz2VL4GL867ne3n0Yv9OWFXVyVZiUSi7311+x47+S52+/v3I5FIdG1XGvXDyX6ctLuDqkP9tN0AAABBE9T427Ls4954PO6oHDvFX91Uq1Urn89b6XS6Gef0WxYn+9gpXmz/SaVSfZ8PrxBzE3P3gpi7O2Lu3hBzA70hKQ4AIVQul3cNPCKRiBWNRq1YLGbF43ErHo9biUTCSiQSVjwet2KxmBWLxaxoNGpFo1ErEol03V8/QUK3G18v2CWUJXW9gbV7by9B3W66nade9h20pLhldQaxbm7Gq9XqrgFrPwHHTvuS6g9HdnpoVK1WbQMOu/1kMhkrm81a+XzeymazzQcy2/9m3f5WO30fI5FI8zu4/XvWHrx3K5cf5327YrG460OHQSuXy12DWNM0rXw+3/PnKxaLXf9e0Wi074ci3c57IpHoq73Z6fP18mB0+8ND0zT7/hzDrENOHx4AAAD4Icjxt2V5kxTvlhA3TdOKx+O2MUAmk+kao/daFqf7sEuc7/YTjUYd38+6RcxNzL0TYu6dEXPvjpgb6B1JcQAIkUQisWPwPKiffm7K7JLiXvVy7XYDaxc0dQvqvdAtAO8lcAliUtzub9ZvYNHLgwynAehuQXov5bV7UORlWe0CkG4/dsFTtx7Z7dttrytuzns/IxPa6/uwHiQ5/Wzt56lYLLra126Bbi/1s7Gv3ew0UiMSiViZTMYqFotWtVq1qtWqVSwWrVQq1fL54vF4z3+jYdUhu8/l1wNJAACAXoUh/rYs90lxu9g5EonsGqd2i8/7KUu/+6hWq7YJ5kgk0tN9rRcjtJ0g5nZfVmJu7xFzt/4QcwPjgTXFASBEVldXm+vdmKbZ/IlEIl1/tr+v8bOb9v26XXep2zrj/VpcXLR93W49Hrt1yL1am61bObqtfR508Xi849xkMpmet69UKruuidStHvayllIikei6BlQsFlMmk9n1b5tOp1Uul7uuebaTSCSidDrdtQySFI1GVSwWdy1HLBbT888/r2g02vJ6t3W1tp+v9nPl5Lxv37YXlUpFuVyu+XsikfB03cSd9FI3eqlTa2trruqn0zXPnNT1VCrVtZ5WKhUlk0ktLCxoZmZGMzMzWlhY0MrKimq1muLxuMrlsrLZbM9/o2HUIamzPYnH40OrRwAAAE6FNf7uRy6X64hvG7FTLBbbcdtMJiOrPuBK1Wq1rxjSyT4qlYoWFhZUKpVkmqbS6bSq1aqq1arK5XLz/7utlS1JhUJh13WoB4GYe2fE3MTcThBzv4aYG+iDvzl5AMCosesB3et627vpto6b3ZRAdlM1ebWeTrceyr3s3wzgSHHL6ux569XfzEvZbNYyTdNKJBKuzlm1WrWy2awVj8etaDTa8jcxTdOKRqNWIpGwMpmMo+n2M5mMFYvFWvbb6HEcNu29/b1YfgC9aUyt1l5PzesjYWKxmOvvwjDYtdvUIwAAAO84HSluFwP2Ox1wO7s4vN+p3O32sX0keC/rg5fL5a6j/P2KdYm5ibntEHP7h5gbGE+GZVmW44w6AABtcrmclpaWWl6LRCIql8ue7N8wjI7X8vl8Ry/2ubm5jl6VjZ7FgyqHaZqqVqs7bjczM9PRS9Su/H5oL1u5XPZsdD3CaXs9j8VioZ0NAf5ZWVnR8vJy8/d4PL7jCBAAAAD0Z3l5WSsrKy2v7XbP1X6PFovF+hr92E0ymewYid3v/Z/dPhoymYwSiURP+6nVapqZmbH9N79iXWJutCPmhlvE3EB/mD4dABB6dkGk3fRLvUylNM5OnDjR8vtO085h9LU/iNoeZAG9euihh1p+p10BAADwVzKZbLm3T6VSyufznky1O8h9pNPpnhPijf10u/csFApOiuYaMTe2I+aGF4i5gf6QFAcAhJ5dUtwuAe50nSI7doG6V2un+yWVSrWcy9XVVToSjLHtgVQkEgnEbAYIl1wu19KGJBIJRsIAAAD4aHFxsZmIM01T+Xw+FAkU0zSVSqX63q7bNl7NINcvYm5sR8wNt4i5gf6RFAcAhIZdsBiPx23fa5e09jLYtEuAj8KNZyaTafm9vccpxkMul2tZfoAe63Bie73ZaaQOAAAABqtSqWhubq45QjoSiahYLIYmCXfkyBHH2/Y6s9ywEHNDIuaGN4i5gf6RFAcAhEb7GuFSfeo3O91GbdvtwyteTBXnt1gs1tLRYGVlhZ7rY2j7gxnTNPuaphCQ6qNetre3jzzyyEi0kQAAAGFTKBS0sLDQvDeLx+OhW8vazX1kNBrteM3PGJeYGxIxN9wj5gacISkOAAiN9nW/TNPs2rO9241gqVTypCx2PcvvueceT/btt2w22/KAZGlpycfSYNhKpVLL94TgHP2q1WotPdYTiUTXWT0AAAAwOKurq1pcXGwmXdPptLLZrL+FGrIgJv+JuccbMTfcIuYGnJvyuwAAAPQqn8+3/L5T4BCLxWwT4Pl83pMbRbue3GGZeq4X2WxWCwsLkuqdEXK5HDfYY2T7lH533323jyVBGB0/frzZRkaj0Y4pIgEAADBYtVpNyWSyuX54w+nTp30qkX/27dvndxFsEXOPN2JuuEHMDThHUhwAEAq1Wq1lpLhpmjpx4kTX9y8uLmplZaXj9SeeeML1zaJdsj0Wi43UNEXRaFT5fF6Li4uS6jfco/YZYS8ajdpOMQj0ovFAT6q3008++aTPJQIAABg/7bOsNeRyOS0vL7PubAAQc48vYm64QcwNuMP06QCAUNi+3pJUn/Ztp2CxWzDZnlx3wm57Nw8Vgrp+WCwWa06tV6vVmNINwI62txOmaapYLPJQDwAAwAft61Zvt7KyYtuBHMNHzA2gH8TcgHskxQEAgVcqlVqC9kgk0tOaS91Gkm9fd8eJ9pHmsVjMVS9fu/XJgyIejzcT/oVCwfW5AzC6jh07plqt1uytHsT1GwEAAMaBaZrKZrNdE+PLy8skxgOCmBtAr4i5AfdIigMABq5SqTgend3eW9o0zY61xbvpljgvlUrNqYb6VSgUVKlUWsrjdjr2oI4Ub0ilUs0gfWVlxfVIewCjJ5lMqlQqNYNzpgMEAADw326JcRKwwUDMDWA3xNyAN0iKAwCGYnFxUaurq31tU6vVdOzYsWYSOhqN6vnnn++5J2Sjd7yd48ePtyS3e5VMJlt+z2azffXMtHuv26T6MKRSqWY5g57EBzB8a2trzenbCM4BAACCI5vNdu0wvrKyQmI8IIi5AeyEmBvwBklxAMDQJJNJLS4u9pSMLhQKuu2221QqlSTVE8dO1sqJx+O2DwBqtZoWFxf7CjaTyWRL2TOZjGKxWF/lsUuKVyoVLS0ttZSlVCppaWlJCwsLfe1/kBKJhMrlcteRBgDGVzabVbFYZPo2AACAAMpkMiTGQ4CYG0A3xNyAN6b8LgAAYLwUCgXNzc0pGo3qnnvuUSQSad7Qra2tqVQqKZPJNJPPsVhM2Wy272T4do3e1u0j1SuVim677TY98sgjuwadS0tLzSnX3UxVtLi4aDt1ey6Xs32936T7oHHzDaAb2gcAAIDg6hYXS2quL96Ywhv+4Z4aQDe0D4B7JMUBAL4olUrNUeB2TNPsKVndq0wmo7m5uY4e8I01yyORiJaXl3XkyJHmTWalUtHjjz+u1dXV5ijueDyuRx55xHGSPpFIKJ1O9zRaPhqN9rx+OgAAAAAAO8lkMjJNs5kE347EOAAAGHVMnw4AGDjTNPsa8RyPx/X88897PmVYKpXqOhVZpVJRMpnUwsKCZmZmNDMzo4WFBa2srKhWqykej6tcLrsetS71tg55JBLRk08+6eo4AAAAAABsl06nlUqlbP+NqdQBAMAoY6Q4AGDgZmdnlc/nVavV9NBDD6lUKunMmTPN0demaSoSiejIkSNKJpOOpiXvVSQSUTabVa1W0xNPPKF8Pq9KpaJKpaJarSbTNDU7O9uc1n1pacnzKcyj0ajK5bJWV1ebU8U3zkUkElE0GnU1Gh0AAAAAML4a8WU3jdHgwxgxvltZhrUPAAAAkuIAgKExTTMwU7GZpqlEIqFEIuFbGfw+PgAAAABgPKXTae3bt892ZHhjxrTGOuQAAACjgOnTAQAAAAAAACCE3IyiTqVSXTuur66uamlpaWhl8XIfu1lbWxv4MQAAQPCQFAcAAAAAAACAEKpUKh2vnTlzpuftd0qM53I5LSws2B5jEGXxah9OjgEAAEYfSXEAAAAAAAAACJFarabV1VUVCgXbf2tMgd6LVCrVdar0Uqmkubk5LS0tKZfLDawsXn6e3Xi9PwAAEA4kxQEAAAAAAAAg4JLJpGZmZmQYhmZmZpRMJru+d3l5uflewzB2nQo9kUjsuIZ4LpfT0tJSc5S1m7IsLi56tg+ntu9vZmbGdm11AAAwWqb8LgAAAAAAAAAAYGeVSmXX0c2maXa8VqvVehoVnUgkNDs7a5tAj8ViWlpaUiQScVyWxvsbifW1tTXH+3C7Lvj2/fZ6fgAAQLgZlmVZfhcCADA6Gr3Ht4tEIiqXyz6VCAAAAAAA9CqXy+n48eO6++67tbS0pFgs5neRAAAAXGOkOAAAAAAAAABAkhSPxxWPx/0uBgAAgKdYUxwAAAAAAAAAAAAAMLJIigMAAAAAAAAAAAAARhZJcQDAwK2trfldBAAAAAAAAAAAMKZIigMAAAAAAAAAAAAARhZJcQCAp+xGhddqteEXBAAAAAAAAAAAQCTFAQAeKxaLtq+TGAcAAAAAAAAAAH4wLMuy/C4EACC8arWa1tbWVKvVdObMGSWTSdv3xWIxLS8vKxKJaHZ2VqZpDregAAAAAAAAAABgLJEUBwA4try8rJWVFcfbcwkCAAAAAAAAAACDNuV3AQAA4bVv3z5FIhFJao78np2d7fr+xnrjTKUOAAAAAAAAAACGhZHiAAAAAAAAAAAAAICRNeF3AQAAAAAAAAAAAAAAGBSS4gAAAAAAAAAAAACAkUVSHAAAAAAAAAAAAAAwskiKAwAAAAAAAAAAAABGFklxAAAAAAAAAAAAAMDIIikOAAAAAAAAAAAAABhZJMUBAAAAAAAAAAAAACOLpDgAAAAAAAAAAAAAYGT9/wHhLxAbOHDOeQAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "fig = plt.figure(figsize=(20,10))\n", - "\n", - "ax = []\n", - "n = 0\n", - "l_tot = 1\n", - "c_tot = 2\n", - "\n", - "x_boundaries = -0.6, 0.2\n", - "x_ticks = [-0.6, -0.4, -0.2, 0.0, 0.2]\n", - "y_boundaries = 0, 0.15\n", - "y_ticks = [0, 0.05, 0.1, 0.15]\n", - "\n", - "n += 1\n", - "ax.append(plt.subplot(l_tot, c_tot, n))\n", - "\n", - "for path, legend, color, symbol in zip(paths, legends, [myred, myblue], [\"s\", \"o\"]):\n", - " data = path + \"Epot.dat\"\n", - " file = open(data, \"r\")\n", - " steps, Epot = np.loadtxt(file).T\n", - "\n", - " proba, energy = np.histogram(Epot, bins=50, range=(x_boundaries))\n", - " energy = (energy[1:]+energy[:-1])/2\n", - " proba = proba/np.sum(proba)\n", - "\n", - " ax[-1].plot(energy, proba, symbol, color=color, markersize=15, label=legend)\n", - "\n", - "plt.xlim(x_boundaries)\n", - "plt.xticks(x_ticks)\n", - "plt.ylim(y_boundaries)\n", - "plt.yticks(y_ticks)\n", - "\n", - "complete_panel(ax[-1], r'$E_\\textrm{pot}$ (kcal/mol)', r'$p (E_\\textrm{pot})$', legend=True)\n", - "\n", - "x_boundaries = 20, 24\n", - "x_ticks = [20, 21, 22, 23, 24]\n", - "y_boundaries = 0, 0.2\n", - "y_ticks = [0, 0.05, 0.1, 0.15, 0.2]\n", - "\n", - "n += 1\n", - "ax.append(plt.subplot(l_tot, c_tot, n))\n", - "\n", - "for path, legend, color, symbol in zip(paths, legends, [myred, myblue], [\"s\", \"o\"]):\n", - " data = path + \"Ekin.dat\"\n", - " file = open(data, \"r\")\n", - " _, Ekin = np.loadtxt(file).T\n", - "\n", - " proba, energy = np.histogram(Ekin[10:], bins=50, range=(x_boundaries))\n", - " energy = (energy[1:]+energy[:-1])/2\n", - " proba = proba/np.sum(proba)\n", - "\n", - " ax[-1].plot(energy, proba, symbol, color=color, markersize=15, label=legend)\n", - "\n", - "plt.xlim(x_boundaries)\n", - "plt.xticks(x_ticks)\n", - "#plt.ylim(y_boundaries)\n", - "#plt.yticks(y_ticks)\n", - "\n", - "complete_panel(ax[-1], r'$E_\\textrm{kin}$ (kcal/mol)', r'$p (E_\\textrm{kin})$', legend=True)\n", - "\n", - "fig.tight_layout()\n", - "plt.savefig('energies_300K.png', bbox_inches = 'tight', pad_inches = 0.062)\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAB8UAAAPdCAYAAAATbrkYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAADYYUlEQVR4nOz9X4yb930n/n4oyYaDPZWpsZMikaJKz2zzZ3vq2hypF780i01FentxLn5YD2VjgS7QxuI02YsepPFM5F5096Irc9IGp8BvW5NK92IDLCINm6uDA6yHtoFNe+Uh46anm6T1UK4iJdjUHlHOWSSwLfFcsGRmNJzR/OGQHM7rBQwiPuTzeT4PNTMR/Obn+021Wq1WAAAAAAAAAMAYOjTsBgAAAAAAAABgrwjFAQAAAAAAABhbQnEAAAAAAAAAxpZQHAAAAAAAAICxJRQHAAAAAAAAYGwJxQEAAAAAAAAYW0JxAAAAAAAAAMaWUBwAAAAAAACAsSUUBwAAAAAAAGBsCcWHpNlsRqPRGHYb29LpudlsDrsVAAAAAAAAgC0Rig9ItVqNfD4fk5OTkUql4tixY90/p1KpmJqaivn5+ZEKnCuVSszMzMSxY8fW9Nx5PDk5Gfl8PiqVyrBbBQAAAAAAAOgp1Wq1WsNuYpxVKpW4cOHCtsLu2dnZKBaLe9fUfeyk53Q6HRcvXozZ2dm9awwAAAAAAABgm4Tie6TZbMaFCxfWTFHPzs7G008/HUmSRDqdjkajEdVqNYrF4rql1DOZTLz88suRTqcH2ncul4tqtbrj85MkiVqtNvC+AQAAAAAAAHoRiu+RycnJbtC9laB4ZmYmyuXymmOZTCZqtdpettnVbDZjamqqL/ucC8YBAAAAAACAUWFP8T2Qz+e74XI6nd5SQFwqlWJ6enrNsXq9HjMzM3vV5hoXLlzoGYgXCoVYXFyM5eXlaLVacevWrVhcXFzX62qNRiMuXLiwl+0CAAAAAAAAbIlJ8T6bn5+Pubm57uOFhYVNA+TVms1mHDt2bN3x5eXlSJKkbz32cuzYsTV7iBeLxfvuD36/vcdrtVpkMpk+dgkAAAAAAACwPSbF+6jZbK4JxJMk2XIgHtGeKu8VRK+uuReazWY32O4sfX6/QDwiYnp6Oq5du7bhFHypVOpjlwAAAAAAAADbJxTvo0uXLq15vJOlzy9evLjuWKVS6cte3xupVqvdPy8uLm5rujudTsfly5fvWxcAAAAAAABgGITifdJsNmN+fn7Nse1MiXek0+meoXSlUtlxb/ezuLgYEe1+d7JM+/T0dGSz2XXHV1ZWdt0bAAAAAAAAwG4Ixfvk3qnodDq9433AewXMneB6LywtLUVExNNPP73jGr2m4jfaaxwAAAAAAABgUITifXLlypU1j8+cObPjWrlcbt2xvVyKvF6vR8TOJts7en0AYDvLsAMAAAAAAADsBaF4n9wbWu8mEN4oUO+E1/3UaDQik8nE7Ozsruqk0+l1x3Y6KQ8AAAAAAADQL0eG3cA4qNfr65YKn5yc3HG9XgFzxM8C7H5KkiRqtdqu6/RaKr3XkuoAAAAAAAAAg2RSvA86e3KvNjExsauavcLvRqOxq5p76d73IJPJ9NwbHQAAAAAAAGCQhOJ90GvSerdLh/cK1V977bVd1dxLpVJpzePLly8PqRMAAAAAAACAnxGK90GvCe6NlkDfql6heq8lykdBpVJZs995sVjs+zLvAAAAAAAAADshFO+DXqH4bpdP7xWqr6ys7KrmXmg2m3HhwoXu40KhELOzs0PsCAAAAAAAAOBnhOJ9sBd7fT/yyCPrjo3ipPiFCxe6fc3Ozq5bRh0AAAAAAABgmI4Mu4Fxtdvl03d7/l5rNBqRz+e7y6aXSqUoFAq7qnn9+vW4fv36ts87efJknDx5clfXBgAAAAAAgP1O3tabUHyXBjm9PYzl06vV6pr9zev1ely5ciUqlUr32PT0dJw5c2ZX1/ln/+yfxU9+8pNotVrbPvfnfu7n4ujRo7u6PgAAAAAAAOx377zzTvz4xz/e9nmpVCo+8IEPxP/+3/97D7oaPqH4iNrtnuT9UK1WI5fL3fd1lUqlG5JPT0/HxYsXI5PJbPk6169f33EgHhHx4x//eEc/3AAAAAAAAEBEq9WKn/zkJ3H9+vWxnBgXiu/SIKe3Bx2ULy4ubvucTkCezWajVCqtmTLfyPXr13cciEeYFGc0/PCHP4y7d+/GoUOH4sMf/vCw24Fteffdd+Mf//Efu48/+MEPxoMPPjjEjmD7/B5mP/N7mHHg9zD7md/DjAO/h9nP/B5mHPg9zCjZ6aR4RDsYF4rT0yCXTx+0zn7hhUIh8vl8JEnSDbkbjUZUq9VYWFiIarW67txqtRpTU1Px8ssvb2tqPCLiP//n/xyPPfbYll8/7nscsD+cOHEibt68GR/+8Ifjxo0bw24HtuUv//Iv49Of/nT38Te+8Y34tV/7tSF2BNvn9zD7md/DjAO/h9nP/B5mHPg9zH7m9zDjwO9hRsl29xT/9re/Hf/+3//7PexoNAjFdymdTvc83mw2N3yu39faK8ViccNAO0mSKBQKUSgUolqtRj6fX/cBgWazGefOnYtr165tq/fHHnvMP3oAAAAAAABgmwyT9nZo2A3sd4Nc0nzQy6dvdcI7m81GrVbr+Vyz2YwLFy70sy0AAAAAAACALROK75FB7jU+CpIkiVKp1PO5SqUy1svMAwAAAAAAAKNLKL5Lmy2fvhu9QvXOft6jqlAobPh+XL16dbDNAAAAAAAAAIRQfM/sxaT41NRU32v2W6FQ6Hl8o+XVAQAAAAAAAPbSkWE3MA6SJIlGo7Hm2G4nxXudP+qT4hERuVwu5ufn1x2/9/2BcfOFL3wh3nnnnTh69OiwWwE4kPweBhguv4cBhsvvYYDh8nsYRp9QvA96heK7DYGXl5d7XmfUbdTjRsuqw7j4whe+MOwWAA40v4cBhsvvYYDh8nsYYLj8HobRZ/n0PugVBPcKtbdjP+4pHhExMTGxreMAAAAAAAAAe0ko3ge99vre7aT4vedns9ld1Ru2/bAfOgAAAAAAADB+hOJ90GuCe2lpaVc17w3Fc7ncrupt9Tq71WvCPSLi/Pnzfb0OAAAAAAAAwFbYU7wPek1xN5vNaDabO9pLu3Pu/a6xW8eOHYuIiFu3bvWtZq+QPZvN2lMcAAAAAAAAGAqheJ9ks9moVqtrjlWr1Zient52rXunzNPpdGQymV3110s2m41KpRKVSmVHffayuLi47lixWNz0nJMnT8bP/dzPxY9//OP4uZ/7uTh58mRfegFga06ePBl/8Ad/sOYxAIPj9zDAcPk9DDBcfg8DDNdByelSrVarNewmxkG5XI6ZmZk1x6anp2NhYWHbtWZmZqJcLncfz87O3jdYXq3RaPRc0v1elUol8vl8ZDKZqNVq2+6zl8nJyTXT4lt9D06cOBE3b96M48ePx40bN/rSCwAAAAAAALC5g5DT2VO8T3rtmV2pVHZU6+rVq2seX7x4cUvnVavVOHbsWExOTkYqlVoX0t+rsyR7vV5fN+W+E9VqdU0gnk6n4/Lly7uuCwAAAAAAALBTQvE+SafTPZcgXz3xvRXVanXNfuKFQmFL+3HX6/XI5XJrzi2Xy5HP5zc8Z/Wy7Pl8ft0+5tu1OoRPp9NRq9XsJQ4AAAAAAAAMlVC8j3otcT43N7etGqtfn06nt7xs+qVLl3oer1Qqa6a379WZFm82m3Hu3LltdLpWPp/vXqcTiG9lCXcAAAAAAACAvSQU76MkSdaF2M1mc9Np7dXm5+ejXq93H7/88stbnrTeLPheXfNek5OTa153757gW5HP57tLxSdJIhAHAAAAAAAARoZQvM9mZ2djdnZ2zbFKpXLfYHx+fn7NlHipVOoubb4VZ86c2fC5zerce16j0YjJycnI5/ObhunNZjPK5XIcO3asG4gXCoVYXl4WiAMAAAAAAAAjI9VqtVrDbmIc3RtyR7SXFS8UCnH27NlIkiRWVlaiXq9HqVRas/T4wsJCd1nzrWo2m3H69Ol1+4LPzs7edwn2VCq14XPpdDrOnDnTDbpXVlai0WisCcwzmUxcvnx5WyH+vU6cOBE3b96M48ePx40bN3ZcBwAAAAAAANi6g5DTCcX3UKPRuO/E9WrT09NRLBZ3PGndaDRiZmYmqtVqJEkSc3NzUSgU7nve/Px8XLlyZct9ru53ZmZm2wF+Lwfhhw0AAAAAAABGzUHI6YTiA9BoNKJUKkW9Xo9GoxGNRiPS6XQkSRITExORy+WiUChsef/wvVStVmNhYSEajUZ3KrzZbEaSJN2vqampOH/+fF/7PQg/bAAAAAAAADBqDkJOJxRnJByEHzYAAAAAAAAYNQchpzs07AYAAAAAAAAAYK8IxQEAAAAAAAAYW0JxAAAAAAAAAMaWUBwAAAAAAACAsSUUBwAAAAAAAGBsCcUBAAAAAAAAGFtCcQAAAAAAAADGllAcAAAAAAAAgLElFAcAAAAAAABgbAnFAQAAAAAAABhbQnEAAAAAAAAAxpZQHAAAAAAAAICxJRQHAAAAAAAAYGwJxQEAAAAAAAAYW0JxAAAAAAAAAMaWUBwAAAAAAACAsSUUBwAAAAAAAGBsCcUBAAAAAAAAGFtCcQAAAAAAAADGllAcAAAAAAAAgLElFAcAAAAAAABgbAnFAQAAAAAA2BPlcjlSqVRMTU0NuxXYUL1ej/n5+cjlcjE5ORnHjh2LVCoVqVQqjh07FrlcLmZmZqJSqUSz2Rx2u+xAqtVqtYbdBJw4cSJu3rwZx48fjxs3bgy7HQAAAAAAGLipqamo1+uRTqcjImJiYuK+56ysrERERLPZjFKpFIVCYS9b3LbJycloNBoREbG8vBxJkvStdrPZjGPHjm34fq1+bwqFQpRKpb5deyvu9/e5srISzWYzkiSJ5eXlsbufiIhcLhfVajUiontex/2+vzv3GxFrguh0Oh1JksSZM2diampqx9/zzWYzyuVyXLp0adtBdyaTiZmZmTh//vy6+9qPDkJOJxRnJByEHzYAAAAAANjM3NxcN0BsNBpbCuqSJIl0Oh0TExMxNzcX2Wx2j7vcumq1Grlcrvu430Fus9mMfD7fDWM74ftG+h3Kb6Zer993Or7zd3fmzJkolUpjdz8R7e/per0ejUbjvvezG4VCIYrF4pYD6kqlEhcuXFjzM5bJZCKbzcbk5GRMTExEo9GIt99+O+r1evfnspeFhYWYnp7e5R0M10HI6YTijISD8MMGAAAAAADbUa/X49y5cz3D8Ww2G4uLi4Nvahvy+XxUKpU1x27durWnk7W9rtkxyOnq1RPS95qdnY1isbilOuN2P5VKJfL5fM/npqen4+zZs5HJZGJiYmLN90mj0Yh6vR6Li4ubBtSLi4v3/WDIzMxMlMvl7uNMJhOXL1+OTCaz4TnNZjOuXr0axWJxXbi/lWuOuoOQ0wnFGQkH4YcNAAAAAAC2694Ar6NWq20a4g1bZynwexWLxZidnd2z6zYajZicnNzw+b0O5SPuP1W9nWhu3O4nonfQn06n49atW1s6v9lsxoULFzb8sMBmIfW9P087+X68t8Yg/g722kHI6Q4NuwEAAAAAAAB62yiMHOVAPCJ6BvkRseeTzfdbTvzSpUt7ev37XWO7f2/jdj8RsWZJ/Z1Ip9OxsLCw4XR6Pp/vubrC/Pz8mu/L2dnZHX1Ao1Qqrfl72e+B+EEhFAcAAAAAABhRExMTw25hRzYKUhuNxqbLX/fDZiHl/Pz8lvZq36lGo7HhBHPEzv4+x+1++vU9PTs723Mv72azue5DGc1mM+bm5rqPkyTZ8pLvvczMzHTrsD8IxQEAAAAAAOibSqXSDWp7hYa7CSO3Y6Mp5r2crl4dvPZ7gnjc7qcfNvpeunLlyprHFy5cWPO4E2rvVOf7ehTfE3oTigMAAAAAAKPl+vWIer1/X9evD/uOdqxX6DbqQVwnpE2SpOdy6dVqNRqNxp5dvzOJnCRJFAqFdc9vtLT7bjWbze5U9UbX3olxu59+fv8mSdLzwwL1en3N43un3XtNmG/3uhH7dyWHg0goDgAAAAAAjI7r1yM+/vGIqan+fX384/s6GN9P6vV6N5Ccm5uLbDY71GnxXtdpNpsxPz/f92utnqreq/sbt/vphzNnzmz6fK/l33e77Lll0/cfoTgAAAAAADA63nor4qc/7W/Nn/60XZc915kST6fT3cni1eFqx15NN98rnU73nAru95Ljq/exTpJk15PIGxm3++mH+02e78WqBOl0OlqtViwuLva9NntDKA4AAAAAAMCurV5ue/VS2xstuz2oYHyj6ep+Xn91KL3XU9Xjdj97YfUk9/Ly8rrnO3vec3AIxQEAAAAAANi11UHqzMzMmud6BeODCluTJIlsNrvueK8J9p1YvXz5IKaqx+1+dqtXwL2655WVlXXPV6vVvWyJESQUBwAAAAAAYNc6k8q99hHvFdg2Go2BhZN7OV29usaw90rfr/ezG72+h55++ununycmJtY93+/l5hl9QnEAAAAAAAB2pVwudyd2ewXgG003Dyp0zWQykclk9uT6nYB1kFPV43Y/O9VoNNbtGZ7NZte8N5OTk+vOq9frfZusZ38QigMAAAAAALArnTB2o/A7Yv2S6hHtKd97Q8290iswbjQa3X3Qd2J+fn7TDwPspXG7n53o9T1VKpXWPN7o+3F+fj6mpqaiXq/vSW+MFqE4AAAAAAAAO7Y62N4sSJ2eno50Or3u+L0h5l7ptax7xO7C385UdTqd7rlv+l4at/vZrnK5vG7p9IWFhXXvyUZT9RHtifGpqamYnJyMubm5qFQqA/uQBoMlFAcAAAAAAGDHVk8s3y9IvXjx4rpj/dgHe6v6ubf56iXje93XIIzb/WzV/Pz8uinxhYWFDZd7v3z58qb1Go1GzM/PRz6fj8nJyUilUjE5ORn5fF5YPiaE4gAAAAAAAOzI6gB2K5PFvV7TbDYHFowXCoWe0+o7ma7ezocB9sq43U/HRgF0pVKJqampNfeXJEnUarVN9z/PZDKxsLCw7R4qlcqasPzYsWORz+d3tUQ9wyEUBwAAAAAAYEdWB6lbCWLT6XTP8LLX/th7pdcUdL1e39Z09erJ4dnZ2Z7B9KCM2/1ERORyuTh27FhMTk52lzdPpVKRz+e7e4AnSRKlUimWl5c3XB59tenp6S2/diPNZjMqlUrk8/k4duzYjibyGQ6hOAAAAAAAANu2esJ7o/2te+kV4jYajW7Yudc2Cn23M129+rXDXmp83O4nImJmZiYmJia63xcrKyuRJElks9koFotRq9VieXl52xPtnanyWq0WhUJhy9+zvTSbzcjlcrvaw53BEYoDAAAAAACwbauXPL93f+fNZDKZntO6ly5d6ktfW9ErTK3X61sK5qvVaneqeqPlywdt3O5ndnY2lpeXo9VqRavVilu3bsXy8nIsLi7G7Ozsrqa9I9rfg50p81u3bsXCwkIUi8WYnp7edu35+fmBLf/PzgnFAQAAAAAA2LZOiL3Rkuib6RWiVyqVaDab/Wjtvjaaht7K1O/q14zKlPC43c8gdb5/Z2dnY2FhIWq1WrRarVheXo6FhYUtTZTPzMwM7HuXnRGKAwAAAAAAsC2rA+ydLLe90UTyoKbF0+l0z+nqarW66XT16uenp6d3tfx2P43b/YyCJElienq6O1G+uLi46ftz9erVAXbHdgnFAQAAAAAA2JbV4fXc3FykUqltf/WarB3kMtQbTUVvFswXi8Wefx4F43Y/oyabzcby8vKGqyIsLi4OuCO2QygOAAAAAADAlm11r+qdaDabUalU9qT2vTqTwPeqVCrdPbZXq9frUa1WI6IdkI7aVPW43c+oWlhY6PleWT59tB0ZdgMAAAAAAADsH6snjzcKCLdT694Q/NKlS9veo3ynisVizxB+bm4uFhYW1vW1+rxRNG73M6qKxWLk8/k1x1ZWVobUDVshFAcAAAAAAGBLVk9yZzKZXYfXFy9eXBfidibRM5nMrmpvRZIkkc1muxPTHZ3p6k7g32g01tz3IHrbiXG7n1HV6/vepP1os3w6AAAAAAAAW7J6uvjixYu7rpfJZHqGiZvtg91vG+3FvXp6evVrRn2qetzuZ1Sl0+k1j4Xio00oDgAAAAAAjI5HH4146KH+1nzooXZd1qnX6zE/P99zz+leyuVyRLQDwX4tcd4rxK1UKgPbozmbzfaclC6Xy9FsNtdMVXcmsUfZuN1PP8zPz3e/d/fK2bNn97Q+u2P5dAAAAAAAYHScPBnxve9FvPVW/2o++mi7LuuUSqUol8sbTmyv1glVIyIKhULfejh//nzMzMz0vN7s7GzfrrOZixcvrtsjOqI9sb46nN8vU9Xjdj+71Vl5oJ/ft/d+aKNfHxJhbwjFAQAAAACA0XLypBB7QDp7T29l6efVAWqvEHunOlPn9+4tfunSpYGF4tPT05EkybqJ+fn5+e6fkyTZN8HnuN1PP/Rz5YF6vb7m8UF6H/cry6cDAAAAAAAcQJ2ltCMiJiYmNn1ttVrtvnYrU+Xb1Wt/8mazuS4o34qVlZUd9bDRXtxbfX6vjNv99AqnB7VU/la3CbifUqm05vFBmbjfz4TiAAAAAAAAI2ovw8LOlHhEe1p7M3s1Jd6xUdDeWfZ6J7b73hUKhQ3fh3Q63delt3di3O5nkDrv3b0T3jtRr9fX7E9eLBb7/iER+k8oDgAAAAAAMKL6Ndnay5UrVyLi/kunNxqNNQH6+fPn96SfXmF7vV5fc+2t2M0HCXpNrEfsbC/qXn3sZOp73O5np5Pv/bDb6fhmsxnnzp3rPs5mswNb4p/dEYoDAAAAAACMqOXl5T2pu3pp8vuF4qvD6nQ6fd+p8p3aaF/m7Uymr/4QwdLS0rZ7mJ2d7Xl/G4XLW+2lY7uTyuN2PxERtVpty/X7YXWY32g0YnJyckd91+v1mJqa6tbLZrOxuLjYpy7Za0JxAAAAAACAEdRoNNYs09zRbDYjn8/H/Px8lMvlqFQqPb/K5XKUy+WYn5+Pubm5mJmZiVwuF5OTk3Hs2LFuvc1C8ZmZmTWT2s1mc9uT21u1UVDZaDS2HIyvngRuNpsxPz+/7T7unaKenp7e9gcBKpXKhu/Tdnoat/up1+tx9erVns/t1R7n906mNxqNmJqainw+v6U96zvff1NTU93gfnZ2ViC+z6RarVZr2E3AiRMn4ubNm3H8+PG4cePGsNsBAAAAAIChaTabcenSpR0FoDtRLBa7S0B3AveVlZX7TtMmSRJJksTMzMyGU96bmZmZiUajsaVrRbSn1JMkiWw2G8VicU2vzWZz00njTq/pdDoWFhY2vU6z2VzzoYHFxcXIZrObntMJTrd6L52e0ul0TExMRKlUiomJibG6nyRJYm5uLur1eqysrESj0djSUvCr68zNzd231/upVquRy+U2fU02m+1e95FHHom33347Go1G1Ov1NX8PSZLEwsJCZDKZXfU0ag5CTndk2A0AAAAAAADwM1evXh1YIB4RawK+lZWVDSeC750ubjQa0Wg0IpPJ7CgUv3r16qYh6b3Xazab6wLazabWV5/f6XUrE9LpdDoKhUKUy+VuCH8/W52gX339TlDcOX9iYmKs7iei/fez1VC9U2t1nXw+v6VzN5PNZqNWq0WpVNrwe+5+95rNZvsS0DM8JsUZCQfhEygAAAAAALAVzWYzVlZWYmJioi/7d6+ut9pe7Q0+Djp7T5dKpXXLj+9H43Y/u1Gv16NarcZrr73WnWLvBOWdCfUkSSKTyUQul4szZ86M/c/KQcjphOKMhIPwwwYAAAAAAACj5iDkdIeG3QAAAAAAAAAA7BWhOAAAAAAAAABjSygOAAAAAAAAwNgSigMAAAAAAAAwtoTiAAAAAAAAAIwtoTgAAAAAAAAAY0soDgAAAAAAAMDYEooDAAAAAAAAMLaE4gAAAAAAAACMLaE4AAAAAAAAAGNLKA4AAAAAAADA2BKKAwAAAAAAADC2hOIAAAAAAAAAjC2hOAAAAAAAAABjSygOAAAAAAAAwNgSigMAAAAAAAAwtoTiAAAAAAAAAIwtoTgAAAAAAAAAY0soDgAAAAAAAMDYEooDAAAAAAAAMLaE4gAAAAAAAACMLaE4AAAAAAAAAGNLKA4AAAAAAADA2BKKAwAAAAAAADC2hOIAAAAAAAAAjC2hOAAAAAAAAABjSygOAAAAAAAAwNgSigMAAAAAAAAwtoTiAAAAAAAAAIwtoTgAAAAAAAAHQrPZHHYLwBAIxQEAAAAAABhbzWYzyuVy5HK5OHbsWMzPzw+7JWDAjgy7AQAAAAAAAOiHRqMR9Xo9XnvttWg0GlGtVk2HA0JxAAAAAACAUZDL5aJarUZERDqdXvPcxMTEpueurKx0/7w6BE6n05EkSZw5cyampqaiUCj0rd9RVCwWo1wuD7sNYMQIxQEAAAAAAEZAJpOJiPa0c6PRWPPcTqedm81m1Ov1qNfrERExMzMThUIhisXiuuB9HMzNzUU+n4+I9r1funSpe+/AwSUUBwAAAAAAGAHFYnHN40ql0g147zU9PR1nz56NTCYTExMTawLuzhLii4uL3cnz1crlcpTL5VhcXIxsNtvXexi2JEkiSZLu43Q6HblcbogdAaNAKA4AAAAAADCCpqenY3p6OiqVyprj6XQ6FhYWNjwvSZLIZrMxOzsbzWYzLly4sK5GRHu59nEMxldbHZADB9ehYTcAAAAAAABAb7udcu4E6PdOoXfk8/kdL80+SPV6PXK5XMzPzw+7FWAfEooDAAAAAACMqImJib7UmZ2djenp6XXHm81mlMvlvlxjL1QqlcjlcjE1NRXVajXefvvtYbcE7ENCcQAAAAAAgANgo2nxK1euDLiTrcnn85HP59fsi/7II48MsSNgv7KnOAAAAAAAsC+0WhHfvh7x+psR3/1BxE/fi3jogYhPfCTi8VMRj52MSKWG3WV/pdPpvtVKkiQymUzU6/U1x+99PCp6TcnbIxzYCaE4AAAAAAAw0t57P+Jr34woVSMaP4pIRcSRw+2QPJWKeP9ORCsikg9FzGQjfvPTEQ9IQHo6c+bMyIbg9+r1gQChOLAT/i8BAAAAAAAYWd+5GfG5r0b8zxs/O9aKiPfurH/ttR9FfOm/RfzX/xHxZ89GfPL4wNrcN/o5eT4M+71/YDjsKQ4AAAAAAIykv/pexJN/2F4qvRXtr810XvPdH7TP+6vv7X2P42BUp6/tHw70i1AcAAAAAAAYOd+5GfHMn0S8+37EnbvbO/fO3fZ5z/xJuw4/02w21x2bnp4efCM71GufcYD7sXw6AAAAAAAwUt57v71k+nt3Iu7ebzx8A3db7fM//+cRLz1vj/GOarW67tjTTz8dEe3AfGlpKSJ+Fj7fu1x5J1RfWVmJiPaUea9J80ajEY1GY9M6nRrZbHZnN9NHzWYz5ubmolqtRqPRiIh2z0mSRDabjaeffjoymUzfrtdoNKJSqcTi4mI0Go1YWVmJZrPZvWaSJPH0009HNpvd1ZLx9Xo9SqVSXL16NS5evBizs7Nrnh/0fcOw+L8AAAAAAABgpHztm+09xHeYh3fduRvxt99v1/vtz/SltX2tE1Svls1mu6FntVqNfD6/rZrFYnFd0NqpNTMzs6Uat27d2nLwuxd7ipfL5Z69NpvNqNfrUa/XY35+PrLZbCwsLOyqh2q1GnNzc1Gv17vH0ul0TExMRLPZXHPNSqUSERGFQiGKxeKWrluv12NpaSlqtVpcvXq158oAHYO8bxg2oTgAAAAAADAyWq2I0vph5l0pvxzxW/8qIpXqb939plcAWiqVun/uhJ+Li4tRLpc3rFMoFCKXy0U6nY4zZ870fM358+cjSZJoNBqxsLCwbkI9k8nEzMxMJEnSM2yt1+tx5cqVdcfn5+cjIuLtt99eM23ebDYjn89HoVDYsO9eZmZmNr3X1arVapw+fTpqtdqO9mHP5XLd9yGdTkexWIzz58+vuf/OZPfqnsrlcpTL5SiVShve39zcXPe92YpB3jeMAqE4AAAAAAAwMr59PaLxo/7Va0XE8v+K+JvvRzx2sn9195tyubwumF5YWFgTcqbT6Zieno7p6enI5XI9p8YLhcKaIH0j6XS6uyx6oVCIqamp7nR0JpOJWq3W87xqtRrFYrHnMu8R7fB3I9udcl8dUmez2UiSJKampqJWq8XS0tKaae6OZrMZuVwulpeXt3ydRqMRuVyuO6WfzWZjcXGx52szmUyUSqWYmZmJc+fOrZn0npmZiVqt1vP9f+SRR7rvd68VAYZx3zBKhOKMlB/+8Idx4sSJns994QtfiC984QsD7ggAAAAAgEF6/c2IVOx+6fTVUv9U96CG4vPz8+vC5IWFhZient7wnOnp6chms+vC6c5k9natDncXFhZ6vmZ1WLsTW51iXl5e7ob009PTUSwWe55br9cjn8+vC5g7+4Fv9v51dMLkTo1MJrNhIL5a54MDk5OTa46Xy+WYnJxct2T97OzsmmO9JsEHed+Mnq985Svxla98pedzP/zhDwfczeAJxRkpd+/ejZs3b/Z87p133hlwNwAAAAAADNp3fxBx5HDEe3f6V/PI4XbdcdVoNHqGm5VKJS5durRm8jdJklhYWOjuI76Zubm5dSH1TkLr1ZPLs7OzG4bXMzMz3SXe0+l0lEql7r7aHYuLizExMdHz/K3cU0R0w+L7fTAgk8nE8vJyTE5OrguIS6XSlsLhe8Ply5cvb6nHiPbf1eLiYuRyuTXH5+bmIpPJdCfDN7ruvaH4IO+b0fPOO+9smMEdBEJxRsqhQ4fiwx/+cM/njh49OuBuAAAAAAAYtJ++195XvJ9arYifvNvfmqMkl8vFyspKTExMRDqdjmazuS7MTJIk5ubmtrXndmdp7dW1ms1mVKvVTQPZe61e7vvixYsbvu7esLXXRPl2rruZ+wXDqxWLxXVLs2/lwwGVSmXN6zKZzJaD+45sNttzYn9mZmbTpcw3+uDBIO6b0XT06NE4fvx4z+d++MMfxt27dwfc0WAdGnYDsNqHP/zhuHHjRs8vS6cDAAAAAIy/hx6ISKX6WzOVivjAg/2tOUpmZmZiYmIiGo1G1Ov1WFlZiSRJIpvNRrFYjFqtFsvLy9sKxFfXvtdW9hRfrTOhXCgUIp1Ob7uHfstms9uadp6enu4ZMm+2b3fE+v3Pn3766S1fc7Visdjz2vdO0d/PoO6b0fSFL3xhwwxuo4HVcSIUBwAAAAAARsYnPhLxfh+XTo9o1/vER/pbc5TMzs7G8vJytFqtaLVacevWrVheXo7FxcWYnZ3d9nTyar2C9EqlsmaP8M2sfu29IfGw7OT96DWhvtl7UK1W14XHO51yz2QyPcPp7X44YRD3DaNKKA4AAAAAAIyMx09F9Hn19Gj9U122L51O9wzGr169uqXzL126FBEbTx0PwyOPPLLtcyYnJ9cdW1lZ2fD1vZZ+383995rY3+5S5oO4bxhVQnEAAAAAAGBkPHYyIvlQRL9WUE9FxOTPR/zyR/tU8ADa6RLqneXcIzbfS3w/2G6g3Suw3s3S8RtNmXfe370yKh9kgN0SigMAAAAAACMjlYqY2dkq0xsqnOv/PuUHSSaTWbf0dr1ev+/e0p29sHudP+7ufW92u5f6Ru+fqW3YGqE4AAAAAAAwUn7z0xH/4kTE4V2mGIcPRfzSRyP+3b/sT18HWa9J7/tNi5fL5Q3PHWd7ted2r2D9fh9MANqE4gAAAAAAwEh54EjEnz0b8cDhiEM7nPA+lGqf/6efjThyuL/9HUTT09PrQtlO6N1L57l0Oh3T09N72drI6RVU9yMon5iY2NIxYD2hOAAAAAAAMHI+eTzi678b8eCR7U+MHz7UPu/rv9uuQ38UCoU1j5vNZlQqlZ6v7UyR33sOO9drUny3y7LDQSEUBwAAAAAARtKnPh7x0u+3g+1UtL8203nNJ4+3z/vUx/e+x4NkZmZm3bFeS6jX6/Wo1+sRcfCWTo+ISJKk5/HOezKIawFrCcUBAAAAAICR9cnjES89H/HCv404/aH2sVS0l0Y/cqj9v52wPPn59uteet6E+F5IkiSy2eyaY9Vqdd3S4J2gvNeS6wfBRve8tLS0q7r3vs/pdFooDlt0ZNgNAAAAAAAAbOaBIxG//ZmI3/pXEX/z/YjX34z47g8ifvJuxAcejPjERyIePxXxyx+NSO1wD3K2Zm5uLqrV6ppj5XI5ZmdnI6Id3Hb2Ez+IU+IdmUxm3WR4rVbbVc2VlZU1j+/9gAKwMaE4AAAAAACwL6RSEY+dbH8xHNlsNpIkiUaj0T126dKlbih+9erViGiHwplMZig9joJsNrsuFL969WrP5ea3otlsrpsUf/rpp3faHhw4lk8HAAAAAAAYUfcGoRsdG6R79xZvNpsxPz8fERHFYjEi9m5KfNj3vlW9Autms7luyn6r7j0vk8nE9PT0jmrBQSQUBwAAAAAAYMsKhcK6Y5cuXYpqtRqNRiPS6fSeBbb3LiG+E2+//XYfOtk8oN9oUn5ubm5H17p3wrzz4YPtGMR9w6gSigMAAAAAAIyofoTA/dYr9G42m5HL5SKif1Pi6XR63bHVy7aPul7Bdb1e7+65vlX1en3NpHihULCfOGyTUBwAAAAAAGBE1Wq1nseHHQ5vFnz3miTficnJyXXHegXNjUZjw2XJe71P/Zp0vt8HFrLZbHev9dVmZmbW7Te+mQsXLqypuZV9yYd53zCKhOIAAAAAAAAjqF6vx9WrV3s+t9NluPslk8lEkiTrjhcKhZ4T3jvRq361Wo3JycmYm5uLubm5yOVyMTk5uW6f846FhYV1x65evdqXgLhX7XsVi8WeU93nzp2LSqVy3/Pz+Xw3QJ+eno7FxcUd9zbI+4ZRk2q1Wq1hNwEnTpyImzdvxvHjx+PGjRvDbgcAAAAAAAZubm4u6vV6rKysRKPR2FKAmSRJpNPpmJiYiLm5uYEuq10ul9eF0cvLyz3D7J2ampq671R1Op2OWq0WSZLE/Px8LC4ubuk9TJKk+/7dL+itVCqRz+d7PpfJZGJiYiLy+fyGU/IzMzM9l02fnp6OmZmZdX9vlUol5ubmuhPfpVJp0wn8Ub1v9oeDkNMdGXYDAAAAAAAAtKegt7qsdmcauxOCRsSG4eVeOX/+/JpQPJvN9jUQj4i4fPlynDt3btOQ9+WXX+5e97XXXttwKfWItfuUr37vdqJTq9FoRL1e3/TeS6VS5PP57gcfOiqVSndivHP+6p5mZ2fj4sWL952+H9X7hlFhUpyRcBA+gQIAAAAAAOMmn893Q93FxcU9m1Sfm5uLarXanYJOp9ORJMmGy5OPsnq9HleuXFlzPxE/m/rPZrORy+X23X2xfx2EnM6kOAAAAAAAADty9uzZqFQqkSTJnoa4xWJxz2oPWiaTiUwmM+w24EA5NOwGAAAAAAAA2J+uXLkSEe1JboBRJRQHAAAAAABg2zp7SkdEFAqFIXcDsDGhOAAAAAAAANtWKpUiQiAOjD6hOAAAAAAAANtWLpcjwtLpwOgTigMAAAAAALAt5XI5ms1mZLPZSJJk2O0AbEooDgAAAAAAwLYUi8WIMCUO7A9CcQAAAAAAALZsfn4+Go1GJEkS2Wx22O0A3JdQHAAAAAAAgC1pNBrd6fDOtDjAqBOKAwAAAAAAsEa9Xl93rNlsRi6Xi4iIJElienp60G0B7IhQHAAAAAAAgK5yuRxTU1MxMzMT9Xo9ms1mVCqVOH36dDQajYiIKJVKQ+4SYOuODLsBAAAAAAAARkcn8C6Xy1Eul9c9XygU7CUO7CsmxQEAAAAAAIiI9hLpvZZO78hms6bEgX1HKA4AAAAAAEBERFy9enXD54rFYiwuLg6wG4D+sHw6AAAAAAAAEdFeGn1iYiIWFxdjZWUlJiYmYmpqKs6fPx/pdHrY7QHsiFAcAAAAAACArunp6Zienh52GwB9Y/l0AAAAAAAAAMaWUBwAAAAAAACAsSUUBwAAAAAAAGBsCcUBAAAAAAAAGFtCcQAAAAAAAADGllAcAAAAAAAAgLElFAcAAAAAAABgbAnFAQAAAAAAABhbQnEAAAAAAAAAxpZQHAAAAAAAAICxJRQHAAAAAAAAYGwJxQEAAAAAAAAYW0JxAAAAAAAAAMaWUBwAAAAAAACAsSUUBwAAAAAAAGBsCcUBAAAAAAAAGFtCcQAAAAAAAADGllAcAAAAAAAAgLElFAcAAAAAAABgbAnFAQAAAAAAABhbQnEAAAAAAAAAxpZQHAAAAAAAAICxJRQHAAAAAAAAYGwJxQEAAAAAAAAYW0JxAAAAAAAAAMaWUBwAAAAAAACAsSUUBwAAAAAAAGBsCcUBAAAAAAAAGFtCcQAAAAAAAADGllAcAAAAAAAAgLElFAcAAAAAAABgbAnFAQAAAAAAABhbQnEAAAAAAAAAxpZQHAAAAAAAAICxJRQHAAAAAAAAYGwJxQEAAAAAAAAYW0JxAAAAAAAAAMaWUBwAAAAAAACAsSUUBwAAAAAAAGBsCcUBAAAAAAAAGFtCcQAAAAAAAADGllAcAAAAAAAAgLElFAcAAAAAAABgbAnFAQAAAAAAABhbQnEAAAAAAAAAxpZQHAAAAAAAAICxJRQHAAAAAAAAYGwJxQEAAAAAAAAYW0JxAAAAAAAAAMaWUBwAAAAAAACAsSUUBwAAAAAAAGBsCcUBAAAAAAAAGFtCcQAAAAAAAADGllAcAAAAAAAAgLElFAcAAAAAAABgbAnFAQAAAAAAABhbQnEAAAAAAAAAxpZQHAAAAAAAAICxJRQHAAAAAAAAYGwJxQEAAAAAAAAYW0JxAAAAAAAAAMaWUBwAAAAAAACAsSUUBwAAAAAAAGBsCcUBAAAAAAAAGFtCcQAAAAAAAADGllAcAAAAAAAAgLElFAcAAAAAAABgbAnFAQAAAAAAABhbQnEAAAAAAAAAxpZQHAAAAAAAAICxJRQHAAAAAAAAYGwJxQEAAAAAAAAYW0JxAAAAAAAAAMaWUBwAAAAAAACAsSUUBwAAAAAAAGBsCcUBAAAAAAAAGFtC8SFpNpvRaDSG3QYAAAAAAADAWBOKD0i1Wo18Ph+Tk5ORSqXi2LFj3T+nUqmYmpqK+fn5aDabw241ItqhfaVSiXw+H1NTU2t67fSez+ejXC4L9wEAAAAAAICRlWq1Wq1hNzHOKpVKXLhwYVth9+zsbBSLxb1rahPNZjPm5uaiXC5v67xsNhvFYjEymcyOrnvixIm4efNmHD9+PG7cuLGjGgAAAAAAAMD2HISczqT4Hmk2m5HP5yOfz3cD8dnZ2ajVanHr1q1otVqxvLwcpVIpkiRZc+78/HxMTU0NfGq8XC7HsWPHth2IR7Qn4aempmJubm4POgMAAAAAAADYGZPie2RycrK7rHiSJFGr1SKdTm/4+pmZmXVhdCaTiVqttpdtds3NzcX8/HxfamWz2VhcXNzWOQfhEygAAAAAAAAwag5CTmdSfA/k8/luIJ5Op+8biEdElEqlmJ6eXnOsXq/HzMzMXrXZNT8/v2kgnk6nI0mS+95DR7VaHUjfAAAAAAAAAPcjFO+z+fn5qFQq3ceXL1/ecph8+fLldcfK5XI3YN8rr7322rpjhUIhlpeXo9Vqxa1bt2J5ebm77Pvi4mIUCoVNa5bL5ahWq3vVMgAAAAAAAMCWCMX7qNlsrtlTO0mSddPfm0mn0zE7O7vu+F7v0706dE+n0xvudd6RzWajVCrF8vLyhq+J2Pu+AQAAAAAAAO5HKN5Hly5dWvN4J0uIX7x4cd2xSqWyp9Piq2u//PLLmwbdqyVJsmkwXq/X93zKHQAAAAAAAGAzQvE+aTab6/bl3s6UeEc6nY5MJrPu+Ool2fut2WxGRLvfXte+n8XFxQ2fs4Q6AAAAAAAAMExC8T65N/xNp9Nbnri+VzabXXdss+B5N1ZPcveaUt+KJEk23GN8r/oGAAAAAAAA2AqheJ9cuXJlzeMzZ87suFYul1t3bK8mrjuheJIkO5oS79hoqfjOFDoAAAAAAADAMAjF++Te0Ho3AfNGgXq9Xt9xzY10QvFe0+nbsdH9rqys7KouAAAAAAAAwG4IxfugXq+vm4ienJzccb10Ot3z+Oqlzvspk8lEPp/fdZ1efU9MTOy6LgAAAAAAAMBOCcX7YGlpad2x3YbBvSav9yIULxQKUavVdj0pHtH7nne6rzoAAAAAAABAPwjF+6BWq607ttswuFfA/Nprr+2q5l7rtVT6bibmAQAAAAAAAHZLKN4HvSa4N1oCfat6her3LtE+anr1148JdAAAAAAAAICdEor3Qa9QfLfLp/cK1XtNYo+Ker2+7lg6ne65DDwAAAAAAADAoAjF+2Av9vp+5JFH1h0b5UnxK1eurDtWLBaH0AkAAAAAAADAzxwZdgPjarfLp+/2/EErl8trHidJEoVCYdt13n333fjLv/zLbZ1z8uTJOHny5LavBQAAAAAAAOPk+vXrcf369W2d8+677+5RN6NDKL5Lg5zeHtXl0yuVyrr3oVQq7ajWP/7jP8anP/3pbZ3zB3/wB/Ef/sN/2NH1AAAAAAAAYFz8l//yX+I//sf/OOw2Ro7l00fUbvckH6S5ubk1jwuFQmSz2SF1AwAAAAAAAPAzQvFdGuT09igG5fPz82v2VE+SZMdT4gAAAAAAAAD9Zvn0XRrk8umjptForJkST6fTsbi4uKuaH/zgB+Mb3/jGts6xnzgAAAAAAABE/PZv//a2V3T+N//m38Q//uM/7lFHo0EovkvpdLrn8WazueFz/b7WsOTz+TWPX3755UiSZFc1H3zwwfi1X/u1XdUAAAAAAACAg+jkyZPbHih98MEH96ib0WH59F0a5JLmo7R8+tzcXNTr9e7jhYWFyGQyQ+wIAAAAAAAAYD2h+B4Z5F7jg1apVGJ+fr77uFQqxfT09BA7AgAAAAAAAOhNKL5Lmy2fvhu9QvXdLk3eD/V6fc2y6cViMQqFwhA7AgAAAAAAANiYUHyP7MWk+NTUVN9rbkej0Yhz5851H8/Ozsbs7OwQOwIAAAAAAADYnFC8D3pNcO92UrzX+cOcFG82m5HL5bp9FQqFKBaLQ+sHAAAAAAAAYCuE4n3QK6xuNBq7qrm8vLyl6wzKuXPnuvc0PT0dpVJpaL0AAAAAAAAAbNWRYTcwDnqF1b1C7e0YpT3Fc7lc1Ov1iGgH4gsLC0PpAwBG1vXrEW+91b96jz4acfLk/u8FAAAAAGAECMX7oNde37udFL/3/Gw2u6t6O5XL5aJarXZ7EIgDwD2uX4/4+McjfvrT/tV86KGI731v+2H0KPUCAAAAADAiLJ/eB70muJeWlnZV895QPJfL7areTuTz+W4gnslkYnFxceA9AMDIe+ut/obQEe16O5n2HqVeAAAAAABGhFC8D3pNcTebzWg2mzuq1+vcQU+Kz8zMRKVSiYh2IF6r1QZ6fQAAAAAAAIB+EIr3Sa/QujNlvV33Tpmn0+nIZDI7qrUTc3NzUS6XI6I9Bf/yyy8P7NoAAAAAAAAA/SQU75N8Pr/u2JUrV3ZU6959uwuFwrbO381+5vPz8zE/Px8R7UC8VqtFOp3ecT0AAAAAAACAYRKK98n58+fXHessP75dV69eXfP44sWLWzqvWq3GsWPHYnJyMlKpVMzMzGzruuVyOebm5iKiPZ2+uLgoEAcAAAAAAAD2tSPDbmBcpNPpmJ6eXheEl8vlbU16V6vVNfuJFwqFLQXT9Xo9crncumuvrKysmzzvpVKpdEP0dDodtVotkiTpPr+6p5WVlXXHO8d6PX777bcjIqJYLN63DwAAAAAAAIB+SrVardawmxgXjUYjJicn1xxLp9Nx69atLdeYmpqKer3ePffatWtbCsXz+fyGk+nLy8trAu57VSqVnsu/99tm32onTpyImzdvxvHjx+PGjRt73gsA9E29HjE11f+6tVpEJrN/ewEAAAAA9oWDkNNZPr2PkiRZNw3dbDa3HDjPz893A/GIiJdffnnLy5dvto/46pr3qlarAwnEAQAAAAAAAIZBKN5ns7OzMTs7u+bYViax5+fnu/t5R0SUSqXIbGMi68yZMxs+t1GdXkuuAwAAAAAAAIwTe4rvgWKxGI888siakLtSqcSxY8eiUCjE2bNnI0mSWFlZiXq9HqVSqTvpnU6nY2FhIbLZ7LavefXq1TV7f0e0Q/qNlk4/d+7c9m4MAAAAAAAAYJ8Riu+R2dnZmJ6ejnw+312+vNlsxvz8/IbnTE9PR7FY3HT/742k0+mo1WoxMzMT1Wo1kiSJubm5KBQKG55zb4C+3etFRExMTMTKysqWajebzS0vBw8AAAAAAADQD0LxPZQkSdRqtWg0GlEqlaJer0ej0YhGoxHpdDqSJImJiYnI5XJRKBR2HRgnSRKLi4tbfn2r1drV9QAAAAAAAABGnVB8AJIkiWKxOOw2AAAAAAAAAA6cQ8NuAAAAAAAAAAD2ilAcAAAAAAAAgLElFAcAAAAAAABgbAnFAQAAAAAAABhbR4bdAAAAe68VEd9+5Il4/YNn47vHfil+evgD8dCdn8Qnbv1tPP6Pr8Vjb38rUsNuEgAAAABgDwjFAQDG2HupI/G1T1yI0v/9/xmNhz8WqdbdOHL3/WilUpFqteL9Q0eilToUye2/i5n/7/8rfvO7l+OB1vvDbhsAAAAAoG8snw4AsBuPPhrx0EP9rfnQQ+26u+zlO8d+KXL/52vxpf/j/4prR/95RES0UofivcMPxvuHHoj3Dj8YrVT7n4PXjv7z+NL/8X9F7v98Lb5z7Jd23wsAAAAAwIgwKQ4AsBsnT0Z873sRb73Vv5qPPtquu4te/uoH/7d45v/9z+O9u6lote6/MHonHP/uo78ST57/dnz9//FGfOoj/7+d9wIAAAAAMCKE4gAAu3Xy5OgExydPxncOn4xnvhrx7t2Iu63tnX6nlYrW3VQ88//5WLz0+xGfPL43bQIAAAAADIrl0wEAxsh770d87qsR793ZfiDecbfVPv/zf96uBwAAAACwnwnFAQDGyNe+GfE/b0Tcubu7OnfuRvzt99v1AAAAAAD2M6E4AMCYaLUiStX+1iy/3K4LAAAAALBfCcUBAMbEt69HNH4U0a8MuxURy/8r4m++36eCAAAAAABDIBQHABgTr78ZkepzzdQ/1QUAAAAA2K+E4gAAY+K7P4g4cri/NY8cbtcFAAAAANivhOIAAGPip+/1f//vViviJ+/2tyYAAAAAwCAJxQEAxsRDD0Sk+rx+eioV8YEH+1sTAAAAAGCQhOIAAGPiEx+JeP9Of2u+f6ddFwAAAABgvxKKAwCMicdPRfR59fRo/VNdAAAAAID96siwGwAAGFetVsS3r0e8/mbEd3/Q3vP7oQfak9ePn4p47GR/lzt/7GRE8qGIaz/qTzieiojk5yN++aN9KAYAAAAAMCRCcQCAPnvv/YivfTOiVI1o/KgdLh853A7JU6n2kuStaAfYM9mI3/x0xAN9+FdZKtWu96X/tvtaHYVz/d+nHAAAAABgkCyfDgDQR9+5GZH7w3Ywfe1H7WOtiHjvTsT7d9v/25nivvaj9utyf9g+rx9+89MR/+JExOFd/ivv8KGIX/poxL/7l/3pCwAAAABgWITiAAB98lffi3jyD9tLpbfi/kuYd17z3R+0z/ur7+2+hweORPzZsxEPHI44tMMJ70Op9vl/+tn2hDsAAAAAwH4mFAcA6IPv3Ix45k8i3n0/4s7d7Z175277vGf+pD8T4588HvH134148Mj2J8YPH2qf9/XfbdcBAAAAANjvhOIAALv03vsRn/tqe2n0u/cbD9/A3Vb7/M//ebvebn3q4xEv/X472E5F+2szndd88nj7vE99fPc9AAAAAACMAqE4AMAufe2bEf/zxvYnxO91527E336/Xa8fPnk84qXnI174txGnP9Q+lor20uhHDrX/txOWJz/fft1Lz5sQBwAAAADGy5FhNwAAsJ+1WhGlan9rll+O+K1/FZHa4Z7gqz1wJOK3P9Ou9zffj3j9zfYe5j95N+IDD0Z84iMRj5+K+OWP9ud6AAAAAACjRigOALAL374e0fhR/+q1ImL5f7UD7MdO9q9uKtWu18+aAAAAAAD7geXTAQB24fU3779f93al/qkuAAAAAAC7JxQHANiF7/4g4sjh/tY8crhdFwAAAACA3ROKAwDswk/fa+8r3k+tVnvPbwAAAAAAdk8oDgCwCw890N6vu59SqYgPPNjfmgAAAAAAB5VQHABgFz7xkYj37/S35vt32nUBAAAAANg9oTgAwC48fiqiz6unR+uf6gIAAAAAsHtCcQCAXXjsZETyoYh+raCeiojJn4/45Y/2qSAAAAAAwAEnFAcA2IVUKmIm29+ahXP936ccAAAAAOCgEooDAOzSb3464l+ciDi8y39ZHT4U8Usfjfh3/7I/fQEAAAAAIBQHANi1B45E/NmzEQ8cjji0wwnvQ6n2+X/62Ygjh/vbHwAAAADAQSYUBwDog08ej/j670Y8eGT7E+OHD7XP+/rvtusAAAAAANA/QnEAgD751McjXvr9drCdivbXZjqv+eTx9nmf+vje9wgAAAAAcNAcGXYDAADj5JPHI156PuJr34woVSMaP2oH30cOR7RaEalUxPt3IloRkfx8ROFce0/yB/yrDAAAAABgT/jPrwAAffbAkYjf/kzEb/2riL/5fsTrb0Z89wcRP3k34gMPRnziIxGPn4r45Y+2Q3IAAAAAAPaOUBwAYI+kUhGPnWx/AQAAAAAwHPYUBwAAAAAAAGBsCcUBAAAAAAAAGFtCcQAAAAAAAADGllAcAAAAAAAAgLElFAcAAAAAAABgbAnFAQAAAAAAABhbQnEAAAAAAAAAxpZQHAAAAAAAAICxJRQHAAAAAAAAYGwJxQEAAAAAAAAYW0JxAAAAAAAAAMaWUBwAAAAAAACAsSUUBwAAAAAAAGBsCcUBAAAAAAAAGFtHht3Am2++GY1GIxqNRiwvL0ez2YyVlZWIiGg2mxERkU6nIyJiYmIi0ul0TE5ORpIkkSRJnDp1ajiNAwAAAAAAADDyBhqKv/nmm1Gv12NxcTGq1Wo0Go2+1E2SJDKZTORyuchms4JyAAAAAAAAACJiAKH4K6+8EqVSKarVanfyOyKi1WqteV0qldpW3dXnLy8vR6PRiEqlEhHtyfJsNhszMzPx67/+6ztvHgAAAAAAAIB9bU/2FH/nnXfij/7oj+IXf/EXI5fLRaVSiVu3bq0LwldrtVrb+tqszq1bt6JSqUQul4tHHnkknn/++XjzzTf34E4BAAAAAAAAGGWp1mYJ8za9/vrrMTc3F9Vqdc3xey+RTqfjzJkzkSRJTE5ORjqdjiRJunuGT0xMRETEww8/HBERt2/fjojo7jXeaDSi2Wx29yFvNBqxtLS0ZhI9oj193mq1ulPouVwu5ubm4jOf+Uy/bpk+OXHiRNy8eTOOHz8eN27cGHY7AAAAAAAAcCAchJyuL8unv/nmmzEzM9MNw+8NwTOZTDz99NORyWTizJkz3bB7qzqv7/zv6dOne77u9u3b0Wg0olqtdvctX93P4uJiLC4uRi6Xi2KxGL/yK7+yrT4AAAAAAAAA2F92PSl+8eLFmJ+fj4i1YXihUIhcLhdPPfXU7jrcpZdffjlefPHF+Iu/+Ivusc7k+MzMTPzpn/7psFpjlYPwCRQAAAAAAAAYNQchp9vxnuKvv/56/OIv/mLMz8939/nOZDJRKpXi7t278eKLLw49EI+IOHfuXCwsLMTdu3fj6tWrkclkuv2WSqV49NFH49VXXx12mwAAAAAAAADsgR2F4l/+8pdjamoqlpeXo9VqRTabjVqtFktLS3HhwoV+99g309PTsbS0FEtLS3Hu3LlotVqxsrIS2Ww2nn/++WG3BwAAAAAAAECfbTsUf/rpp+NLX/pSdzK8VqvFSy+9FE888cRe9LcnMplMLC4uxtLSUjzxxBPRarWiWCzGb/zGbwy7NQAAAAAAAAD6aMuh+O3bt+Ps2bOxsLAQrVYryuVyN1Terzqh/gsvvBCtVisWFxfjYx/7WPz4xz8edmsAAAAAAAAA9MGWQ/HOEumZTCaWl5fj2Wef3cu+Bmp2djbeeOONePzxx+ONN96IqakpwTgAAAAAAADAGNhSKH727Nmo1WqRz+djaWkpTp8+vdd9DVySJFGr1eKpp57qBuMAAAAAAAAA7G/3DcU/97nPRa1Wi7m5ubhy5cogehqqhYWFeO655+KNN96IZ555ZtjtAAAAAAAAALALm4bi165di1KpFOVyOS5dujSonoauWCzGiy++GFevXo1XXnll2O0AAAAAAAAAsENHNnvy9OnTUavV4oknnhhUPyOjUChELpcby6XiAQAAAAAAAA6K+y6ffhAD8Q6BOAAAAAAAAMD+dt9QHAAAAAAAAAD2K6E4AAAAAAAAAGNLKA4AAAAAAADA2BKKAwAAAAAAADC2hOIAAAAAAAAAjK0jg77gO++8E+VyORYXF2NlZSUajUZMTExEOp2OJEliYmIipqamIpvNxqlTpwbdHgAAAAAAAABjZKCh+Oc+97kol8vdx61WKyIibt26FRER9Xp9zevT6XRks9l48skn47Of/ezgGgUAAAAAAABgLAxs+fTf+Z3fiVKpFK1Wq/uVSqXWfK1+rtVqxa1bt6JSqUShUIjDhw/HM888E6+88sqgWgYAAAAAAABgnxtYKH716tV1IXhErAnBI2LT1ywsLEQul4uPfexj8eqrrw6qdQAAAAAAAAD2qYHvKd7RarUiSZLIZDIxMTERKysr0Ww2o9FoRKPRWPPaTjjeOe+NN96IbDYbU1NTcfny5fiVX/mVQbcPAAAAAAAAwD4wsFD8zJkzUa1WI6Idci8sLMRTTz214etv374d1Wo1rly5EtVqNZrNZvfciHY4vrS0FJlMJsrlsj3HAQAAAAAAAFhnYMun5/P5iGiH2tlsdtNAPCLi4YcfjqeeeiquXr0aKysrsby8HM8991w8/PDDa5Zab7VaUSgU4vnnn9/zewAAAAAAAABgfxlYKH7+/PldnX/69OkoFouxsrISV69ejWw2G61WqxuMF4vF+OM//uM+dQsAAAAAAADAOBhYKP7www/HhQsXusue78b09HS89NJL8cYbb8Sv//qvR0R7OfXZ2dl49dVX+9EuAAAAAAAAAGNgYKF4RESpVIqHH344ms1mX8LrJElicXExXnrppUiSJFqtVuTz+fjxj3/ch24BAAAAAAAA2O8GGopHRFy+fDlarVbMzc31rWY2m4033ngjnnvuuVhZWYlz5871rTYAAAAAAAAA+9fAQ/Hp6el47rnnolar9X0P8GKxGC+88EIsLS3ZXxwAAAAAAACASLVardYwLpzL5eKVV16JarUan/nMZ/pae2pqKl5//fW4detWHD16tK+12RsnTpyImzdvxvHjx+PGjRvDbgcAAAAAAAAOhIOQ0w18UrxjcXExHn/88chms/HXf/3Xfa198eLFaLVa8aUvfamvdQEAAAAAAADYX4YWikdEvPLKK3Hq1KnIZDLx6quv9q1uLpeLiIhSqRTvvPNO3+oCAAAAAAAAsL8MNRR/+OGHo16vdyfGn3/++b7V7VhYWOhLTQAAAAAAAAD2n6GG4hHtALtWq8UXv/jFeOGFF+JXf/VX4x/+4R/6Vv/q1at9qwUAAAAAAADA/jKwUPwb3/hGnD17Ns6ePRv/+l//6/jc5z4XX/3qV+PNN9+MiIhisRiLi4vxxhtvRJIk8fnPf37HS5/fvn07IiJarVYsLS316xYAAAAAAAAA2GeODOpCzz77bNy+fTtarVakUql1z2cymThz5kwUi8VYWFiIF198MUqlUszMzEShUIjHH398y9dqNBp97BwAAAAAAACA/Wpgofjp06fjW9/6VqRSqWi1Wuuer9VqUa/X1xxrtVpRKpWiVCpFJpOJp59+OrLZ7H0D8lKpFBERqVQqzpw507d7AAAAAAAAAGB/GVgofvHixTh//nxERM9J8YhYE5Z3XtM5dm9onslkIkmSOHv2bHfK/OjRo3H79u0ol8vd82dmZvbkfgAAAAAAAAAYfalWr7HtPTI5OdndQ3yzy24lNN/odUmSxPLycvf5O3fu7LBbBunEiRNx8+bNOH78eNy4cWPY7QAAAAAAAMCBcBByuoFNike0lzV/8sknI5VKRS6XixdffDEmJiai0WhEo9GI1157LRqNRtTr9Z77gvcKwe8NypeXl9dMmR8+fDiSJIkkSSKTycTk5GScOXMmkiSJo0eP7s2NAgAAAAAAADASBjopHtFezvyrX/1qFIvF+OIXv7jpa69duxb1en1HYXlH5/Z6vSadTkeSJHHmzJmYmprq/llYPngH4RMoAAAAAAAAMGoOQk438FD89u3bcerUqfjgBz8Yf/d3f7ejGjsNyze61V6BeWeq/IUXXohTp07tqE+27iD8sAEAAAAAAMCoOQg53cBD8YiIarUaTz75ZHz5y1+O3/u93+tb3b0Iy0ulUjz77LN965HeDsIPGwAAAAAAAIyag5DTDXRP8Y5sNhvPPfdczM7OxvT0dPzCL/xCX+qePn06Tp8+HU899dSa49/61rdiaWkparVaLC0tRb1eX/P8ZnuV12o1oTgAAAAAAADAPjWUSfGOycnJmJiYiNdee23g17527VpUq9Wo1WpRrVbXTZR3gvIkSeLv//7vB97fQXMQPoECAAAAAAAAo+Yg5HRDDcWvXbsWjUYjzp07N6wWum7fvt2dIl9cXIylpaVoNpuRSqXi1q1bcfTo0WG3ONYOwg8bAAAAAAAAjJqDkNMNNRQfdZ09yu9djp3+Owg/bAAAAAAAADBqDkJON5Q9xfeLzh7lAAAAAAAAAOxPQnFGyg9/+MM4ceJEz+e+8IUvxBe+8IUBdwQAAAAAAAD721e+8pX4yle+0vO5H/7whwPuZvCE4oyUu3fvxs2bN3s+98477wy4GwAAAAAAANj/3nnnnQ0zuINAKM5IOXToUHz4wx/u+dzRo0cH3A0AAAAAAADsf0ePHo3jx4/3fO6HP/xh3L17d8AdDVaq1Wq1ht0EnDhxIm7evBnHjx+PGzduDLsdAAAAAAAAOBAOQk53aNgNAAAAAAAAAMBeEYoDAAAAAAAAMLbuG4p/4xvfGEQfI+mVV16Jd955Z9htAAAAAAAAALBDm4bi165di+np6fj85z8/qH5Gxpe+9KXI5XLRaDSG3QoAAAAAAAAAO7RpKH769Ol44YUX4sUXX4zf+I3fGFRPQ3f+/Pn48pe/HBcuXIjHH3982O0AAAAAAAAAsEP3XT59dnY2nnrqqXjppZfiV3/1V+PHP/7xIPoainfeeSfOnj0bf/EXfxHnzp2LF198cdgtAQAAAAAAALAL9w3FIyIWFhbiqaeeiqWlpTh9+nS8+uqre93XwL3++usxNTUVtVotnnjiiXjppZeG3RIAAAAAAAAAu7SlUDziZ8H4yspKZLPZeOaZZ+Kdd97Zy94G5nOf+1xMTU3F8vJy5HK5WFpaGnZLAAAAAAAAAPTBlkPxiHYw/txzz0Wr1YqFhYU4ffp0/Pmf//le9bbnvvGNb8QjjzwS5XI5Wq1WzMzMxH//7/992G0BAAAAAAAA0CfbCsUjIorFYly9ejVarVbcunUrCoVCPPLII/sqHP/qV78av/iLvxj5fD5u3boVrVYryuVy/Nmf/dmwWwMAAAAAAACgj7YdikdETE9PxxtvvBFPPPHEunD8+eefjzfffLPPbe7em2++GX/0R38UjzzySMzMzESj0YhWqxWZTCaWl5fj2WefHXaLAAAAAAAAAPTZjkLxiIgkSaJWq8WLL74Y6XQ6Wq1WNJvNKBaLMTk5GWfPno2vfvWrQw3IO0H42bNnY3JyMubm5qLZbEar1YpWqxXz8/OxtLQUp0+fHlqPAAAAAAAAAOydVKvVau22yO3bt+M//af/FF/+8pd/VjiV6v45nU5HNpuNXC4XZ86ciccff3y3l+zp9ddfj6WlpVhcXIxqtRrNZrP73OrbLBQKUSwW4+GHH96TPti+EydOxM2bN+P48eNx48aNYbcDAAAAAAAAB8JByOn6Eop3dMLxy5cvrwmkI9aG5BHtSfPOVzqdjsnJyZiYmIh0Oh0TExMR0Q7TI6Jba2VlJZrNZqysrMTy8nI0m81oNBqxtLS07nq9bqtQKMTc3JzJ8BF0EH7YAAAAAAAAYNQchJyur6H4apVKJcrlclSr1Z9dLJVaE1bfG5Tv1L01Vz/OZDIxMzMTFy5c6Mu12BsH4YcNAAAAAAAARs1ByOmO7FXh6enpmJ6ejtu3b0e5XO4uab6Zrebzm4XprVYrMplMZLPZmJmZMRUOAAAAAAAAcIDt2aT4Rr71rW9FtVqNxcXFnsueb1c6nY4zZ85ELpeLTCYT586d60+jDNRB+AQKAAAAAAAAjJqDkNPt2aT4Rp544ol44okn4rnnnuseu3btWjQajWg0Gt2Q/O233+7+OZ1OxyOPPNL9c2cvclPgAAAAAAAAAGxm4KF4L6dPn47Tp0+b8gYAAAAAAACgrw4NuwEAAAAAAAAA2CtCcQAAAAAAAADGllAcAAAAAAAAgLElFAcAAAAAAABgbB0ZdgMAABw8rVbEt69HvP5mxHd/EPHT9yIeeiDiEx+JePxUxGMnI1KpYXcJAAAAAIwDoTgAAAPz3vsRX/tmRKka0fhRRCoijhxuh+SpVMT7dyJaEZF8KGImG/Gbn454wL9YAQAAAIBd8J8YAQAYiO/cjPjcVyP+542fHWtFxHt31r/22o8ivvTfIv7r/4j4s2cjPnl8YG0CAAAAAGPGnuIAAOy5v/pexJN/2F4qvRXtr810XvPdH7TP+6vv7X2PAAAAAMB4EooDALCnvnMz4pk/iXj3/Yg7d7d37p277fOe+ZN2HQAAAACA7Rr48unvvPNOlMvlWFxcjJWVlWg0GjExMRHpdDqSJImJiYmYmpqKbDYbp06dGnR7AAD00Xvvt5dMf+9OxN37jYdv4G6rff7n/zzipeftMQ4AAAAAbM9A/5Pi5z73uSiXy93HrVb7v4zeunUrIiLq9fqa16fT6chms/Hkk0/GZz/72cE1CgBAX3ztm+09xHeYh3fduRvxt99v1/vtz/SlNQAAAADggBjY8um/8zu/E6VSKVqtVvcrlUqt+Vr9XKvVilu3bkWlUolCoRCHDx+OZ555Jl555ZVBtQwAwC60WhGlan9rll9u1wUAAAAA2KqBheJXr15dF4JHxJoQPCI2fc3CwkLkcrn42Mc+Fq+++uqgWgcAYAe+fT2i8aPdT4l3tCJi+X9F/M33+1QQAAAAADgQhrYjY6vViiRJIpPJxMTERKysrESz2YxGoxGNRmPNazvheOe8N954I7LZbExNTcXly5fjV37lVwbdPgAA9/H6mxGp6F8oHtGu9/qbEY+d7GNRAAAAAGCsDSwUP3PmTFSr7fUzU6lULCwsxFNPPbXh62/fvh3VajWuXLkS1Wo1ms1m99yIdji+tLQUmUwmyuWyPccBAEbMd38QceRwxHt3+lfzyOF2XQAAAACArRrY8un5fD4i2qF2NpvdNBCPiHj44YfjqaeeiqtXr8bKykosLy/Hc889Fw8//PCapdZbrVYUCoV4/vnn9/weAADYup++1//9v1utiJ+829+aAAAAAMB4G1gofv78+V2df/r06SgWi7GyshJXr16NbDYbrVarG4wXi8X44z/+4z51CwDAbj30QMSqXXD6IpWK+MCD/a0JAAAAAIy3gYXiDz/8cFy4cKG77PluTE9Px0svvRRvvPFG/Pqv/3pEtJdTn52djVdffbUf7QIAsEuf+EjE+31cOj2iXe8TH+lvTQAAAABgvA0sFI+IKJVK8fDDD0ez2exLeJ0kSSwuLsZLL70USZJEq9WKfD4fP/7xj/vQLQAAu/H4qYg+r54erX+qCwAAAACwVQMNxSMiLl++HK1WK+bm5vpWM5vNxhtvvBHPPfdcrKysxLlz5/pWGwCAnXnsZETyoYh+raCeiojJn4/45Y/2qSAAAAAAcCAMPBSfnp6O5557Lmq1Wt/3AC8Wi/HCCy/E0tKS/cUBAIYslYqYyfa3ZuFc//cpBwAAAADGW6rVavV7VcstyeVy8corr0S1Wo3PfOYzfa09NTUVr7/+ety6dSuOHj3a19rsjRMnTsTNmzfj+PHjcePGjWG3AwD0yXvvR+T+MOK7P4i4c3fndQ4fivjk8YjF3484crh//QEAAADAQXcQcrqBT4p3LC4uxuOPPx7ZbDb++q//uq+1L168GK1WK770pS/1tS4AANvzwJGIP3s24oHDEYd2OOF9KNU+/08/KxAHAAAAALZvaKF4RMQrr7wSp06dikwmE6+++mrf6uZyuYiIKJVK8c477/StLgAA2/fJ4xFf/92IB4+0J7634/Ch9nlf/912HQAAAACA7RpqKP7www9HvV7vTow///zzfavbsbCw0JeaAADs3Kc+HvHS77eD7VS0vzbTec0nj7fP+9TH975HAAAAAGA8DTUUj2gH2LVaLb74xS/GCy+8EL/6q78a//AP/9C3+levXu1bLQAAdu6TxyNeej7ihX8bcfpD7WOpaC+NfuRQ+387YXny8+3XvfS8CXEAAAAAYHdSrVarNYgLfeMb34hLly5FRMTExEQkSRJTU1ORzWbj1KlTERHx8ssvRz6fj9u3b8fMzEy88MILcfTo0W1f6/bt23Hs2LGIiDh27Fi8/fbbfbsP9saJEyfi5s2bcfz48bhx48aw2wEA9lirFfE33494/c2I7/4g4ifvRnzgwYhPfCTi8VMRv/zRiNQO9yAHAAAAALbuIOR0AwvFJyYm4vbt29FqtSLV479wZjKZOHPmTGQymVhYWIhqtRqpVCpmZmaiUCjE448/vuVrfetb34qpqamIEIrvFwfhhw0AAAAAAABGzUHI6Y4M6kKnT5+Ob33rW5FKpaJXDl+r1aJer6851mq1olQqRalUikwmE08//XRks9n7BuSlUikiIlKpVJw5c6Zv9wAAAAAAAADA/jKwUPzixYtx/vz5iIiek+IRsSYs77ymc+ze0DyTyUSSJHH27NnulPnRo0fj9u3bUS6Xu+fPzMzsyf0AAAAAAAAAMPoGtnx6RMTk5GS8+eabERE9p8U7thKab/S6JElieXm5+/ydO3d22C2DdBCWZQAAAAAAAIBRcxByuoFNike0lzV/8sknI5VKRS6XixdffDEmJiai0WhEo9GI1157LRqNRtTr9Wg0GuvO7xWC3xuULy8vr5kyP3z4cCRJEkmSRCaTicnJyThz5kwkSRJHjx7dmxsFAAAAAAAAYCQMdFI8or2c+Ve/+tUoFovxxS9+cdPXXrt2Ler1+o7C8o7O7fV6TTqdjiRJ4syZMzE1NdX9s7B88A7CJ1AAAAAAAABg1ByEnG7gofjt27fj1KlT8cEPfjD+7u/+bkc1dhqWb3SrvQLzzlT5Cy+8EKdOndpRn2zdQfhhAwAAAAAAgFFzEHK6gYfiERHVajWefPLJ+PKXvxy/93u/17e6exGWl0qlePbZZ/vWI70dhB82AAAAAAAAGDUHIacb6J7iHdlsNp577rmYnZ2N6enp+IVf+IW+1D19+nScPn06nnrqqTXHv/Wtb8XS0lLUarVYWlqKer2+5vnN9iqv1WpCcQAAAAAAAIB9aiiT4h2Tk5MxMTERr7322sCvfe3atahWq1Gr1aJara6bKO8E5UmSxN///d8PvL+D5iB8AgUAAAAAAABGzUHI6YYail+7di0ajUacO3duWC103b59uztFvri4GEtLS9FsNiOVSsWtW7fi6NGjw25xrB2EHzYAAAAAAAAYNQchpxtqKD7qOnuU37scO/13EH7YAAAAAAAAYNQchJxuKHuK7xedPcoBAAAAAAAA2J8ODbsBAAAAAAAAANgrQnEAAAAAAAAAxpZQHAAAAAAAAICxJRQHAAAAAAAAYGwJxQEAAAAAAAAYW0JxAAAAAAAAAMaWUBwAAAAAAACAsSUUBwAAAAAAAGBsCcUBAAAAAAAAGFtCcQAAAAAAAADGllAcAAAAAAAAgLElFAcAAAAAAABgbB0ZdgMAAIyx69cj3nqrf/UefTTi5Mn+1QMAAAAAxp5QHACAvXH9esTHPx7x05/2r+ZDD0V873uCcQAAAABgyyyfDgDA3njrrf4G4hHtev2cPAcAAAAAxp5QHAAAAAAAAICxZfl0AGBstFoR374e8fqbEd/9QcRP34t46IGIT3wk4vFTEY+djEilht0lAAAAAACDJBQHAPa9996P+No3I0rViMaPIlIRceRwOyRPpSLevxPRiojkQxEz2Yjf/HTEA/4VBAAAAABwIPjPwQDAvvadmxGf+2rE/7zxs2OtiHjvzvrXXvtRxJf+W8R//R8Rf/ZsxCePD6xNAAAAAACGxJ7iAMC+9Vffi3jyD9tLpbei/bWZzmu++4P2eX/1vb3vEQAAAACA4RKKAwD70nduRjzzJxHvvh9x5+72zr1zt33eM3/SrgMAAAAAwPgSigMA+85777eXTH/vTsTd+42Hb+Buq33+5/+8XQ8AAAAAgPEkFAcA9p2vfbO9h/h2J8TvdeduxN9+v10PAAAAAIDxJBQHAPaVViuiVO1vzfLL7boAAAAAAIwfoTgAsK98+3pE40cR/cqwWxGx/L8i/ub7fSoIAAAAAMBIEYoDAPvK629GpPpcM/VPdQEAAAAAGD9CcQBgX/nuDyKOHO5vzSOH23UBAAAAABg/QnEAYF/56Xv93/+71Yr4ybv9rQkAAAAAwGgQigMA+8pDD0Sk+rx+eioV8YEH+1sTAAAAAIDRIBQHAPaVT3wk4v07/a35/p12XQAAAAAAxo9QHADYVx4/FdHn1dOj9U91AQAAAAAYP0JxAGBfeexkRPKhiH6toJ6KiMmfj/jlj/apIAAAAAAAI0UoDgDsK6lUxEy2vzUL5/q/TzkAAAAAAKNBKA4A7Du/+emIf3Ei4vAu/yVz+FDEL3004t/9y/70xT0efTTioYf6W/Ohh9p1AQAAAAC26MiwGwAA2K4HjkT82bMRT/5hRKsVcXcHm4wfSkU8cDjiTz8bceRw/3skIk6ejPje9yLeeqt/NR99tF0XAAAAAGCLhOIAwL70yeMRX//diGf+JOK9OxF37m793MOH2oH413+3XYc9dPKkEBsAAAAAGCrLpwMA+9anPh7x0u+3g+1UtL8203nNJ4+3z/vUx/e+RwAAAAAAhsukOACwr33yeMRLz0d87ZsRpWpE40ft4PvI4fbS6qlUxPt3IloRkfx8ROFce0/yB/wrCAAAAADgQPCfgwGAfe+BIxG//ZmI3/pXEX/z/YjX34z47g8ifvJuxAcejPjERyIePxXxyx9th+QAAAAAABwcQnEAYGykUhGPnWx/AQAAAABAhD3FAQAAAAAAABhjQnEAAAAAAAAAxpbl0wGA/ef69Yi33upfvUcfjThpzXUAAAAAgHEkFAcA9pfr1yM+/vGIn/60fzUfeijie98TjAMAAAAAjCHLpwMA+8tbb/U3EI9o1+vn5DkAAAAAACNDKA4AAAAAAADA2BKKAwAAAAAAADC2hOIAAAAAAAAAjC2hOAAAAAAAAABjSygOAAAAAAAAwNgSigMAAAAAAAAwtoTiAAAAAAAAAIwtofiQNJvNaDQaw24DAAAAAAAAYKwJxQekWq1GPp+PycnJSKVScezYse6fU6lUTE1Nxfz8fDSbzWG3uiWVSiUmJydjZmZm2K0AAAAAAAAAbEgovscqlUocO3YscrlcVCqVDafD6/V6zM3NxbFjx2Jubm7AXW5duVyOY8eORT6fj0ajYdodAAAAAAAAGGlC8T3SbDYjn89HPp/vTn/Pzs5GrVaLW7duRavViuXl5SiVSpEkyZpz5+fnY2pqamSmxpvNZszPz8exY8diZmZmZPoCAAAAAAAAuJ8jw25gXE1NTXWnqJMkiVqtFul0es1rkiSJQqEQhUIhZmZmolwud5+r1+tx7ty5qNVqg2x7jXq9HqVSaU1fAAAAAAAAAPuJSfE90FlaPCIinU73DMTvVSqVYnp6es2xer0+8D27m81mlMvlmJycjKmpqW4gniTJfe8BAAAAAAAAYNQIxftsfn4+KpVK9/Hly5e3HCZfvnx53bFyuTyQfbsrlUrkcrnuEumda2az2VhcXIzl5eU4f/78nvcBAAAAAAAA0E9C8T5qNpsxNzfXfZwkybrp782k0+mYnZ1dd3x1zb3QaDQin89HtVrtHpueno7l5eVYXFyMbDbb7Q8AAAAAAABgPxGK99GlS5fWPN7J0ucXL15cd6xSqezptHiSJBHxs1D+1q1bsbCw0D0OAAAAAAAAsF8Jxfuk2WzG/Pz8mmPbmRLvSKfTkclk1h1fvST7XqjVanHr1q0oFosmwgEAAAAAAICxIRTvk9VLj0e0w+2dTlp3litfbXFxcUe1tqpXEA8AAAAAAACw3wnF++TKlStrHp85c2bHtXK53Lpj94buAHBgPfpoxEMP9bfmQw+16wIAAAAAMHaODLuBcXFvaL2byeuNAvV6vW6iGwBOnoz43vci3nqrfzUffbRdFwAAAACAsSMU74N6vR7NZnPNscnJyR3X22hP70ajIRQHgIh2gC3EBgAAAABgCyyf3gdLS0vrjk1MTOyqZq/w+//f3v/HRnbWiYL3t8p26IaZUO40gSGkb6hGpHua9GTshD/gwmYUO2L2Si+jWRui1QQpDLHf5L1SuPcPO2H+2BmtRoytu7ygRUR27txd0Qgl2LuaWa0us7GjZeHmvloSe/pNCN1hxpW8BsJM0mkbuNBN+8d5/6jYadvltqvq2HWq/PlIVlKn6zzne84pP37q+Z7neUqlUl1lAgAAAAAAABw0kuIpmJmZ2bKtWCzWVWalpPqzzz5bV5kAAAAAAAAAB42keAoqjeDebgr03aqUVN88RTsAAAAAAAAA1yYpnoJKSfF6p0+vlFS/ePFiXWUCAAAAAAAAHDSS4inYi7W+b7jhhi3bjBQHAAAAAAAAqE57owNoVfVOn17v/s3qypUr8Z/+03+qap9jx47FsWPH9igiAAAAAAAAaA7z8/MxPz9f1T5XrlzZo2iyQ1K8Tvs5evsgTJ/++uuvx8c+9rGq9vnv/rv/Lv78z/98bwICAAAAAACAJvEf/sN/iL/4i79odBiZY/r0jKp3TXIAAAAAAAAAJMXrtp+jtyXKAQAAAAAAAKpj+vQ67ef06QfBu971rvhf/9f/tap9rCcOAAAAAAAAEZ/97Gejp6enqn3++I//OF5//fU9iigbJMXrVCgUKm5fXFzc9t/SPlYrue666+Jf/st/2egwAAAAAAAAoOkcO3as6gGl11133R5Fkx2mT6/Tfk5pbvp0AAAAAAAAgOpIiu+R/VxrHAAAAAAAAIDKJMXrdK3p0+tRKaleLBbrKhMAAAAAAADgoJEU3yN7MVK8u7s79TIBAAAAAAAAWpmkeAoqjeCud6R4pf2NFAcAAAAAAACojqR4Ciolq0ulUl1lzs3N7eo4AAAAAAAAAGxPUjwFlZLVlZLa1bCmOAAAAAAAAED9JMVTUGmt73pHim/ev6enp67yAAAAAAAAAA4iSfEUVBrB/dxzz9VV5uakeG9vb13lAQAAAAAAABxEkuIpqDSKe3FxMRYXF2sqr9K+RooDAAAAAAAAVE9SPCWVktbT09M1lbV5lHmhUIiurq6aygIAAAAAAAA4yCTFU9Lf379l25NPPllTWRMTExteDwwMVLV/veuZAwAAAAAAALQKSfGUfOpTn9qybXJysqayvvWtb214/eijj+5qv+np6ejs7Izjx49HLpeLwcHBmo4PAAAAAAAA0CokxVNSKBSir69vy/bx8fGqypment6wnvjAwEAUCoUd95udnY3e3t4N+46Pj1ccwV6rSmukX7x4MbXyAQAAAAAAANImKZ6ikZGRLduGh4erKuPq9xcKhYplVvLFL36x4vbJycnUplOvlACvlCgHAAAAAAAAyApJ8RQVi8UtSezFxcVdj9YeHR2N2dnZ9ddPP/30rkaJR1x7HfGry6zV4uJixengS6VSKuUDAAAAAAAA7AVJ8ZQNDQ3F0NDQhm2Tk5M7JsZHR0c3jBIfGxuLrq6uXR/3jjvu2Pbfqilns1KpFJOTk9Hd3b3te+6+++4YHx+P2dlZI8cBAAAAAACATMklSZI0OohWtDnJHVGeDn1gYCDuvPPOKBaLcfHixZidnY2xsbH1kd6FQiEmJiaip6enquMtLi7G+9///i1J6aGhoV1PwR4R0dnZmVpiu1AoxMLCwq7e+773vS9++tOfxk033RQ/+clPUjk+AAAAAAAAcG0HIU8nKb6HSqVS9Pf373p68b6+vhgZGYlisVjz8QYHB2N6ejqKxWIMDw/HwMBAVWXkcrmajr2d3X68DsIvGwAAAAAAAGTNQcjTtTc6gFZWLBZjZmYmSqVSjI2NxezsbJRKpSiVSlEoFKJYLMaRI0eit7c3BgYGdr1++LWONzU1VVcZnpEAAAAAAAAAWomk+D4oFotVTWEOAAAAAAAAQDryjQ4AAAAAAAAAAPaKpDgAAAAAAAAALUtSHAAAAAAAAICWJSkOAAAAAAAAQMuSFAcAAAAAAACgZUmKAwAAAAAAANCyJMUBAAAAAAAAaFmS4gAAAAAAAAC0LElxAAAAAAAAAFqWpDgAAAAAAAAALUtSHAAAAAAAAICWJSkOAAAAAAAAQMuSFAcAAAAAAACgZUmKAwAAAAAAANCyJMUBAAAAAAAAaFmS4gAAAAAAAAC0LElxAAAAAAAAAFqWpDgAAAAAAAAALUtSHAAAAAAAAICWJSkOAAAAAAAAQMuSFAcAAAAAAACgZUmKAwAAAAAAANCyJMUBAAAAAAAAaFmS4gAAAAAAAAC0LElxAAAAAAAAAFqWpDgAAAAAAAAALUtSHAAAAAAAAICWJSkOAAAAAAAAQMuSFAcAAAAAAACgZUmKAwAAAAAAANCyJMUBAAAAAAAAaFmS4gAAAAAAAAC0LElxAAAAAAAAAFqWpDgAAAAAAAAALUtSHAAAAAAAAICWJSkOAAAAAAAAQMuSFAcAAAAAAACgZUmKAwAAAAAAANCyJMUBAAAAAAAAaFmS4gAAAAAAAAC0LElxAAAAAAAAAFqWpDgAAAAAAAAALUtSHAAAAAAAAICWJSkOAAAAAAAAQMuSFAcAAAAAAACgZUmKAwAAAAAAANCyJMUBAAAAAAAAaFmS4gAAAAAAAAC0LElxAAAAAAAAAFqWpDgAAAAAAAAALUtSHAAAAAAAAICWJSkOAAAAAAAAQMuSFAcAAAAAAACgZUmKAwAAAAAAANCyJMUBAAAAAAAAaFmS4gAAAAAAAAC0LElxAAAAAAAAAFqWpDgAAAAAAAAALUtSHAAAAAAAAICWJSkOAAAAAAAAQMuSFAcAAAAAAACgZUmKAwAAAAAAANCyJMUBAAAAAAAAaFmS4gAAAAAAAAC0LElxAAAAAAAAAFqWpDgAAAAAAAAALau90QEAAABlSRLx/HzE2Vcizr8acXkp4lBHxIn3Rtx+S8TpYxG5XKOjBAAAAIDmIikOAAANtrQcceZ7EWPTEaXXInIR0d5WTpLnchHLKxFJRBRvjBjsibjvYxEdWvIAAAAAsCu60gAAoIHO/TTiwX8f8cOfvLUtiYilla3vffm1iEe+GfH170Y89rmIkzftW5gAAAAA0LSsKQ4AAA3yzEsR9/xlear0JMo/17L2nvOvlvd75qW9jxEAAAAAmp2kOAAANMC5n0bc+5WIK8sRK6vV7buyWt7v3q+UywEAAAAAticpDgAA+2xpuTxl+tJKxOpOw8O3sZqU93/or8vlAQAAAACVSYoDAMA+O/O98hri1Y4Q32xlNeLFH5fLAwAAAAAqkxQHAIB9lCQRY9Ppljn+dLlcAAAAAGArSXEAANhHz89HlF6LSCuHnUTE3D9HvPDjlAoEAAAAgBYjKQ4AAPvo7CsRuZTLzL1ZLgAAAACwlaQ4AADso/OvRrS3pVtme1u5XAAAAABgK0lxAADYR5eX0l//O0kiLl1Jt0wAAAAAaBWS4gAAsI8OdUTkUp4/PZeLOHxdumUCAAAAQKuQFAcAgH104r0Ryyvplrm8Ui4XAAAAANhKUhwAAPbR7bdEpDx7eiRvlgsAAAAAbCUpDgAA++j0sYjijRFpzaCei4jj74647eaUCgQAAACAFiMpDgAA+yiXixjsSbfMgbvTX6ccAAAAAFqFpDgAAOyz+z4W8bvvi2irszXelo84dXPEZz6eTlwAAAAA0IokxQEAYJ91tEc89rmIjraIfI0jvPO58v5f+9OI9rZ04wMAAACAViIpDgAADXDypognHo64rr36EeNt+fJ+TzxcLgcAAAAA2J6kOAAANMhHb4146s/Kie1clH+uZe09J28q7/fRW/c+RgAAAABodu2NDgAAAA6ykzdFPPWFiDPfixibjii9Vk58t7dFJElELhexvBKRRETx3REDd5fXJO/QkgcAAACAXdGVBgAADdbRHvHZP4i4/66IF34ccfaViPOvRly6EnH4uogT7424/ZaI224uJ8kBAAAAgN2TFAcAgIzI5SJOHyv/AAAAAADpsKY4AAAAAAAAAC1LUhwAAAAAAACAliUpDgAAAAAAAEDLkhQHAAAAAAAAoGVJigMAAAAAAADQsiTFAQAAAAAAAGhZkuIAAAAAAAAAtCxJcQAAAAAAAABalqQ4AAAAAAAAAC1LUhwAAAAAAACAliUpDgAAAAAAAEDLkhQHAAAAAAAAoGVJigMAAAAAAADQsiTFAQAAAAAAAGhZkuIAAAAAAAAAtCxJcQAAAAAAAABalqQ4AAAAAAAAAC1LUhwAAAAAAACAliUpDgAAAAAAAEDLkhQHAAAAAAAAoGW1NzoAuNrPfvazeN/73lfx3/7tv/238W//7b/d54gAgJYxPx9x4UJ65R09GnHsWHrlAQAAAMAe+dKXvhRf+tKXKv7bz372s32OZv9JipMpq6ur8dOf/rTiv/3iF7/Y52gAgJYxPx9x660Rly+nV+ahQxEvvSQxDgAAAEDm/eIXv9g2B3cQSIqTKfl8Pn7nd36n4r9df/31+xwNANAyLlxINyEeUS7vwgVJcQAAAAAy7/rrr4+bbrqp4r/97Gc/i9XV1X2OaH9JipMpv/M7vxM/+clPGh0GAAAAAAAAtIxrLVP8vve9r+VHkecbHQAAAAAAAAAA7BVJcQAAAAAAAABalqQ4AAAAAAAAAC1LUhwAAAAAAACAliUpDgAAAAAAAEDLam90AABAk5ifj7hwIb3yjh6NOHYsvfIAAAAAAKACSXEAYGfz8xG33hpx+XJ6ZR46FPHSSxLjAAAAAADsKdOnAwA7u3Ah3YR4RLm8NEeeAwAAAABABZLiAAAAAAAAALQsSXEAAAAAAAAAWpakOAAAAAAAAAAtq73RAQAAzS2JiOdv+P04+64743znqbjcdjgOrVyKEwsvxu2vPxun3/j7yDU6SAAAAAAADixJcQCgJku59jhz4oEY+9Dno/TOD0YuWY321eVIcrnIJUks59sjyeWj+PMfxeAPvhz3nX88OpLlRocNAAAAAMABY/p0AKBq5zpPRe8fPRuPfOSr8fL1H4iIiCSXj6W262I53xFLbddFkis3M16+/gPxyEe+Gr1/9Gyc6zzVyLABAAAAADiAJMUBgKo8856Pxz2f/H6c7zwVSS6/nvzeztp7zneeins++f145j0f36dIAQAAAABAUhwAqMK5zlNx7ye+HVfyb4uVfEdV+67kO+JK/m1x7ye+bcQ4AAAAAAD7RlIcANiVpVx7PHjXN2Ip3xGr+baayljNt8VSviMeuutMLOXaU44QAAAAAAC2khQHAHblzIkH4odHTlc9QnyzlXxHvHjk9+LMiQdSigx24ejRiEOH0i3z0KFyuQAAAABAphmiBQDsKEkixj70+VTLHD/1cNyf/CpyqZYK2zh2LOKllyIuXNjyT0kS8fyFw3H2tXfE+YVDcXk5H4faV+NE5+W4/cZfxemjlyJX6YN69Gi5XAAAAAAg0yTFAYAdPX/hcJTe+cHUykty+Zgr3BovXDgXp1MrFXZw7NiGJPbScsSZ70WMTUeUXovIRUR7WzlJnstFLK9EJBFRvDFisCfivo9FdGg9AwAAAEDTMX06ALCjs6+9I3LJaqpl5pLVOPv621MtE3br3E8jev8y4pFvRrz8WnlbEhFLKxHLq+X/Jm++9+XXyu/r/cvyfgAAAABAc5EUBwB2dH7hULSvLqdaZvvqcpy/eDjVMmE3nnkp4p6/jDj/ajnxnezw/rX3nH+1vN8zL+19jAAAAABAeiTFAYAdXV7OR1JxUeXaJRFxaVlThP117qcR934l4spyxEqVkx+srJb3u/crRowDAAAAQDPREw0A7OhQ+2rkkp3G01YnFxGH29Odkh2uZWk54sF/X54afbXGj/NqUt7/ob8ulwcAAAAAZJ+kOACwoxOdl2M5355qmcv59jhx5FKqZcK1nPlexA9/Uv0I8c1WViNe/HG5PAAAAAAg+yTFAYAd3X7jryLJpdtsSHL5uP1dv061TNhOkkSMTadb5vjT5XIBAAAAgGyTFAcAdnT6xDui+It/iFySznTnuWQ1jv/iR3HbiXekUh7s5Pn5iNJr5bXs05BExNw/R7zw45QKBAAAAAD2jKQ4ALCj3L84FoOfviEil0upwFwMfPpo5P7FsXTKgx2cfaW8jn2acm+WCwAAAABkm6Q4ALAr9/0/jsTvvi8XbXW2HtryEaduzsVnPnkkncBgF86/GtHelm6Z7W3lcgEAAACAbJMUBwB2paM94rHPRXS0ReRrHHKbz5X3/9qfpp+ghGu5vJT++t9JEnHpSrplAgAAAADpkxQHAHbt5E0RTzwccV17VD1ivC1f3u+Jh8vlwH461JHe7P9rcrmIw9elWyYAAAAAkD5JcQCgKh+9NeKpPysntnOx8zrNa+85eVN5v4/euvcxwmYn3huxvJJumcsr5XIBAAAAgGxrb3QAAEDzOXlTxFNfiDjzvYix6YjSa+XEd3tbeUrpXK6cMEwiovjuiIG7I+77WHkKdmiE228pfx7TlLxZLgAAAACQbbqmAYCadLRHfPYPIu6/K+KFH0ecfSXi/KvlNZYPX1ceQXv7LRG33Zz+tNVQrdPHIoo3Rrz8WjrJ8VyUH/i47eYUCgMAAAAA9pSkOABQl1yunHA8fazRkcD2crmIwZ6IR76ZXpkDd3vgAwAAAACagTXFAQA4EO77WMTvvi+irc4WcFs+4tTNEZ/5eDpxAQAAAAB7S1IcAIADoaM94rHPRXS0ReRrHOGdz5X3/9qfRrS3pRsfAAAAALA3JMUBADgwTt4U8cTDEde1Vz9ivC1f3u+Jh8vlAAAAAADNQVIcAIAD5aO3Rjz1Z+XEdi7KP9ey9p6TN5X3++itex8jAAAAAJCe9kYHAAAA++3kTRFPfSHizPcixqYjSq+VE9/tbRFJEpHLRSyvRCQRUXx3xMDd5TXJO7SeAQAAAKDp6NYDAOBA6miP+OwfRNx/V8QLP444+0rE+VcjLl2JOHxdxIn3Rtx+S8RtN5eT5AAAAABAc5IUBwDgQMvlIk4fK/8AAAAAAK3HmuIAAAAAAAAAtCxJcQAAAAAAAABalunTAQBgv83PR1y4kF55R49GHDP/OwAAAABUIikOAAD7aX4+4tZbIy5fTq/MQ4ciXnpJYhwAAAAAKjB9OgAA7KcLF9JNiEeUy0tz5DkAAAAAtBBJcQAAAAAAAABalqQ4AAAAAAAAAC1LUhwAAAAAAACAliUpDgAAAAAAAEDLkhQHAAAAAAAAoGVJigMAAAAAAADQsiTFAQAAAAAAAGhZkuIAAAAAAAAAtCxJcQAAAAAAAABaVnujAwAAABpsfj7iwoX0yjt6NOLYsfTKAwAAAIA6SIoDAMBBNj8fceutEZcvp1fmoUMRL70kMQ4AAABAJpg+HQAADrILF9JNiEeUy0tz5DkAAAAA1EFSHAAAAAAAAICWJSkOAAAAAAAAQMuSFAcAAAAAAACgZbU3OgAAoDpJEvH8fMTZVyLOvxpxeSniUEfEifdG3H5LxOljEblco6MEqNH8fLrrkR89GnHsWHrlQYvQngAAAOAgkRQHgCaxtBxx5nsRY9MRpdcichHR3lbu1M7lIpZXIpKIKN4YMdgTcd/HIjr8pQeayfx8xK23Rly+nF6Zhw5FvPSSxDi8SXsCAACAg8j06QDQBM79NKL3LyMe+WbEy6+VtyURsbQSsbxa/m/y5ntffq38vt6/LO8H0DQuXEg3IR5RLi/NkefQxLQnAAAAOKgkxQEg4555KeKevyxPbZrEW53V21l7z/lXy/s989LexwhU4ejR8ujlNB06VC4XYBvaEwAAABxkJkEDgAw799OIe78ScWU5YnWn3utNVlbLU6He+5WIp/4s4uRNexMjUKVjx8rTeVs3uzlY45wWoD0BAADAQScpDgAZtbQc8eC/L09lWm0H9prVpLz/Q38d8dQXrAkKmXHsmMRoM7DGOS1AewIAAABMnw4AmXXmexE//El5hFY9VlYjXvxxuTwAqmCNc1qA9gQAAABIigNAJiVJxNh0umWOP10uFwA4GLQnAAAAoMykZwCQQc/PR5ReS6+8JCLm/jnihR9HnDZjL9CEkoh4/obfj7PvujPOd56Ky22H49DKpTix8GLc/vqzcfqNv49co4OEjNGeAAAAgDJJcQDIoLOvROSi3Pmcltyb5erEBprJUq49zpx4IMY+9PkovfODkUtWo311OZJcLnJJEsv59khy+Sj+/Ecx+IMvx33nH4+OZLnRYUMmaE8AAABAmenTASCDzr8a0d6WbpntbeVyAZrFuc5T0ftHz8YjH/lqvHz9ByIiIsnlY6ntuljOd8RS23WR5MpfaV6+/gPxyEe+Gr1/9Gyc6zzVyLAhM7QnAAAAoExSHAAy6PJS+ut1JknEpSvplgmwV555z8fjnk9+P853nookl19Pfm9n7T3nO0/FPZ/8fjzzno/vU6SQXdoTAAAAUCYpDgAZdKgjIpfy4ri5XMTh69ItE2AvnOs8Ffd+4ttxJf+2WMl3VLXvSr4jruTfFvd+4ttGjHPgaU8AAABAmaQ4AGTQifdGLK+kW+bySrlcgCxbyrXHg3d9I5byHbGar23e59V8WyzlO+Khu87EUq495QiheWhPAAAAQJmkOABk0O23RKQ822kkb5YLkGVnTjwQPzxyuuoR4put5DvixSO/F2dOPJBSZNB8tCcAAACgTFIcADLo9LGI4o0Rac14mouI4++OuO3mlAoEWsfRoxGHDqVb5qFD5XKrlCQRYx/6fKqhjJ96OPU1laFZaE8AAABAmbkEASCDcrmIwZ6IR76ZXpkDd6e/rijQAo4di3jppYgLF9Ir8+jRcrlVev7C4Si984OphZHk8jFXuDVeuHAuTqdWagPNz2fiPtE8tCcAAACgTFIcADLqvo9FfP27EedfjVhZrb2ctnzEyZsiPvPx9GIDWsyxY5lIjp597R2RS1YjyaU3oVUuWY2zr7+9+ZPi8/MRt94acflyemUeOlR+ICID9569oz0BAAAApk8HgMzqaI947HMRHW0R+RpHZOVz5f2/9qcR7W3pxgeQtvMLh6J9dTnVMttXl+P8xcOpltkQFy6kmxCPKJeX5shzMkl7AgAAACTFASDTTt4U8cTDEde1l0doVaMtX97viYfL5QBk3eXlfCQpz8ucRMSlZV97ONi0JwAAADjo9A4BQMZ99NaIp/6s3BGdi/LPtay95+RN5f0+euvexwiQhkPtq5FLklTLzEXE4fY65oyGFqE9AQAAwEFmTXEAaAInb4p46gsRZ74XMTYdUXqt3FHd3haRJBG5XMTySnlEZPHdEQN3l9cQ7fCXHmgiJ25uj+Xn0624lvPtceKY+Z4hQnsCAACAg8tXWwBoEh3tEZ/9g4j774p44ccRZ1+JOP9qxKUrEYevizjx3ojbb4m47eZypzZAs7m960gk/zHdMpNcPm7vuiHdQqOcNHz+ht+Ps++6M853norLbYfj0MqlOLHwYtz++rNx+o2/33EkLnsvSSKen3/rb+blpYhDHW/9zTx97OD9zdSeAAAA4CCSFAeArJqfj7hwYcvmXEScjojTvxURH9z0jxfe/Knk6NGIY8dSDREgTaePRRRvjHj5tXLSuV65KI92ve3mFAp701KuPc6ceCDGPvT5KL3zg5FLVqN9dTmSXC5ySRLL+fZIcvko/vxHMfiDL8d95x+PjmQ5vQDYlaXlXY6GvjFisOdgjobO5cq/c6c1DQAAADgADtjXfgBoEvPzEbfeGnH5cnplHjoU8dJLEuNAZuVy5QTlI99Mr8yBu9Mb7Xqu81Q8eNc34odHTq9vS3L5WGq7bst7X77+A/HIR74aXz8xEI9950/i5MKL6QRBZVc9SHbujUPx4NO3xA/fOPzmP+YiiYilla27vfxaEo98M+Lr/8eleOzuV+LkDW/+3fUgGQAAALSUfKMDAAAquHAh3YR4RLm8CiPPAbLkvo9F/O77Itrq/KbSlo84dXPEZz5eRyFHj5YfKIqIZ97z8bjnk9+P852nIsnlI8ldO8C195zvPBX3fPL78cx73gzk0KFyuaRn7UGy7u545l/9m7jnm7fE+dc7IolcJDtMYr/2nvOvd8Q937wlnvlX/yaiu7tc3vz8Pp0AAAAAsNeMFAcAADKjoz3isc9F3POX5amuV2uYRz2fi+hoi/jan5anzK7ZsWMRL70U5176L3Hv/3IirqzmYjWpbtj5Sr4jkrb2uPeT/2c89d+cj5O3/lZrjEDeZomPmtUzMvvNB8nOdZ6Kez/x7biSf1us5qu78Sv5jkgiH/d+4tvx1N9+uDyy/8KF1rhXAAAAgKQ4AACQLSdvinji4Yh7v1Ke8npldff7tuXLCfEnHi6XU6+l9x6LB/+niKUaE/QREatJLpaSXDz0//ndeOoPIjrqD6uxMrjEx1KuPR686xuxlO+oOiG+ZjXfFkvREQ/ddSae+psPN/99AgAAANaZPh0AAMicj94a8dSflRPbuYgdJsF+6z0nbyrv99Fb04njzPcifviT6hLzlaysRrz443J5TS+DS3ycOfFA/PDI6VjJ15fKXsl3xItHfi/OnHigrnIAAACAbDFSHAAAyKSTN0U89YVyInlsOqL0Wjnx3d5Wnlo9l4tYXolIIqL47oiBu8trknek9C0nScrHTdP40xH331WOnXQkScTYhz6fapnjpx6O+5Nf7fgwRlPI0lT3AAAA0CCS4gAAQEVJEvH8fMTZVyLOvxpxeSniUEfEifdG3H5LxOlje5/c7WiP+OwflBPJL/z4rVguXYk4fN1bsdx2c/qxPD9fTsSnJYmIuX8un8fpFHOKSUQ8f8Pvx9l33RnnO0/F5bbDcWjlUpxYeDFuf/3ZOP3G37dGcncbz184HKV3fjC18pJcPuYKt8YLF87F6dRKbZAMTnWfGU3ysEAW6mEAAIBWICkOAABssLS8y9HZN0YM9qQ7Ons7uVw5+ZNmMnknZ18pn3uNS4lXlHuz3DTOYynXHmdOPBBjH/p8lN75wcglq9G+uhxJLhe5JInlfHskuXwUf/6jGPzBl+O+849HR7Jc/4Ez5uxr74hcshpJLr3VwXLJapx9/e21JcWzlGzdy6nua4kpK9emCR4WyGI9DAAA0Mx8ZQIAANad+2nEg/++vI72miQilla2vvfl1yIe+WbE178b8djnytOdt5Lzr5aTUJXOvVbtbeVy63Wu81Q8eNc34odH3krbJrl8LLVdt+W9L1//gXjkI1+Nr58YiMe+8ydxcuHF+gPIkPMLh6J9dbniudeqfXU5zl88XP2OTZBsbZgsXZusPSywiXoYAAAgfek9Sg8AADS1Z16KuOcvy0nbJHYeIb32nvOvlvd75qW9j3E/XV4qj8pMU5KUp36vxzPv+Xjc88nvx/nOU5Hk8juOkF57z/nOU3HPJ78fz7zn4/UFkDGXl/ORpDx/dBIRl5Zr+Lq8l8nWZufa7Ip6GAAAYG9IigMAAHHupxH3fiXiynLEymp1+66slve79yvlclrFoY701+rN5cprodfqXOepuPcT344r+bfFSr6jqn1X8h1xJf+2uPcT345znadqDyJjDrWvRi7lpxdyEXG4vcpfBKiTehgAAGDvSIoDAMABt7Rcnqp3aSVitcbc4mpS3v+hvy6X1wpOvLe8bm+allfK5dZiKdceD971jVjKd8Rqvq2mMlbzbbGU74iH7joTS7nWWE3rROflWM6ney7L+fY4ceRSqmXCtSy9PB8P/o+/jqXlpL56eDmJh/7HX8fSy/PpBggAANDkJMUBAOCAO/O98tq11Y5M3GxlNeLFH5fLawW337Lz1MXVSt4stxZnTjwQPzxyuuoR4put5DvixSO/F2dOPFBXOVlx+42/2nEK+WoluXzc/q5fp1ombGt+Ps780f8QP7xwKFaS+qanWEly8eKFQ3Hmj/6H8jruAAAAREREawwNAAAAapIkEWPT6ZY5/nTE/XelP/X4fjt9LKJ4Y8TLr6WTHM9FRPHdEbfdXP2+yQ1HY+y2f5NCFG8Zv+3zcf8NhyLN25RExPM3/H6cfdedcb7zVFxuOxyHVi7FiYUX4/bXn43Tb/x9qseLiDh99FIUf/6jePn6D6SSHM8lq1H8+T/EbUeNFGd/JK9fiLFb/1+pljn+wYfi/tcvRO7YsVTLBThokiTi+fmIs69EnH814vJSeYmdE+8tP+h4+ljzt3lrlaVrk6VYAMguSXEAADjAnp+PKL2WXnlJRMz9c8QLPy53PjWzXC5isCfikW+mV+bA3bV1yD0fx6J0fXpxJLl8zF3/wXghF3E6hfKWcu1x5sQDMfahz0fpnR+MXLIa7avLkeRykUuSWM63R5LLR/HnP4rBH3w57jv/eHQk6cyzn8tFDP7gy/HIR76aSnkREQMvfiVyuc+lVh5cy/MXDkfpnR9Mrbwkl4+5wq3xwoVzqfx+AxxES8vl2Y/Gpstt5VxEtLeVk6+5XHlJnCTKD1AO9kTc97GIjgPS056la5OlWADIPn8CAADgADv7SrnzKM1pwnNvltvsSfGIcsfZ179bHnFSz/TybfmIkzdFfObjte2f5ft0rvNUPHjXN+KHR95KvyW5fCy1XbflvS9f/4F45CNfja+fGIjHvvMncXLhxfoO/qb7zj8eXz8xEOc7T9U1vXzb6lKcXPhBfOb8eERIirM/zr72jsglq6kuA5BLVuPs629vjaT4/HzEhQvplXf0aIQR9MA1nPtpxIP/vry80JokIpZWtr735dfKD1B+/bsRj32u3N5rZVm6NlmKBYDmICkOAAAH2PlXy6MpKnUe1aq9rVxuK+hoL3ec3fOX5REnqzVkpfO5iI62iK/9afna1CKr9+mZ93w87v3Et2Mp37GrhN7ae853nop7Pvn9eOLv/jA++k/frS+IiOhIluOx7/xJ3PPJ70cS+VjNV3+h86sr0bG6FF/7zn3RnqR4oWEH5xcORfvqcsUHSWrVvroc5y8eTq28hpmfj7j11ojLl9Mr89ChiJdekhgHKnrmpYh7v1Juc+2m2bf2nvOvltuLTzwc8dFb9zLCxsnStclSLAA0D0lxAAA4wC4vlZO9aUqSiEtX0i2zkU7eVO44W+t4q2bEeFu+nBB/4uH6RqRk8T6d6zwV937i23El/7aqk9Ar+Y5IIh/3fuLb8dTffjiVEeMnF16MJ/7uD8tJ+uioasR42+pSdKwuxRN/94epjV6H3bq8nI8k5YVOk4i4tFzjyPMsjcy+cCHdhHhEubwLFyTFgS3O/bTc3ruyXP2DkCur5bbVvV+JeOrPWm8kcpauTZZiAaC5SIoDAMABdqijtjWuryWXizic3oDHTPjoreWOs4f+OuLFH5e3XasPbu2SnrypPEK83g63rN2npVx7PHjXN2Ip31HTqOyIiNV8WyxFRzx015l46m8+HLVPev6Wj/7Td+Opv/1wPHTXmXjxyO9FRFxzBHsuKT/hcHLhB/G179wnIU5DHGpfjVzKT73kIuJwew1rPhiZDRxQS8vlqbiXVmqbGSiivN/SSrm9+NQXWmft6ixdmyzFAkDzSW/BKgAAoOmceG/EcsozRS+vlMttNSdvKnec/dV/G/H+G8vbclEeCd7+5ojwtbx18d3l9z31hXRGoGTtPp058UD88MjputbvjiiPGH/xyO/FmRMP1FXO1U4uvBhP/c2H46/+87+O9//iHyOinPzuWLkS7StXomPlynoyvPjzf4i/+s//Op76m3RGq0MtTnRejuV8uj3yy/n2OHHkUvU77uXIbIAMO/O98trU1cwIVMnKavkByjPfSyeuLMjStclSLAA0H89BAcDVsjJd5NGj5VE1aY/SOXo0vfKAlnD7Lbtbh68ayZvltqKO9ojP/kHE/XdFvPDjiLOvlNcmvHSlPOr6xHvL537bzemO7M7SfUqSiLEPfT7VWMZPPRz3J7+KtC5ZR7Icnz33WNx/7rF44Ybb4+zRO+N856m41P72OLz86zix8GLcfuHZuO2Ns6kdE2p1+42/uuaMBrVIcvm4/V2/TrVMMiYr31uyyLWhSkkSMTadbpnjT5fbi2nP9LPfsnRtshQLAM1JUhwA1lxjusgkIp6/4ffj7LvKneqX2w7HoZVL5U7115+N02/8feVO9Vqnizx2rLyfzhxgj50+FlG8MeLl19JJuuaiPEr6tptTKCzDcrnytTu9T9Vqlu7T8xcOR+mdH0whirIkl4+5wq3xwoVzcbqWAq7xIFkuIk6/cTZOv3G2ujL34EGymtsSB0CWrk0jYjl99FIUf/6jePn6D6SSHM8lq1H8+T/EbUdrGCl+DVm6Twdelr63ZE0TLQGQJBHPz7/1gN3lpfJyKWsP2J0+tn+JuizF0gjPz0eUXkuvvCQi5v65/ADlfrUV90qWrk2WYqE2B72uaRbu0/aydm2yFk8zkBQHgDUVpotcyrXHmRMPxNiHPh+ld34wcslqtK8uR5LLRS5JYjnfHkkuH8Wf/ygGf/DluO/849GRLL9VwNp0kbV0oBw71vydUkDm5XIRgz0Rj3wzvTIH7vbFK21Zuk9nX3tH5JLVVEe25pLVOPv622tLimf8QbK62xItLEvXppGx5HIRgz/4cjzyka+mUl5ExMCLX4lc7nOplJWl+9RwWRmBnLXvLRGZvjZ1q/fabLK0XJ6yeWy6nODLRUR7W7ljO5crL2+SRPlhuMGeiPs+luKax5vu09JKxJlzR2Ps+Ruj9PNDkYsk2vPJW7Gs5iKJXBTfeTkGT78W9528EB1tV5XXIg9en32lfB/SnJUn92a5NSVbs/L7FNm6NlmKheo0tN5j19yn7WXt2mQtnmbiMgDANs51nooH7/pG/PDIW130SS4fS23XbXnvy9d/IB75yFfj6ycG4rHv/Il1SYGmct/HIr7+3fKTxfWsz9eWL6+f/ZmPpxcbb8nKfTp/qTPaV5cr/j2sVfvqcpy/dKT2AjL6IJm2xPaydG2yEMt95x+Pr58YiPOdp2Il31FzOW2rS3Fy4QfxmfPjEVF/UjwL1yYzMjwCueH3KcPXJmvO/TTiwX9fXhN5TRLl5PRmL79Wfhju69+NeOxz5b/dddl0n9763Lyv/O+5iCRysbSaeyuwtVgWr4tHvvu++PrfXNz4uWmR+3T+1XIyodJ9qFV7W7ncqmXs9ylL1yZLsbB7Da332DX3aXtZuzZZi6fZpLtoFQC0iGfe8/G455Pfj/OdpyLJ5XccDbf2nvOdp+KeT34/nnmPjBDQPDray1+QOtoi8jWO8M7nyvt/7U/LnUukLyv36fKh346ko/akXSVJR0dcettvp1pmo2lLbC9L1yYrsXQky/HYd/4kOlaXIr9aW29/fnUlOlaX4mvfuS/ak/ozBlm5NpmxlyOQ65CJ+5TRa5MZ8/MRs7PxzP/+o7jnv1+N8z9NIomdR7uuvef8T5O4579fjWf+9x9FzM6Wy6vFVfcptc9NPffpzeuS2k+t1yXK080mSZrjj8vlXbpSw44Z+30qX5t0w0mSqOnaZCkWdueZlyLu+cvygwdV1Xuvlvd75qW9jxH36Vqydm2yFk8zMlK8QRYXF+PixYtRLBYbHUrVmjl2gN0413kq7v3Et+NK/m2xmq8uY7CS74gk8nHvJ74dT/3th1tvhAzQsk7eFPHEwxH3fqX8hHE1I5Hb8uVE6xMPe/J4r2XhPh3qiMilPD9+LpeLw+kNPG84bYntZenaZCmWiIiTCy/GE3/3h3HvJ74dS9FR1YjxttWl6Fhdiif+7g9TiSVr14bK3Kcm8Oao33OHj8e9n/x+XMknsZqvbozSSpKLZGk17v1f3le+V5fm6hqdnYnPTcZGQx+6/MvILb0tIsVZcHJLS3H4N7+JiOZ+6O9QR0QukihPzpuOXCRx+Lrqy8tSLBGRqWnus+jcT8vfWa4sR6xW+TDDymr5gYV7vxLx1J/5jrmX3KdtzM/HuZf+S9z7v5yIK6u5WE2qqyfK1yaJe//fSTz135yPk7f+Vv0zA7lXqTBSfJ9MT09Hf39/HD9+PHK5XHR2dq7/fy6Xi+7u7hgdHY3FxcVGh7pFM8cOUK2lXHs8eNc3YinfUXUHwZrVfFss5TviobvOxFLO82dA8/jorW99QcrFzt1Na+85eVN5v4/euvcx0vj7dOK95TXK0rS8Ui63FWSqLXH0aDlJkKZDh8rl1iBL1yZLsVzto//03TcTTT+IXLIaueTaT76svefkwg/iqb/9cHz0n75bdwxZvTZs5D41iQsXYuk3y+neq98s15yIy8znJmOjoU8cXojlfLq/A8v59jhx+GKqZTbCiUMXY3kl3eHZyytJnDj0RlPHsv5gR3d3ej+33lrXjAdZsrRcnt55aaX65N2a1aS8/0N/XS6vLhmamSJLMnefsmJ+PpZOnIoHH7sSS0srVSfE16wmuVhaWomHHvtNLJ04Vdfnxr1KjxbvHpucnIwHHnhgx4Tx7OxszM7OxvDwcAwNDcXIyMj+BHgNzRw7QK3OnHggfnjk9I7Tx+1kJd8RLx75vThz4oH4bEqxAeyHkzdFPPWFiDPfixibjii9Vk6otreVnyzO5coJzCQiiu+OGLi7vNZ1h28W+6qR9+n2W3aepq1ayZvltoJMtSWOHSuPmsvIKKbMXJujR+PMbQ+lG8ttD8Vna3xYYLOTCy/GU3/z4Thz4oEY+9Dno/TOD0YuWY321eX18XHL+fZIcvko/vwfYuDFr8R95x+PjiSd3q3M3CeuyX1qHlm6V1mKJUtuv/FXdV+TzZJcPm5/169TLbMRbn/7P0eSO5JqmUkuH7cffi0ibmjaWPb0wY4WGC1+5n+7GD/8SWckdY7qX1mNePHHSZz53xbis39c473P2MwUWXLme+V1qev9ble+T+XyPvsHqYTWWBcuxJlb7kv37+Ut98Vn6/j9ztTvVJPTdbVHFhcX44EHHojJycn1bUNDQ/HpT386isViFAqFKJVKMT09HSMjI1EqldbfNzo6GtPT0/H0009HoVAQO8A+SZKIsQ99PtUyx089HPcnv0pxci+AvdfRXv4ye/9dES/8OOLsK+U1qC5diTh8XXlE7+23RNx2czn5SmM06j6dPhZRvDHi5dfSSY7nopy4v+3mFAprsOSGozF2279Jtczx2z4f999wqPa2xLFjmeiwy9K1SW4+FmOf+HcRF1P6xcjlYvwT/y7uv7kjtTZfR7Icnz33WNx/7rF44Ybb4+zRO+N856m41P72OLz86zix8GLcfuHZuO2Ns6m2M5upPZxExPM3/H6cfVf52lxuOxyHVi6Vr83rz8bpN/5+39rg+x2L+9Q8snSvshTLtTTiM3P66KUo/vxH8fL1H0glOZ5LVqP483+I245eSiG6txz0a5OlWK7lwNd7/7/5GHvyNxG/XUjnS0iSxPiTF+L+7v8SuX9RQ5u2SR5gSJKI5+ff+k53eam8ZMDad7rTx9L9Tpck5Yer0zT+dPm7abP3EWTt72XmfqeanKT4Hunu7l5PFheLxZiZmdmSJC4WizEwMBADAwMxODgY4+Pj6/82Ozsbd999d8zMzOxn2BHR3LED1OP5C4ej9M4PplZeksvHXOHWeOHCuTidWqkA+yeXK3/5Pn3wvic1lf2+T7lcxGBPxCPfTK/Mgbubv/MkIuL5OBal69MrL8nlY+76D8YLuWj6tkSWrs3z8xGli7tfr3vHWCIXcxc74oUfp/97mIuI02+cjdNvnE234G00Q3t4KddeeRR9Lhe5JLlqFP2PYvAHX051FH1WYnGfmkeW7lWWYqmkkZ+ZXC5i8Adfjkc+8tVUyouIGHjxK5HLfS6Vslyb7MVSiXqv7Pnzv4rS9SdTK2+9zXf+XJz+F6kVmxlLy7uc/evG8newtGb/en6+fLy0JBEx98+xJ+3h/Za1v5d+p9IlKb4H+vv715PKhUKhYlJ5s7Gxsbh48eKG0dmzs7MxODgYY2NjexnuBs0cO9DE5uczMa3n2dfeEblkNdVp03LJapx9/e1N35ENAFe772MRX/9ueRTDyrWXPL6mtnx5KvjPfDy92Brp7Cvljqw0p5fPvVlus3cuZenaZCmWrMl6e/hc56l48K5vxA+PvFVaksvHUtt1W9778vUfiEc+8tX4+omBeOw7fxInF15MIYJsxOI+NY8s3assxbJZFj4z951/PL5+YiDOd56KlXztD061rS7FyYUfxGfOj0dE/clW1ya7sVwtC/dJ31qTuOo+nXvjUDz49C3xwzcOv/mPuUiivO7zZi+/lsQj34z4+v9xKR67+5U4ecObo99rvU+vlI9W73TcV8tFEmdfydXeHvYZbop4mp2keMpGR0c3JIcff/zxXU8j/vjjj2/YNyJifHw8hoeHo1gsphlmRc0cO9DEMrS2z/mFQ9G+ulzxS0ut2leX4/zFwzu/EQCaSEd7xGOfi7jnL8ujGFZryC7mcxEdbRFf+9PyaIhWcP7V8rlU6siqVXtbudxml6Vrk6VYsibL7eFn3vPxuPcT346lfMeuOgXX3nO+81Tc88nvxxN/94fx0X/6bt1xZCEW96l5ZOleZSmWq2XlM9ORLMdj3/mTuOeT348k8rGar75xkl9diY7Vpfjad+6L9qT+PzKuTbZjWZOJ+6RvrTlcdZ82fG7yOyem15LX51/viHu+ectbn5ta79NLv4z2lbele59WluL8S7+J+PhvV7+zz3DTxNPs0nu0gFhcXIzh4eH118ViMfr6+na9f6FQiKGhoS3bry5zrzQy9vn5+fjFL34RERG/+MUvYn5+ftfHBVrAXq7tU+1uy/lIUp67NYmIS8vZ/nM7Pz8ff/7nf77+ox4G2F/NWg+fvCniiYcjrmsvj/iuRlu+vN8TD5fLaRWXl8oPCaQpScrrxDe7LF2bLMUSEeVRLIcOpRpPHDpULrdKWW0Pn+s8Ffd+4ttxJf+2qkcGruQ74kr+bXHvJ74d5zpPVXxPNfXwXseyGwf1PjWjLN2rLMWyJmufmZMLL8YTf/eHcd3qb6JtdamqfdtWl+K61d/EE3/3h6mM/D1o16aaeth9qkDfWnN48z6l+rmp9T79l9/szX365W9q29lnuOHxHJQ8nZHiKfriF7+44fXg4GDVZTz66KMxOjq6Ydvk5GSUSqU9HXHdyNjn5+fjl7/8ZURE/PKXv4z5+fk4VsO0FgD1OtS+GrmUe0hzEXG4vY55ZffB/Px8/MVf/MX6656eHvUwwD5q5nr4o7dGPPVnEQ/9dcSLPy5vu9Zf0rWv8idvKo8Qb6WEeETEoY7010bP5SIOpzcooGGydG2yFEtElEevvPRSJqaLzGJ7eCnXHg/e9Y1YynfUNCIwImI13xZL0REP3XUmnvqbD8fm7ufd1sP7EctuHNT71IyydK+yFEtEdj8zH/2n78ZTf/vheOiuM/Hikd+LiLjm6N9cUj7/kws/iK99575UEq0H8dpU2x52n7Ira3VN1mTlc+M+bS9r12a/4jkoeboWeLwmGxYXF7ckhKsZab2mUChEV1fXlu2bpyZPUzPHDpCmE52XYzmf7vNiy/n2OHHkUqplAkCWnLwp4qkvRPzVfxvx/hvL23JRnhq9PV/+71r+sfju8vue+kLrJcQjIk68N2I5xSm5I8rlnXhvumU2QpauTZZiWXfsWERXV3o/NXZgZbE9fObEA/HDI6frWjs2ojyy6sUjvxdnTjzQ9LG4T80jS/cqS7FEZPszc3LhxXjqbz4cf/Wf/3W8/xf/GBHlpGrHypVoX7kSHStX1pOsxZ//Q/zVf/7X8dTffDi1taFdm+aIJcv3qZGyVtdkTVY+N+7T9rJ2bbIWT7MzUjwl09PTG14XCoWaR3b39PTE7Ozshm1TU1MVpydPQ9PEPj9f8cn5JIl4/sLhOPvaO+L8wqG4vJyPQ+2rcaLzctx+46/i9NFLlUcB1PjkfOZiyVo8YmmOeLIUyzUkEfH8Db8fZ991Z5zvPBWX2w7HoZVLcWLhxbj99Wfj9Bt/H2kO8rn9xl/tav2naiS5fNz+rl+nWiYAZE1He8Rn/yDi/rsiXvhxxNlXyusrX7pSHj174r0Rt98ScdvN6Y/QzZLbb7n2SPlaJG+W2+yydG2yFEvWZK09nCQRYx/6fKrxjJ96OO5PflX194gsxeI+1Wa/v19GZOteZSmWZvjMdCTL8dlzj8X95x6LF264Pc4eLX9uLrW/PQ4v/7r8ubnwbNz2xtl0P6euTVPE0gz3aY2+tWuUG/t7bbL0uXGftpe1a5O1eJqdpHhKnnzyyQ2v77jjjprL6u3t3TJye3PiOk1NEfv8fMStt25YV2Ip1x5nTjwQYx/6fJTe+cHIJavRvrocSS4XuSSJ5Xx7JLl8FH/+oxj8wZfjvvOPR0ey/FaZhw6Vp6irNpGXpViyFo9YmiOeLMWyjbrjqdHpo5ei+PMfxcvXfyCVxkYuWY3iz/8hbjt6MJ+8A+DgyeUiTh8r/xxEp49FFG+MePm1dJKuuSiPrr/t5hQKa7AsXZssxZI1WWsPP7/8O1F65+/UHceaJJePucKt8cLyz+J0tbFcOByld34w/VgunKs6lszdpwxdm0oa9f0yIlv3KkuxZP0zc7VcRJx+42ycfuNsyiVX5trUxn3aSt/a9hp1bbL0uXGftpe1a5O1eJqd6dNTsjnxW2ka8d3aLim9eQR2Wpoi9gsXNiTwznWeit4/ejYe+chX4+XrPxAR5T8CS23XxXK+I5barluvIF6+/gPxyEe+Gr1/9Gyc6zz1VpmXL9e2ZluWYslaPGJpjniyFEsFqcRTo1wuYvAHX667nKsNvPiVlh4RBwC8JZeLGOxJt8yBu1tjdH2Wrk2WYsmarLWHz17+ncilPK4/F0mc/U31ifazr71jfRre1GJJVuPs62+vfr+s3acMXZvNGvn9MiJb9ypLsWT5M9Nork1zyPp90re2vUZemyx9btyn7WXt2mQtnmYnKZ6C2dnZWFxc3LDt+PHjNZdXKBQqbi+VSjWXuZ1mjP2Z93w87vnk9+N856lIcvkdn45Ze8/5zlNxzye/H8+85+MtGUvW4jlosXzpS1+KP//zP48vfelLmYhnt7IUS1biue/84/G7F5+PttWlusppW12KUxf/v/GZ8+N1xwTsrJp6GGAv3fexiN99X0Rbnd+22/IRp26O+Ey6za09s5t6OEvXJkuxZMrRo3HfK2fSbQ+/8vXycks1OP9qRHtbuj127W25OP9qDbEsHIr21XRGD6/Hsroc5y8ermnfLH1vydq1WZOF75cR+3evdlUPZ+Rzk9XPTBa4Ns0hy/cpC3VfVuqazfb62uxUD2ftc3NQ79NuZO3aZC2eZiYpnoLnnntuy7YjR47UVWal0dp7kRRvttjPdZ6Kez/x7biSf1us5Duq2ncl3xFX8m+Lez/x7VSeGMpSLFmL5yDG8qUvfSn+4i/+YsdkzEG8Ns0WT0eyHI9950+iY3Up8qsrNZWRX12JjtWl+Np37ov2pLYygOrsth4G2Gsd7RGPfS6ioy0iX2MuL58r7/+1P41ob0s3vr2ym3o4S9cmS7FkyrFj0XH+xXjsweuio6Mt8rnaRmnnc0l0dLTF1x58W7Sf/2HNyyxdXiqvv5mmJIm4dKWGWJbzkaQ8pCaJiEvLtXXNZel7S9auTUR2vl9G7N+92lU9nJHPTRY/M1nh2jSHrN6nrNR9WalrrrYf12anejhrn5uDep92I2vXJmvxNDN/DVMwMzOzZVuxWKyrzEqJ6WeffbauMitpptiXcu3x4F3fiKV8R6zma+txWM23xVK+Ix6660ws5dpbIpasxSOW5ognS7FkMZ6TCy/GE3/3h3Hd6m+qfgKvbXUprlv9TTzxd38YJxderCsOAKA5nbwp4omHI65rr34kclu+vN8TD5fLaTVZujZZiiVTjh2Lk72/G0/8m3xc156r8drk4ol/k4+Tvb9bc0I8IuJQR/rT0udyEYevqyGW9tXIpZyhz0XE4fbap1HNyveWrF2brH2/jMjOvcpKLFn7zGSJa9Mcsnifslb3ZaGuWZOVa5PFz437tL0sXZssxtOsJMVTUGkU9HbTiO9WpcT05mnO09BMsZ858UD88Mjpqp8Q2mwl3xEvHvm9OHPigZaIJWvxiKU54slSLJmK5+jRiEOHIiLio//03Xjqbz8cJxd+ELlkdcc1f9bec3LhB/HU3344PvpP3y3/w6FDNU8XCQA0r4/eGvHUn5UTprko/1zL2ntO3lTe76O37n2MjZKla5OlWLImC9fmxHsjllMeyLK8Ui636lg6L8dyvv7k6IZY8u1x4sil6nfM2PeWrF2bM7c9lO73y9seSuU7XWr3KgWNjiVTn5mMcW2aQxbvU2b61q7S6LpmTVauTRY/NxHu07Vk5dpkNZ5mJCmegkqJ5XqnIK+UmL548WJdZVbSLLEnScTYhz5fVxmbjZ96uKZp2LIUS9biEUtzxJOlWDIXz7FjES+9FDEzEzEzEyenvx5PPZrEX338J/H+QnmOxVwk0ZFfjfbcanTkVyMX5QMVC1firz7+k3jq0SROTn99vYx46aW6RscAAM3r5E0RT30h4q/+24j331jelovylNvt+fJ/1xKNxXeX3/fUF1pw5HEFWbo2WYolaxp9bW6/JSLl2dMjebPcqmO58Vc7rmlZdSy5fNz+rl9Xv2PGvrdk6dokNx+LsU/8u/SmGMjlYvwT/y6Sm9P5Tndy4cV46m8+HH/1n/91vP8X/1g+RLIaHStXon3lSnSsXFnv4C7+/B/ir/7zv46n/ubDezKqq5GxZOkzkzWuTXPI2n3KVN/aJo2u97J0bbL2ubma+7S9Rl+brMfTbNJ9LOWA2ou1vm+44YYt2/ZrpHi99iL25y8cjtI7P1hXGVdLcvmYK9waL1w4F6ebOJasxSOW5ognS7FkMZ44dmxDZ1BHRHz2zoj7k4gXfhxx9pVcnH81F5eulKddPPHecqfabTcfilzuWERIgAMAb+loj/jsH0Tcf9daWyLi/KtRoS2R/jTRWZela5OlWLKmkdfm9LGI4o0RL7+WTnI8F+Xk/W031xDLiXdE8Rf/EC//9vFUOrRzyWoUf/mPcduJd9RWQIa+t2Tp2jw/H1G6WN8Is6slkYu5ix3xwo/Ln8c0dCTL8dlzj8X95x6LF264Pc4evTPOd56KS+1vj8PLv44TCy/G7ReejdveOLvjDA1VWZth4PLl9GKpcYaB00cvRfHnP4qXr/9Aep+Zn/9D3Ha0+UdDZ+n3ie1l7TOcub61TRpW70W2rk3WPjebuU/ba+S1aYZ4momk+B6pdwryevdv5LHr3f/555/fsu3/nClX8mk+SZVLVuPs62+vulI8+9o7MhNL1uIRS3PEk6VYshjPtmXmyp0gaXWEAAAHi7bE9rJ0bbIUS9Y04trkchGDPRGPfDO9Mgfuri15n/sXx2Lw0xfjkW+nNwJ54NNHI/cv6putr0Kx+3+fMnRtzr5SfvghzRkGcm+Wm/Y1zUXE6TfOxuk3zqZb8HbWZhi4cKFyLG/+bPSxiPh/bl/m0aM1zTCQy0UM/uDL8chHvlr1vtsZePErkct9LrXyGiVLv09sL2uf4abpW4t9rvciW9cma5+b7Rz0+3TNMmP/r8211BPP3//938evfv3WLAOV8nKtKJckaUwgcHAtLi5GZ2fnlu31Xtbx8fEYHBzcsK1QKMTCwkJd5V4tK7H/p//0n+JjH/vYNctsu+6dkbT/Vl1xVfKOjtW4/reqq2h/8V9W41dL6a88UEssWYvnIMfys5/9LFZXVyOfz8fv/M7vNDyea8lSLFmM5yC6cuVKvP766+uv3/Wud8V1113XwIigejvVw5Bl6mFagXqYvfT6LyKWV6O+TGcuor0t4l2/vfWfqqmH9zqWZpaFa/OLSxG/+k2dMVSI6R1vi7j+cA37rqxE/NM/pRjMm97znoi2tg2bmqoeXlmJ+Kd/jtcPvSuW61w7NiKifXUp3nX59Yj3vHvLddl9PPtzn3YrC79PERGxtBTx2mt1FLCNG2+M6Hjr3u+qHt6nWHblzVheP3Rjip/h12qLJTLWt5al+xT7e212rIez9Lk5wPdpRxm7NnsVz2sRsXSNf//e974X//Jf/svUj9tokuJ12qvE8uTkZPT392/Y1ixJ8Wpjn5+fj1tuuaXu4wIAAAAAAAC1yeVy8corr8SxGmaDyTrTp9fp4sWL+3asI0fSneYmK7EfO3YsDh8+HJcuXaopMf7bv/3bcf3119cTHgAAAAAAADS9X/ziF/HLX/6y6v1yuVwcPny4JRPiEZLidVtcXGx0CDXLUuy/+tWvYn5+Pubn56ve99ixYy37CwoAAAAAAAC7Jd9WmaR4nQqFQsXti4uL2/5b2sdKu7xGxd7qv2wAAAAAAACwl+TbKkt/5foDJu0pzffzWM0cOwAAAAAAAMBuSIrvkf1crzttzRw7AAAAAAAAwNUkxet0rSnI61EpMV0sFmsqa7tY6on9Wu9JM/Z67MWa6Vlahx1oHo2sj5qhLlxcXIxSqZRqmQCbNaI+nJ6ejunp6ZidnY1SqRSlUikWFxfrimVt/7XyZmdnY3Z2Nqanp2uKsdYYAFpNI9uk2sMAe0NbGKA56sL9ag9bU3yP7MVo6+7u7qr3WVxcjM7Ozg3b1pLh201p/q/+1b+Kt7/97euv185l84d8YWFh12uPd3d3x+LiYkxPT8eTTz653iG49iEvFApx5MiR6Orqit7e3ujp6akrkV7Nea9t33x+aZw3QCPro6zWhdPT0zE2NraeJNqsq6srPv3pT8fAwID6FkhFI+rD6enp6O3trTnmahUKhVhYWNiwLat/BwCqtbi4GOPj4zE1NRX9/f0xMDBQd5mNbJNqDwPNJq16WP8wQG1qrYezWhc2rD2cULdisZhExIafiYmJusocGRnZUubU1FTV5SwsLGwpJ62fhYWFXcf+X//X/3XV5ff09CQzMzM1Xb9GnDdAJY2sj7JWF05MTCSFQqGq4wwNDdV24QGu0oj6cGZmZs+OWemnWCxm4rwB0jQxMZH09PRsqYN6enrqKrNRbVLtYaDZpFUPLywsJAMDA1W3OfUPAwddvfVw1urCRreHTZ+egkpPrNU7zH9ubm5Xx9nJXj6xtl3ZlWL/j//xP1Zd/vT0dHR3d8fw8HDV+zbivAEqaWR9lJW6cHFxMfr7+6O/v3/9icKhoaGYmZmJhYWFSJIk5ubmYmxsbMvfutHR0fXZRgBqlZX6cC9VajMfhPMGWs/i4mKMjo5GZ2dn9Pf3ry8PUSgU1tuQU1NTNZXbqDap9jDQTNKuh8fHx6OzszPGx8erjkX/MHAQpVkPZ6UuzEx7OLX0+gFW6Sm3gYGBusrs6+vbUmatNpeT1k81sdf7U8tT4Pt93gDbaWR9lIW68OoZVYrF4o5PEVb6u9rV1VXVMQE22+/6cG5ubs+Oufmn0ijxRp03QD0qzTzX1dVV92x8SdLYNqn2MNAs0q6Hh4aGUmt/6h8GDoK9aA9noS7MSnvYSPEUVFrru96R4pv37+npqau8vbDdUxm7OfdCoRDFYnHXT5JMT0/H4OBgFdHtHU9nA1nRyPpot8fu7+/fsD7YzMzMjnX/2NhY9PX1bdg2Ozubmb8DAFfLQttwbGxs34+ZhfMGWsfs7GwcP358w0jArq6umJqaipmZmS1tw2o1sk2qPQw0g72oh0dHR2N0dHTbf9c/DPCWvW4P74Vm7B/OJUmS1FUCMT09Hb29vRu2FQqFWFhYqLnMzs7ODR+okZGRGBoaqqmsXC63HtPMzExEvPVh/b//7/87HnrooQ3vf8c73hH/8//8P8fFixevWe7AwMCuYr/6/cPDwxWngZ+eno6JiYkdp9GZmpra9QMC1zrviFg/v82x1nreANtpZH3UyGOPjo5uaMhNTEzsugG3uLgYnZ2dW7bPzc3VtJwIwH7Xh5vrsaGhoRgcHIwjR47UPX1Zd3d3zM7ORkT54dlrTZumTQxk3fj4+JbOrXr6QDZrZJtUexhoBntVD/f398fk5OSGbfqHAbba6/aw/uGr1D3WnCRJKk8/UMsi80lSeeH7mZmZumPbblrFvY79t37rt5K5ubld7T83N7dhGoXNP9VMj7DTeQPsl0bWR4069ua/B7Ucv9I0a319fXsQLXAQ7Hd9eHU9WMtUj9uZmpraUC/u1M7WJgaybPO0iMVicdf9B7vRyDap9jDQDPayHu7q6lovt1Ao6B8GqGCv28NJon/4aqZPT0mlp9Omp6drKuu5557b8LpQKERXV1dNZW0up5K9jD0i4v/6v/6vXT+1USwWr/mUx+zsbNVT09c7EgcgLY2sj/b72F/84hc3vK5laptHH310y7bJycm6lygBDrZG1MVpTvN49RPWAwMDu25naxMDWdPf379hNGBXV1fMzMykOgq6kW1S7WEg6/a6Hr66rnr66af1DwNssh/t4avpH46QFE9Jf3//lm1PPvlkTWVNTExseF3tdCzbfRiOHDlScftexv7BD36wpoT+taaArDZhv915A+y3RtZH+3nsxcXFLeuG1bLuzXYPhW2efg2gGo2oi9N4wDWi3A5emzY9ojyd2m5pEwNZsnlK3bUOwDQ76hrZJtUeBrJuv+rhiHL9p38YYKP9qIc30z8sKZ6aT33qU1u21XpTvvWtb214XelJiEqmp6ejs7Mzjh8/HrlcbtdPXexl7DutAbOdYrG47cMA12oQAdB4m7+cFgqFmp9wrDSbib8DQDO4eu2ttJ7yvnqU+NDQkBEvQFMaHBzc0OdQLBbX1zZMUyPbpNrDQJbtRz189aCt3fZtb6Z/GGhV+9UebqSstoclxVNSKBQqPuVQbVJ4enp6w2L2AwMDu+rsmp2djd7e3g37jo+PbxgFvl05exX7b//2b8d/9V/9V1WVcbXtkvpXH2M3dBYCWXFQpk/fPNvIHXfcUXNZvb29W7bVusQHQMT+1Ydrbda0jnf1KPFCoVDVKPE04wCox/j4+Ja+hs0zzqWlkW1S7WEgq/arHl5LiheLxbpmTdI/DLSa/WwPb6Z/WFI8VZU6pq4ezbEbV7+/ms6uzXPzr7n6aZNrTY2QduwREX/8x39c1f6bbddgunrUzW6YHgfIioMyffrmRkk9X4C3azBdPX0wQDX2uy5Oa5T41R2C1SbEI7SJgcYrlUpbkhsjIyOpLTGxWSPbpNrDQBbtZz28lhSvNLqvGvqHgVay3+3hzfQPS4qnqlgsbumgWlxcrLhmdyWjo6MbbuLTTz+96yc3al1Ufk3asZ84cSL+5E/+pK6YIio/uaIRA5Bds7OzW57YPn78eM3lbfd3sN6/ewD7oVAo1PU09Jrx8fENo222m0YSIMs29y8UCoUYGhrak2M1sk2qPQxk1X7WwxHlBMhu+5avRf8w0Cr2ux5ulCy3hyXFUzY0NLTlQzw5ObljA2B0dHTDSOuxsbGqnpzYTWfbTgn2NGM/d+5c3U8CRlRu4FQ72sb0OEBWHITp05977rkt2+r9slrp76FOQKBW+1UfdnV1xcLCQoyNjdVd1ua2di20iYFGGh8f3zKSo9Y1ZnejkW1S7WEgi/a7Hh4YGIiZmRn9wwBv2u96uBL9wxHtdUVBRSMjI3HDDTds6LyanJyMzs7OGBgYiDvvvDOKxWJcvHgxZmdnY2xsbP3mFQqFmJiYqLrBMDIyEt/61re2PH0xNDQUo6OjERFxww03ZDL2a6k0FU61T5Ts5rwB9kMj66P9OvbMzMyWbfVOHVyp0fTss8/WVSZwcDVb23B4eHi9jd/V1VVzW7vZzhtoLZWWZ9vLUTGNbJNqDwNZtN/1cJr0DwOtIAv1sP5hSfE9MzQ0FH19fdHf37/+9Mfi4uJ6grqSvr6+GBkZqenDUSgUYmZmJgYHB2N6ejqKxWIMDw/Hpz71qWsec3x8PKampmJ2djYuXrwYi4uLUSgU4tSpU/HP//zPceHChT2P/Vo2J/kjdrcWTaX9rrbdeReLxbjjjjuit7c3+vr6aowa4C2NrI8acexKT+jV+xRipb8tO50bwNWatW1YKpU2tMEff/zxqvZv1vMGWsvo6OiW+miv65ZGtkm1h4GsaUQ9nCb9w0Cza2Q9rH94k4Q9Nzc3lwwNDSU9PT1JsVhMIiIpFApJV1dX0tPTk4yMjCQLCwt7cuyFhYUkIpKISMbGxta3DQwMrG/fzc8HPvCBfY99ZmZmSxyFQmFfz3tkZGRPzg04OBpZHzXi2Gt/K67+qffvxNDQ0JYyu7q66ioTOFiatW3Y19e3fuy+vr6q92/W8wZaS6X24cTExL4fc7/apNrDQNY0oh5Oi/5hoBU0sh7WP7yRkeL7oFgsxsjISKPDiIjyFA3XGvG9nX/8x3+MYrEYc3NzqY8G386TTz65ZVut17HW8x4eHo6xsbGYmprat/MGWlsj66P9OPZerG1YaWofI2OAejRD23B6ejomJyfXX6fxfaIZzhtoLdPT0xXbh5VGmywuLsb09HRMTU2tj1IpFotx/Pjx6OnpqbiO4HYa2SbVHgaypFH1cFr0DwPNLmv18IHvH64rNU/mzc3NVfW0x25+pqam9iX2QqGw4bjFYnHX+zbzeQOtpZH1USOOXWmfeo2NjW0ps5q/CQDN2Da8+snqoaGhmspoxvMGWsvVM16s/Wwe0bHbkSqFQmHXI1Qa2SbVHgaypFH1cFr0DwPNrtH1sP7hjYwUP6CKxWL09fXF8ePH48iRI+tPnUxNTcX09PQ19+3v74+ZmZk9fTJucnJyy1MeY2NjdZeb9fMGDo5G1kd7dez9HK1y8eLFfTsW0Lqy2jYcHR1df7K6UCjEo48+mmr5WT1voPVUqlPuuOOO9f8fHx+PwcHBXZW1uLi4qxEqjWyTag8DWdOIejgt+oeBVpDVevjA9g/XnZ4n0zavu1IsFpOZmZlr7rObp1L2eu2qzWsODAwMVLV/s5430HoaWR/t97GvXqPm6p96TUxMVHwyEmC3mqltuPkp7npG4zTTeQOtZ7tRKWNjY8nCwkLFUTO7/SkUCsnc3FzF4zayTao9DGRJo+rhtOgfBppdFuph/cMb5YOWdvWTEn19fTE3N7fjugOFQiHGxsZiZmZm2/fMzs7u+LRIra4eGRNRfmKl2qcAm/G8gdbUyPpov4+9n6NVjhw5sm/HAppfM7UNr35CvFgsxtDQUM1lNdN5A63nWvVEd3d3TE5ORkRET09PTExMxNzcXCRJEgsLCzEzMxNDQ0NRKBQq7r+4uBi9vb0V/62RbVLtYSBLGlUPp0H/MNAKslAP6x/eSFL8gBgaGoqJiYmq9unq6rrmh35kZKTesLYolUoxPDy8/rpQKMTU1FTN5TXLeQOtr5H10X4dez+nxwGoRdbbhpOTkxu+VKZVdtbPG2hN29Uhg4ODUSqVoqenJ+bm5mJqair6+vrWp18sFArR1dUVIyMj8fLLL0dPT0/Fcjb3H6xpZJtUexjIkkbVw/XSPwy0iizVw/qH31T3mHVa3sjIyLZTJKStq6trQ/k7TeOwl/bzvAGupZH1UTXH3m5KoIWFhbpiqDQ9junKgP22H3VxoVDYMKVZFmgTA7Xq6enZtv6odgrc7cqqNGViI9uk2sNAljSqHq6X/mGgVTRrPbxZK/UPGynOjq41RUOaU8UMDw/H7Ozs+uuJiYkdp3HYS/t13gA7aWR9VM2x93MKR9NFAvttr+viwcHBDU9UVzs95F7RJgZqdfW0t1fr6empuo6bmJioWBctLi7G+Pj4hm2NbJNqDwNZ0qh6uB76h4FW0oz1cCWt1D8sKc6uDAwMVNy+3S91tSYnJ2N0dHT99djYWPT19aVSdj32+rwBdquR9VG9x97PtWQA9tJe1cWzs7MbvsR2dXVtOz1aI2gTA7XYrg1Yy5SzhUIhHn300Yr/ttspdRvZJtUeBhoha/XwTvQPA62m2erha2mV/mFJcXbl05/+dMXtaawPMDs7G/39/euvR0ZGtv0F2297ed4A1WhkfbTbY2/3xGC9MVZqNK2tsQOwn/aqLn7ggQc2vH788cfrKi9t2sRALSrVEcViseYRf9v1E2wendLINqn2MJAljaqHa6F/GGhFzVQP76RV+oclxdmVvZqmplQqxd13373+emhoKIaGhvbkWLVo5PQ8AFdrZH1U77H34knA7u7u1MsE2Mle1MWjo6Mbpojs6enJXBs0a/EAzaueRG6hUKg4i8ZuO9ga2SbVHgayopH18Hb0DwMHSRbr4d1olf5hSXF2rdIv63ZPfezG4uJi9Pb2rv/CDgwM1DRtxF5L+7wBatXI+mi3x670vnobZts9VQnQCGnWxYuLizE8PLxhWxbbwxHaxEA66q03dtsZ18g2qfYwkGX7VQ/vlv5h4KDJWj1cjVboH5YUZ9d2++Herbvvvnt9vYG+vr4YGxuruay9lPZ5A9SqkfXRbo9daVu962zNzc3t6jgA+yHNunjztOlZHCW+RpsYqNZeJAvuvPPOits3d5I1sk2qPQxkRSPr4d3SPwy0smaoh6vRCv3DkuLU5Y477qhpv97e3vVpIvv6+mJiYiLNsPZcrecNkLZG1keVjl2pMVKp0VINaygCWVdLXTw9PR2Tk5MbtmVxVMy1aBMD13LkyJEt2+rtrNuuY3Hz9ka2SbWHgaxoZD28G/qHgVaX9Xo4Dc3WPywpzq5t/mXt6uqqucEzPT0dEeXRMFlv8KR13gD1amR9tNtjV1rLpd4nATfvX2ntHID9klZdPDg4uOF1lkeJR2gTA9Vr5IxGjWyTag8DWdHIengn+oeBgyDL9XAtWqF/WFKcXdv8JManP/3pqsvo7+9fb/B0dXXF1NRUKrHtpTTOGyANjayPdnvsSo295557rq5jb2709Pb21lUeQD3SqIuHh4e31G2b1xbPGm1ioFqV2mz1doZVGlmz29Ep+9Um1R4GsqKR9fC16B8GDoqs1sO1aoX+YUnxFlQqldYbFmlZXFzc8ss2MDBQVRmDg4PrU0R2dXXFzMxMWuFFRHbPGzh4GlkfNbourPSUXqX96zm2kTHAbjS6PtxOqVSK0dHRDdu6urpSq9uyet7AwVNp9ot6OwErTZtYqUOskW1S7WEgKxpZD29H/zBwkDSqHm50XZjl9rCkeItZXFyM48ePR39/f6rlbv4FGhoaqmpKhuHh4RgfH4+I8lMiTz/9dJrhZfa8gYOnkfVRVurCSo2SWhtim58iLBQKmZ5eGMiGrNSHlVSKafNU6rXK8nkDB892I1bq6QislDzp6+ur+N5Gtkm1h4EsaHQ9vJn+YeCgaUQ9nJW6MKvtYUnxFlMoFKKnpycWFxe3jECpxxe/+MX1/y8WizEyMrLrfUdHR9djKRaLMTMzk3rDIYvnDRxMjayPslIXVmp0PfnkkzUde/O6Yp7GBnYjK/XhZuPj4zE7O7thW6FQSK1uy+p5AwdToVComCipZ9TK5g6xrq6ubddqbGSbVHsYyIJG18NX0z8MHESNqIezUhdmtj2c0HKmpqaSiEgiIllYWKi7vJmZmfXyIiKZmpra9b5jY2Pr+xUKhWRubq7ueLaTpfMGDrZG1kdZqAsXFhY27LP2U4tCobChjDTOCTgYslAfXm1hYWFLnRYRydDQUN2xXS1r5w0cbFfXSWs/PT09NZU1Nze3paxr1UmNbJNqDwNZ0ch6eI3+YeAga0Q9nIW6MKvtYUnxFrX2IRkYGKirnIWFhaRYLK5/2MbGxna978TExDUbPAsLC+s/c3Nz6z8zMzPJzMxMMjU1lUxNTSUTExPJxMREMjY2loyNjSUjIyPJ0NBQxQ7ELJw3QJI0tj7KQl3Y19e3pdFTbV26udFY7/kAB08W6sM1AwMDFb8Q7kVyI0vnDdDV1bWl7qslITI0NLShjK6urh33aWSbVHsYyIpG1sP6hwEaUw9noS7MYntYUrxFXf3LMTMzU1MZCwsLG35Za02I7+VP1s4bYE0j66Ms1IWVnlwsFApVlXH18QuFglExQNWyUB8mydanqtd++vr6aoppJ1k5b4AkqVwHVlv/bW5b7rZt2Mg2qfYwkBWNqof1DwOUNaIezkJdmMX2sKR4i7r6w1YoFKqe2mVqaqrmpz8qTQexX42eRp43wNUaWR9lpS4cGRmpucG3ed9aG2/AwZaV+vDqMq7+2avpF7Ny3gBrNo9qqbZu2Ty6ppp6rZFtUu1hICv2ux7WPwyw0X7Xw1mpC7PWHpYUb2GbO9+6urqSsbGxbadlmJubS8bGxjb8chWLxaqmcdhuFMx+NXoadd4AlTSyPspKXVipwbdTw2dzg8cXUKAeja4PK30BXCtzLzX6vAE2q7SMxMjIyDX3mZubqyshvqaRbVLtYSAr9qse1j8MUNl+t4ezUhdmqT0sKd7CKn3QNnfErf1s/rdCobDjL2Mlmxe8b0SjpxHnDVBJI+ujLNWFlRJChUIhGRoaSiYmJtbXCRsZGdkQTy1PMQJs1sj6sNJUYWl/odtOlv4OAKypVDdd3Tm3tq7s1NTUlk7Drq6uujrkGtkm1R4GsmI/6mH9wwDb28/2cJbqwqy0hyXFW9jc3FzS09NTVSOi3g96PQ2YQqGQFAqFpFgsrv//1T+V9qm0fkAjzhugkkbWR1mrCys91Xitn76+Pk9kA6loZH24edrIq9u2ey1rfwcA1szMzFTVLiwUCsnExEQqx25km1R7GMiKva6H9Q8DXNt+tYezVhdmoT2cS5IkCVra4uJijI+Px7PPPhulUikWFxejVCpFoVCII0eORLFYjN7e3ujp6Ymurq5Gh5uag3reQPY0sj7KWl1YKpVibGwsZmdno1QqrcdSLBbjyJEj0dvbGwMDA1EoFPY8FuBgyVp9uF8O6nkD2VepXRgRUSwWo1AoRE9PT3z605/ek7qpkW1S7WEgKxpZD+8XbWEgy/arHs5aXdjI9rCkOAAAAAAAAAAtK9/oAAAAAAAAAABgr0iKAwAAAAAAANCyJMUBAAAAAAAAaFmS4gAAAAAAAAC0LElxAAAAAAAAAFqWpDgAAAAAAAAALUtSHAAAAAAAAICWJSkOAAAAAAAAQMuSFAcAAAAAAACgZUmKAwAAAAAAANCyJMUBAAAAAAAAaFmS4gAAAAAAAAC0LElxAAAAAAAAAFqWpDgAAAAAAAAALUtSHAAAAAAAAICWJSkOAAAAAAAAQMuSFAcAAAAAAACgZUmKAwAAAAAAANCyJMUBAAAAAAAAaFmS4gAAAAAAAAC0LElxAAAAaHKzs7Nx/PjxWFxcbHQo1GhycjK6u7vdQwAAgD0gKQ4AAABNbHp6Orq7u6NUKsUXv/jFRodDjYaHh2N2dlZiHAAAYA/kkiRJGh0EAAAAUL3Jycno7++PiIhisRhzc3MNjoharSXEI8r3cmZmJgqFQmODAgAAaBFGigMAAEATujohXigUYmpqqsERUY+urq4YGxuLiIhSqWTEOAAAQIokxQEAAKDJTE9PryfEIyImJiaiWCw2MCLSMDAwEAMDAxEhMQ4AAJAm06cDAABAE7l6mu2IiKGhoRgZGWlgRKStu7s7ZmdnI6I8gnxmZqbBEQEAADQ3SXEAAABoEouLi/H+979/ffRwKyRMS6WSUe6blEqlOH78+Prrvr6+mJiYaGBEAAAAzc306QAAANAk7r777g3TaTdzonR0dDQ6Ozs3jHqnrFgsxtDQ0PrrycnJGB8fb2BEAAAAzc1IcQAAAGgC4+PjMTg4uP66GadNn52djbGxsfjWt761ntwvFosxNzfX2MAy6vjx41EqldZfLywsRKFQaFxAAAAATUpSHAAAADJucXExOjs7N2xrxgRpLpfbsq2npyempqYaEE32bX4QwrUCAACojenTAQAAIOMeeOCBDa+HhoaaLiEeERVjbsbz2C8DAwMb1lufnp6OycnJBkYEAADQnCTFAQAAIMNmZ2e3JEIfffTRBkVTnyNHjmzZdnXSl62Gh4c3vN78gAQAAAA7kxQHAACADPviF7+44XVPT09Lja6+4YYbGh1Cpn3qU5/a8HpxcdFocQAAgCpJigMAAEBGVUqAXr3GdLMxfXr1CoVC9PT0bNi2+UEJAAAArk1SHAAAADKqUvKzr6+vAZHsnUpTqrPR5gchZmdnY3p6ukHRAAAANB9JcQAAAA6EycnJ6O7ujs7Ozl1PP724uBjj4+PR29sbnZ2d0dnZua8jtcfHxze83jxiOG2lUmk94To7OxulUmlPj5e2xcXFRoewJyrd97GxsQZEAgAA0JwkxQEAAGhp09PTcfz48ejv74/Z2dlYXFzc1fTTg4OD60nw6enpWFxcXE+S70difO2YV+vq6kr1GIuLizE6Ohrd3d2Ry+Xi+PHj0d3dHb29vdHd3R3Hjx+PXC4Xvb29mV3H+upzuNYDD+Pj49Hf379+Tp2dndHd3R39/f1Vndvi4mIMDw9Hb2/vlrKGh4djdnY2rVNbVygUolgsbtiW1fsBAACQRbkkSZJGBwEAAABpW0tebh5tHVFOLs/MzFTcb3JyMh544IEdRx0vLCzs6XrYlZK1U1NTqYwWX3swYHR0tKr9urq64umnn675vLu7u7ckjas9p7XR7M8+++z6iParTUxMbJhifnp6OgYHB3cc9V4oFGJiYuKasYyOjsbw8PCOMfb09MTExESqn49Kn4fN5woAAEBl7Y0OAAAAANI2PT0d/f392ya2t1vHenh4eD1RXCgU4o477lgvb7Px8fEYGhpKJ+AKKh1zLZ56jI+Px/DwcE1Tjc/OzkZ3d3fMzc3VdNxKiemxsbGYmppaj+fixYuxuLgYFy9ejIiIYrEYExMTVY/ojig/4NDf37+r9y4uLkZvb++2ieZqjj89PR3vf//7Y2ZmZssI71pVGq3/5JNPSooDAADsgunTAQAAaClrU1sfOXIkRkZGKo78rZSo7O3tjdHR0ejq6oqpqalYWFiIqampmJqaiomJiS3vn5qa2pP4I8qjoTcnrQuFQl0jj0ulUnR3d8fg4GAsLi5uOM8kSSJJkvVzHhkZ2TaZWyqVdjVaOuKt0fpr09BXSsRPTk7G6OhojI+Px/j4eExOTq6PAJ+dnV1/gGF2draq8x8dHd2SEC8Wizsmqfv7+7c8kFApIb1TWWtJ9rRUeiCi0oMTAAAAbCUpDgAAQEsolUpx/PjxGB0djZGRkZibm4uhoaEYGxvb8t7u7u71/19cXIzu7u6Ynp6OkZGRmJmZ2ZJI7+vr25IAXRvJvBcqJTvrnTZ9bGxsfarxYrG4fp5XJ5oLhUL09PTE0NBQzM3NxcjISMWydjPt+ujoaHR2dsbo6GhNo9LXHD9+PCIi5ubmNiTwBwYGKr7/4sWLMTw8vJ647+rqiomJiUiSJObm5mJubi6SJKn4uViztmb81Z+NiPLnYGZmZkNZCwsL28ZSzQMEO6m0nvzaOvcAAABcm+nTAQAAaAmlUikKhULMzc1tSGBXmip9LcG8lvQslUo7rm3d1dW1YfrvndaorkelUehpTcMdEdsmuzdbmx6+UmJ3cnJyx6m715LuR44ciUKhUDGZ3tfXF3feeee2ZWx3jJGRkYrrxY+MjKx/Fh5//PFt9x8YGIhisVhxNHepVIrBwcGYnp6OUqm0nlivdA8KhUKMjY3F8ePHK16n0dHRePTRR1NZX7xYLG753E1PT5tCHQAAYAeS4gAAALSEnp6emJmZ2bK9UvJ6Lbl59913R6lUipmZmYojca+2Obm+3brkaagU89qI6XoVi8Wqkqhro+03xzQ1NXXNcoaGhrasuT4+Pr5lZPPg4GBNo+DXppPfXN5aQnw363n39PTE2NjY+sjwzbGuvWc3U+UPDQ3F1NRUxVH+aSWuKyXF9/LhDAAAgFZh+nQAAABa2uak4Vrye3h4OGZnZ2NqamrHhHjE1unS0xj5u51rJfJrdcMNN0RE5VHfO6m0z3PPPVdXPGnY7sGE3STE1wwMDGx7L4vFYlVrx283Aj+t9ecrndPc3FwqZQMAALQySXEAAABa2rPPPrvh9R133BHT09MxOjoaQ0NDux6lvHlEcprTmW8+TqV1ousdmT40NHTN9a+vpdI1yuoI5bVp0avdp5LdTjO/pqurq+Kx07pWlZL3WXg4AQAAIOskxQEAAGhpmxOS3d3d0d/fH11dXVUlPTeXs1fTp28ekb4mjZHptZZRKdFbKXGfBd3d3VXvs93U9LuZQWA3+2x3T6u1Ntr/alm9DwAAAFkiKQ4AAEBLm52d3fB6YmIiFhcXY2JioqpyKiXX90JWk5x7OV18mmp5WGG7keVplZXWPa10D9JKuAMAALSy9kYHAAAAAHtpczJ7enq66im2KyU1dzvtelr2amR6JbOzs/Hcc8/FzMxMlEqleO655ypeg8XFxaZJll9LmlPhbzfqHAAAgMaRFAcAAKBlbbeWc7VrRU9PT294XSgU9mxN8f0e+bu4uBjf+ta3YmZmJqanpzO7Vvhe2s8HDtKW1ZkFAAAAskRSHAAAgJa1eer0iIiBgYGqRzc/+eSTG17v5Sjx7RK0Fy9eTG1U9uLiYoyPj8eTTz5Z8Rqt6erqijvuuCO6u7tjeHhYArbBKl3/VhipDwAAsNckxQEAAGhZzz777JZtg4ODVZezeaR4b29vzTHtZLskZ1oJ6eHh4RgdHa34b319fdHb2xs9PT1bRsKPjIxIijfYG2+8sWVbM49yBwAA2C+S4gAAALSszVOBd3V1RVdXV9VlbE4GDwwM1Bvatq41Urwes7Oz0d/fv+WaFIvFGBkZib6+vrrKZ+8ZKQ4AAFAbSXEAAABa1uapwT/96U9XXcbY2NiG13udPN6LkeKlUinuvvvuisn9zedHdlV6MMJIcQAAgJ3lGx0AAAAA7JXNo6JrWQt8fHx8w+tapl9PQz0jxXt7e7ckxHt6eiTEm4yR4gAAALWRFAcAAKAlbU6IR0TVU6dPTk5uSEQWi8WaEuvVqhRnrSPFJycnK16LiYmJmsqjcSo9GLF57XcAAAC2khQHAACgJW2eOr3ahHjE1qnT92tk9R133LFl2xtvvFFTWZVi7uvrM8K4CVV6MKK3t3f/AwEAAGgykuIAAAC0pGeffXbD62pH1JZKpZienl5/3dXVtS+jxCMiuru7K8ZTi+eee27LtjvvvLOmsmisSp+BSg9QAAAAsJGkOAAAAC1pcwKx2kTw5rXDH3/88bpj2q1Kic7NI993q9Lo4lqm3K5nTfNrqXVa+IOmUkK8UCgY8Q8AALALkuIAAAC0pHqmT5+ent4wSnxsbKym6ddrVelYpVIptQTy5lH0O+nt7d2z5HXayfZayturhH+aKj0UsV8zFwAAADQ7SXEAAABa0uaRtdVMM331KPGhoaEYGBhILa7dqpTwrDQV+k4qjSS+OuG/k/7+/m3fn0Yy2Ujx3ZmamtqyzTT4AAAAuyMpDgAAQMvZbqrp3RgeHl7ff2RkJEZGRtIMbdf6+/u3bKtlCvXtpmIfHx+/5n6zs7Nx/PjxmJ6ejpmZmVSm6a40bfvY2FjN5e31CO8sjSCv9EBEIx7WAAAAaEaS4gAAALSczcnjYrG4qxHJo6OjMTo6GoVCIaampmJoaGiPItzZpz71qS3bKo0W3kml5HpEeTT86Ojolu2lUin6+/uju7s7isVivPzyy9HV1VXx+lU7yrtSUnzteFeXNTs7ux7DdhYXFysef2ZmpqqY1o5XSaWHK2qRRjmVlgOwnjgAAMDuSIoDAADQcjavmV0qlaKzszMGBwdjdnZ2QzJ1cXExJicno7u7O4aHh6Orqytefvnlhq/XXCgUtqwtXsv06QMDA9uuhz48PBzHjx+P/v7+6O/vj+PHj8fx48djcnIyRkZGYmpq6pqJ1y9+8YtVxdLb21tx++TkZHR2dkYul4tcLhfd3d0xOTkZR44cqfj+UqkUw8PDFf/tW9/6VkxPT+86YT87O7vteQwPD9c0Or+SwcHBmpPjlWK4eop/AAAAri2XJEnS6CAAAAAgTf39/TE5OVn1fiMjIw0dHb7Z5OTklpHec3NzFUdcX8vs7Ow1R11frVAoxNNPP70hkb64uBidnZ077jcxMbHjwwTHjx/fVXK4q6trw6jvzs7OmtYf3xzX7Oxs3H333TWXtfnabDY+Pr6rhHWhUIiFhYVdHXd0dHTLQwALCwtGigMAAOySkeIAAAC0nGpH9w4MDMTCwkKmEuIREX19fVsS4LWswb2WYN4pmd7T07M+XfrVtltbu1AorP/sNsk8MTGxYxzFYjGefvrpDdt2U/7V8awljDfvd/HixR3L2lzO1WXVus74TnFdy+Z73tfXJyEOAABQBSPFAQAAaDm5XG7D6yRJYnJyMsbGxtanIL/jjjuiv78/PvWpT2U6wbh55HGxWIy5ubm6ypuYmIjnnntuPTFbLBZjeHg4BgYG6g23qjjGxsaiVCptiKOrqysef/zxTN+T/VQqleL48eMbttUyWwAAAMBBJikOAABAS9k8VXi9SeQs2Dx1uKTowbF56vS+vr6YmJhoYEQAAADNx/TpAAAAtJS1keBrWiF5/Oijj254PTIy0qBI2G9f/OIXN7x27wEAAKonKQ4AAEBLmZmZ2fB68/rYzWhoaGhDcn98fLyqNalpTpOTkxvu88DAQEs85AEAALDfJMUBAABoKZtHim9ej7lZjY2NbXi9eQQxrefqadMLhYJR4gAAADWSFAcAAKClzM7Obnh9xx13NCiSdPX09ERfX9/669HRUaPFW9j4+HiUSqX1148//ngUCoXGBQQAANDEckmSJI0OAgAAANJQKpW2jAxfWFhoqWTi8ePH15OlPT09MTU11eCISNvi4mK8//3vX3/oYWBgYMtMAQAAAOyekeIAAAC0jOnp6Q2vC4VCSyXEIyImJibW/396ejomJycbGA174YEHHlhPiHd1dUmIAwAA1ElSHAAAgJYxMzOz4XWxWGxQJHunq6trw+jwqxOoNL+rH3QoFArx9NNPNzgiAACA5icpDgAAQMvYPFK8VdYT36ynp2d9xPji4mL09/c3OCLScPW9LBQKMTMz03IzHQAAADSCpDgAAAAtYXFxcX2t7TXd3d0Nimbv9fX1xcjISESUHwYYHh5ucETU6+67747FxcX1EeKtONMBAABAI0iKAwAA0BKee+65LdtaPak4NDS0nhgfHR3dMlKe5jE4OBizs7PrCfGurq5GhwQAANAyJMUBAABoCbOzs1u2ter06VcbGhqKsbGxiAhrizexixcvrk+ZLiEOAACQrlySJEmjgwAAAIB69fb2bhkpfZC+8pZKpZYfGd/q3EMAAIC9ISkOAABAS+js7NwwUrqrqytmZmYaFxAAAACQCaZPBwAAoOmVSqUtU4cbcQsAAABERLQ3OgAAAACo19p64sViMXp6eqK7uzt6enoaHBUAAACQBaZPBwAAoCUsLi5GoVBodBgAAABAxkiKAwAAAAAAANCyrCkOAAAAAAAAQMuSFAcAAAAAAACgZUmKAwAAAAAAANCyJMUBAAAAAAAAaFmS4gAAAAAAAAC0LElxAAAAAAAAAFqWpDgAAAAAAAAALUtSHAAAAAAAAICWJSkOAAAAAAAAQMv6/wMKUdFOvnzIUAAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "fig = plt.figure(figsize=(20,10))\n", - "\n", - "ax = []\n", - "n = 0\n", - "l_tot = 1\n", - "c_tot = 1\n", - "\n", - "x_boundaries = 525, 650\n", - "x_ticks = [525, 550, 575, 600, 625, 650]\n", - "y_boundaries = 0, 0.3\n", - "y_ticks = [0, 0.1, 0.2, 0.3]\n", - "\n", - "n += 1\n", - "ax.append(plt.subplot(l_tot, c_tot, n))\n", - "\n", - "for path, legend, color, symbol in zip(paths, legends, [myred, myblue], [\"s\", \"o\"]):\n", - " data = path + \"pressure.dat\"\n", - " file = open(data, \"r\")\n", - " steps, press = np.loadtxt(file).T\n", - "\n", - " proba, pressure = np.histogram(press[10:], bins=50, range=(x_boundaries))\n", - " pressure = (pressure[1:]+pressure[:-1])/2\n", - " proba = proba/np.sum(proba)\n", - "\n", - " ax[-1].plot(pressure, proba, symbol, color=color, markersize=15, label=legend)\n", - "\n", - "plt.xlim(x_boundaries)\n", - "plt.xticks(x_ticks)\n", - "plt.ylim(y_boundaries)\n", - "plt.yticks(y_ticks)\n", - "\n", - "complete_panel(ax[-1], r'$p$ (atm)', r'$p (p)$', legend=True)\n", - "\n", - "fig.tight_layout()\n", - "plt.savefig('pressures_300K.png', bbox_inches = 'tight', pad_inches = 0.062)\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [], - "source": [ - "paths = [\"lammps_mu2_1.7nm3_300K_GCMC/\", \"python_mu2_1.7nm3_300K_GCMC/\"]\n", - "legends = [\"LAMMPS\", \"Python\"]" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAB8YAAAPeCAYAAAB+zXC1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAADYsUlEQVR4nOz9f2yk930v9r5nd6XKPdfaWUpOau9mox3mxNJxoyMPV0FRx0GSHTotcHHbE5GSUdQB4njJJC2Qwicmvc4Fcg4ukhXZe3IboI1NyidAj4sDa8mqLXCB9ooju/c4aYFqOVac41jOMUfKWms3tkSO1vfUqrS7c/9gSPPHcJfkzPDH8PUCCO08M8/n+TyP6PWu3vx8v4Vms9kMAAAAAAAAAPSoY/vdAAAAAAAAAAB0k2AcAAAAAAAAgJ4mGAcAAAAAAACgpwnGAQAAAAAAAOhpgnEAAAAAAAAAeppgHAAAAAAAAICeJhgHAAAAAAAAoKcJxgEAAAAAAADoaYJxAAAAAAAAAHqaYHyPNRqN1Ov1/W7j0PHcAAAAAAAAgN0SjHdZtVrN8PBw+vv7UygUcurUqdVfFwqFDAwMZHJyMo1GY79bTbIcQM/OzmZ4eDgDAwPrel3pfXh4ONPT010Nqg/bcwMAAAAAAAAOrkKz2WzudxO9aHZ2NhcvXtxRcDs2NpaJiYnuNXUHjUYj4+PjmZ6e3tF5lUolExMTKZfLHenjsD03AAAAAAAA4OAzMd5hjUYjw8PDGR4eXg13x8bGMj8/n6WlpTSbzSwsLGRqaiqlUmnduZOTkxkYGNjzKejp6emcOnVqx6F4sjzZPTAwkPHx8bZ6OIzPDQAAAAAAADgcTIx3WH9//+oS46VSKfPz8ykWi1t+fnR0dFMgXS6XMz8/3802V42Pj2dycrIjtSqVSubm5nZ17mF7bgAAAAAAAMDhYWK8g4aHh1fD3WKxeNdwN0mmpqYyNDS07litVsvo6Gi32lw1OTl5x1C8WCymVCrd9R5WVKvVXfV92J4bAAAAAAAAcLgIxjtkcnIys7Ozq6+feeaZbQfKzzzzzKZj09PTq2Fxt7z44oubjo2MjGRhYSHNZjNLS0tZWFhYXcp8bm4uIyMjd6w5PT2darW67R4O43MDAAAAAAAADhdLqXdAo9HIqVOnVl+XSqUsLCzsqEarJc2HhoYyMzPTkR5bGRgYSK1WS/KjSe2N+3e3Uq/XMzg4uGUAvd0lzQ/rcwMAAAAAAAAOFxPjHXD58uV1r3eznPelS5c2HZudne3q9PPa2i+88MK2QvHkRwH2Vp+v1Wrb6vuwPjcAAAAAAADgcBGMt6nRaLScWN6pYrGYcrm86fjaZcY7rdFoJFnut9W172Zubm7L9+62nPphfm4AAAAAAADA4SIYb9PGALhYLG578nqjSqWy6didwud2rJ2objV1vR2lUmnLPcfv1vdhfW4AAAAAAADA4SMYb9Ozzz677vX58+d3XWtwcHDTsbtNXu/WSjBeKpV2NS2+Yqvlz1em0bdyWJ8bAAAAAAAAcPgIxtu0MYBtJ2TeKhyu1Wq7rrmVlWC81bT1Tmx1v4uLi3c877A+NwAAAAAAAODwEYy3oVarbZqM7u/v33W9YrHY8vjaZc87qVwuZ3h4uO06rfru6+vb8vOH/bkBAAAAAAAAh4tgvA1Xr17ddOxOgfB2tJqc7kbAOzIykvn5+bYnxpPW93yn/cIP83MDAAAAAAAADh/BeBvm5+c3HbtTILwdrQLiF198sa2a3dZq2fQ7TYB7bgAAAAAAAMBeEoy3odVE8lbLem9Xq4B447LjB02r/u40ie65AQAAAAAAAHtJMN6GVgFvu0uCtwqIW01kHxS1Wm3TsWKx2HJp8xWeGwAAAAAAALCXBONt6MYe1g888MCmYwd58vnZZ5/ddGxiYuKO53huAAAAAAAAwF4SjHdYu0uCt3v+Xpuenl73ulQqZWRkZMd1jtpzAwAAAAAAAPbOif1u4LDay2nkg7ok+Ozs7KbnMDU1dcdzDtJzu3btWq5du7bjumfPns3Zs2d32xYAAAAAAABHmIxqfwjGD5h299reS+Pj4+tej4yMpFKp7EsvO31uf+fv/J388Ic/TLPZ3PG13v3ud+f+++/f8XkAAAAAAABw48aN/OAHP9jxeYVCIe9617vyr//1v+5CV71PML5LeznFfRDD8snJyXV7hZdKpbtOiycH47ldu3Zt16F4kvzgBz/Y1W9WAAAAAAAAsFvNZjM//OEPc+3aNZPjuyAY36W9XBL8oKnX6+umxYvFYubm5rZ17kF4bteuXdt1KJ6YGAd277vf/W5u376dY8eO5b3vfe9+twP0uLfffjvf//73V1+/5z3vyb333ruPHQFHhT/zAHvJn3mA/eLPPEA7djsxniyH44Lx3RGM71KxWGx5vNFobPlep6+1X4aHh9e9fuGFF1IqlbZ17kF8bv/Vf/Vf5dFHH912Xfs3ALt15syZXL9+Pe9973vz2muv7Xc7QI/70z/903z4wx9eff3cc8/l537u5/axI+Co8GceYC/5Mw+wX/yZB2jHTvcY/9rXvpb/5D/5T7rY0dEgGN+lvVze/CAtpT4+Pp5arbb6emZmJuVyedvnH8Tn9uijj/oLEwAAAAAAAHvCEOb+OLbfDfSavdxDe6/Nzs5mcnJy9fXU1FSGhoY6UruXnxsAAAAAAACwvwTju3SnJcHb0Sog3u4y5d1Uq9XWLaE+MTGRkZGRHdc5as8NAAAAAAAA2H+C8Q7rxuTzwMBAx2vuRL1ez4ULF1Zfj42NZWxsrKPX6MXnBgAAAAAAABwMgvE2tJpIbnfyudX5+zn53Gg0Mjg4uNrXyMhIJiYm2qp5FJ4bAAAAAAAAcHCc2O8GDrNSqZR6vb7u2MbXO7WwsNDyOvvlwoULq/c0NDSUqamptmsehecG0MonP/nJ3LhxI/fff/9+twIA0DX+zAMAHAX+zANw+AjG29AqeG0V0O7EQdore3BwMLVaLclyKD4zM9ORur3+3AC28slPfnK/WwAA6Dp/5gEAjgJ/5gE4fCyl3oZWe1i3O/m88fxKpdJWvd0aHBxMtVpd7aFToXjS288NAAAAAAAAOHgE421oNZF89erVtmpuDHgHBwfbqrcbw8PDq6F4uVzO3NxcR+v36nMDAAAAAAAADibBeBtaTSU3Go00Go1d1Wt17l5PPo+OjmZ2djbJcig+Pz/f8Wv04nMDAAAAAAAADi7BeJtaBbAr09Y7tXFqulgsplwu76rWboyPj2d6ejrJ8lT3Cy+80LVr9dJzAwAAAAAAAA62E/vdwGG3dtnxFc8++2yGhoZ2XGvjPt4jIyM7Or9er7dcpnw7JicnMzk5mWQ5FJ+fn0+xWNxVre3Yz+d29uzZvPvd784PfvCDvPvd787Zs2d3fE0AgIPu7Nmz+b3f+711rwEAeo0/8wAAR4FsqzMKzWazud9NHGaNRiOnTp3adHw3j/XUqVPrlgRfWlraVjhdrVYzPDy8eu7IyEimpqa2fd3p6emMjo4mWZ62np+f33XAvl37/dzOnDmT69ev5/Tp03nttdd2fE0AAAAAAADYK7Kt9pkYb1OxWMzQ0NDqvtwrpqendzTxXa1W14W7IyMj2wrFa7VaBgcHN117cXFx0yR1K7Ozs3cMxdf2tLi4uOn4yrFWr994440kycTExKbr7vdzAwAAAAAAAI4OE+MdUK/X09/fv+5YsVjM0tLStmsMDAykVqutnvvKK69sK+AdHh7eFC6vWFhYuOPk9+zsbIaHh7fd425t9S22n8/NT9UAAAAAAABwWMi22ndsvxvoBaVSadNUdKPR2HboPDk5uRruJskLL7yw7anner2+5Xtra260svz6ftrP5wYAAAAAAAAcHYLxDhkbG8vY2Ni6Y9uZyJ6cnMz4+Pjq66mpqZTL5W1f9/z581u+t1WdVsuv75f9em4AAAAAAADA0WEp9Q7bGNgmy0t8j4yM5PHHH0+pVMri4mJqtVqmpqZWJ76LxWJmZmZSqVR2dL1Go5Fz586t22c7WQ6cW+3tnSSnTp3a9Plu2s632F4/N8tNAAAAAAAAcFjIttonGO+Cer2e4eHhOy5lvtbQ0FAmJibuuB/43a43OjqaarWaUqmU8fHxjIyMbPn5QqGwq+skWV2qvK+vL4uLi5vebxW4Ly0tbWuJ8718bn7zAAAAAAAA4LCQbbVPMN5F9Xo9U1NTqdVqqdfrqdfrKRaLKZVK6evry+DgYEZGRuyLvcFePDe/eQAAAAAAAHBYyLbaJxjnSPKbBwAAAAAAAIeFbKt9x/a7AQAAAAAAAADoJsE4AAAAAAAAAD1NMA4AAAAAAABATxOMAwAAAAAAANDTBOMAAAAAAAAA9DTBOAAAAAAAAAA9TTAOAAAAAAAAQE8TjAMAAAAAAADQ0wTjAAAAAAAAAPQ0wTgAAAAAAAAAPU0wDgAAAAAAAEBPE4wDAAAAAAAA0NME4wAAAAAAAAD0NME4AAAAAAAAAD1NMA4AAAAAAABATxOMAwAAAAAAANDTBOMAAAAAAAAA9DTBOAAAAAAAAAA9TTAOAAAAAAAAQE8TjAMAAAAAAADQ0wTjAAAAAAAAAPQ0wTgAAAAAAMARNT09nUKhkIGBgf1uBbZUq9UyOTmZwcHB9Pf359SpUykUCikUCjl16lQGBwczOjqa2dnZNBqN/W6XA6rQbDab+90E7LUzZ87k+vXrOX36dF577bX9bgcAAAAAgENgYGAgtVotxWIxSdLX13fXcxYXF5MkjUYjU1NTGRkZ6WaLO9bf3596vZ4kWVhYSKlU6ljtRqORU6dObfm81j6bkZGRTE1Ndeza23G3f5+Li4tpNBoplUpZWFjouftJksHBwVSr1SRZPW/F3b6/V+43ybowulgsplQq5fz58xkYGNj193yj0cj09HQuX76847C7XC5ndHQ0Tz755Kb7OqxkW+0TjHMk+c0DAAAAAICdGh8fXw0R6/X6tsK6UqmUYrGYvr6+jI+Pp1KpdLnL7atWqxkcHFx93ekwt9FoZHh4eDWQXQngt9LpYP5OarXaXafkV/7dnT9/PlNTUz13P8ny93StVku9Xr/r/bRjZGQkExMT2w6pZ2dnc/HixXX/GyuXy6lUKunv709fX1/q9XreeOON1Gq11f9dtjIzM5OhoaE272D/ybbaJxjnSPKbBwAAAAAA7arVarlw4ULLgLxSqWRubm7vm9qB4eHhzM7Orju2tLTU1QnbVtdcsZdT1msnpTcaGxvLxMTEtur02v3Mzs5meHi45XtDQ0N5/PHHUy6X09fXt+77pF6vp1arZW5u7o4h9dzc3F1/OGR0dDTT09Orr8vlcp555pmUy+Utz2k0Grly5UomJiY2BfzbueZhINtqn2CcI8lvHgAAAAAAdMLGEG/F/Pz8HYO8/bayLPhGExMTGRsb69p16/V6+vv7t3y/28F8cvfp6p1EZ712P0nrsL9YLGZpaWlb5zcajVy8eHHLHxi4U1C98X9Pu/l+3FhjL/4d7AXZVvuO7XcDAAAAAAAAh9VWgeRBDsWTtAzzk3R9wvluS4tfvny5q9e/2zV2+u+t1+4nybrl9XejWCxmZmZmyyn14eHhlqssTE5Orvu+HBsb29UPaUxNTa3799ILoTidIRgHAAAAAADYpb6+vv1uYVe2ClPr9fodl8LuhDsFlZOTk9vau3236vX6lpPMye7+ffba/XTqe3psbKzl3t6NRmPTD2Y0Go2Mj4+vvi6VStte/r2V0dHR1TqwQjAOAAAAAABwhMzOzq6Gta2Cw3YCyZ3Yapq5m1PWa8PXTk8S99r9dMJW30vPPvvsutcXL15c93ol2N6tle/rg/hM2D+CcQAAAAAAgF1qFbwd9DBuJagtlUotl06vVqup1+tdu/7KRHKpVMrIyMim97da5r1djUZjdbp6q2vvRq/dTye/f0ulUssfGKjVauteb5x6bzVpvtPrJod3RQe6QzAOAAAAAADs3LVrSa3Wua9r1/b7jo6EWq22GkqOj4+nUqns69R4q+s0Go1MTk52/Fprp6u7dX+9dj+dcP78+Tu+32op+HaXQLeEOq0IxgEAAAAAgJ25di15//uTgYHOfb3//cLxPbAyLV4sFlcnjNcGrCu6NeW8UbFYbDkd3Onlx9fua10qldqeSN5Kr91PJ9xtAr0bqxMUi8U0m83Mzc11vDaHl2AcAAAAAADYmddfT956q7M133pruS5ds3bp7bXLbm+1BPdeheNbTVl38vprg+luT1f32v10w9qJ7oWFhU3vNxqNPeyGo0IwDgAAAAAAcASsDVNHR0fXvdcqHN+rwLVUKqVSqWw63mqSfTfWLmW+F9PVvXY/7WoVcq/teXFxcdP71Wq1my1xRAnGAQAAAAAAjoCVieVW+4q3Cm3r9fqeBZTdnLJeW2O/904/rPfTjlbfQ0899dTqr/v6+ja93+ml5yERjAMAAAAAAPS86enp1cndViH4VlPOexW8lsvllMvlrlx/JWTdy+nqXruf3arX65v2EK9UKuueTX9//6bzarVaxybsYYVgHAAAAAAAoMetBLJbBeDJ5uXVk+Vp343BZre0Co3r9frqvui7MTk5eccfCOimXruf3Wj1PTU1NbXu9Vbfj5OTkxkYGEitVutKbxw9gnEAAAAAAIAetjbcvlOYOjQ0lGKxuOn4xiCzW1ot8Z60FwCvTFcXi8WW+6h3U6/dz05NT09vWkZ9ZmZm0zPZaro+WZ4cHxgYSH9/f8bHxzM7O7tnP6hB7xGMAwAAAAAA9LC1k8t3C1MvXbq06Vgn9sXerk7udb52+fhW97UXeu1+tmtycnLTtPjMzMyWS78/88wzd6xXr9czOTmZ4eHh9Pf3p1AopL+/P8PDwwJztk0wDgAAAAAA0KPWhrDbmTBu9ZlGo7Fn4fjIyEjLqfXdTFnv5AcCuqXX7mfFViH07OxsBgYG1t1fqVTK/Pz8HfdDL5fLmZmZ2XEPs7Oz6wLzU6dOZXh4uK3l6uldgnEAAAAAAIAetTZM3U4YWywWWwaYrfbL7pZW09C1Wm1HU9ZrJ4jHxsZahtN7pdfuJ0kGBwdz6tSp9Pf3ry51XigUMjw8vLoneKlUytTUVBYWFrZcKn2toaGhbX92K41GI7OzsxkeHs6pU6d2NZlP7xKMAwAAAAAA9KC1k95b7XfdSqsgt16vrwae3bZV8LuTKeu1n93vZcd77X6SZHR0NH19favfF4uLiymVSqlUKpmYmMj8/HwWFhZ2PNm+Ml0+Pz+fkZGRbX/PttJoNDI4ONjWnu70FsE4AAAAAABAD1q7/PnG/Z7vpFwut5zavXz5ckf62o5WgWqtVttWOF+tVlenq7daynyv9dr9jI2NZWFhIc1mM81mM0tLS1lYWMjc3FzGxsbamvpOlr8HV6bNl5aWMjMzk4mJiQwNDe249uTk5J5tBcDBJhgHAAAAAADoQStB9lbLo99JqyB9dnY2jUajE63d1VZT0duZ/l37mYMyLdxr97OXVr5/x8bGMjMzk/n5+TSbzSwsLGRmZmZbk+Wjo6N79r3LwSUYBwAAAAAA6DFrQ+zdLL291WTyXk2NF4vFllPW1Wr1jlPWa98fGhpqaynuTuq1+zkISqVShoaGVifL5+bm7vh8rly5sofdcRAJxgEAAAAAAHrM2gB7fHw8hUJhx1+tJmz3cknqraaj7xTOT0xMtPz1QdBr93PQVCqVLCwsbLk6wtzc3B53xEEjGAcAAAAAAOgh2927ejcajUZmZ2e7UnujlYngjWZnZ1f33F6rVqulWq0mWQ5JD9p0da/dz0E1MzPT8llZSp0T+90AAAAAAAAAnbN2AnmrkHAntTYG4ZcvX97xnuW7NTEx0TKIHx8fz8zMzKa+1p53EPXa/RxUExMTGR4eXndscXFxn7rhoBCMAwAAAAAA9Ii1E93lcrntAPvSpUubgtyVifRyudxW7e0olUqpVCqrk9MrVqasV0L/er2+7r73orfd6LX7Oahafd+buMdS6gAAAAAAAD1i7ZTxpUuX2q5XLpdbBop32he707bam3vtFPXazxz06epeu5+DqlgsrnstGEcwDgAAAAAAcEDVarVMTk623IO6lenp6STLoWCnljtvFeTOzs7u2Z7NlUql5cT09PR0Go3GuunqlYnsg6zX7qcTJicnV793u+Xxxx/van0OPsE4AAAAAACwMw8+mNx3X2dr3nffcl3WmZqayvj4+LaC8ZVgNUlGRkY61sOTTz655fX2ylbT75cvX143UX1Ypqt77X7adfny5S0n6Xdr4w9udOoHRTi87DEOAAAAAADszNmzyTe/mbz+eudqPvjgcl3WWdmLejvLQK8NUUdHRzvWw8r0+ca9xi9fvpyxsbGOXedOhoaGUiqVNv2AwOTk5OqvS6XSoQk/e+1+OqGTKxDUarV1r4/Sc2RrgnEAAAAAAGDnzp4VZHfZyrLaSdLX13fHz1ar1dXPbrUveDsuXbq0KRhvNBqZnZ3dcei4uLi4qx7Gx8fvGPh3euJ4u3rtfloF1Hu1bH69Xu/I9+7U1NS610dl8p47s5Q6AAAAAADALnUzMFyZFk+Wp7bvpFvT4iu2CtsvX76865o7fXYjIyNbPodisdjR5eN3o9fuZy+tPLuNk967UavV1i3zPzEx0fEfFOFwEowDAAAAAADs0nb2/t6tZ599Nsndl1Gv1+vrQvSt9gRvV6vAvVarrbv2drTzwwRb7c29mxC5VR+7mf7utfvZ7QR8J7Q7Jd9oNHLhwoXV15VKZc+W++fgE4wDAAAAAADs0sLCQlfqrixTntw9GF8bWBeLxbtOl+/WVkum72RCfe0PEly9enXHPYyNjbW8v60C5u32smKnE8u9dj9JMj8/v+36nbA20K/X6+nv799V37VaLQMDA6v1KpVK5ubmOtQlvUAwDgAAAAAAsAv1en3dks0rGo1GhoeHMzk5menp6czOzrb8mp6ezvT0dCYnJ1f3mx4cHEx/f39OnTq1Wu9Owfjo6Oi6ie1Go7HjCe7t2iqsrNfr2w7H104ENxqNTE5O7riPjdPUQ0NDO/5hgNnZ2S2f00566rX7qdVquXLlSsv3urXn+cYJ9Xq9noGBgQwPD2/a176Vle+/gYGB1fB+bGxMKM4mhWaz2dzvJmCvnTlzJtevX8/p06fz2muv7Xc7AAAAAAAcIo1GI5cvX95VCLobExMTq8tBr4Tui4uLd52qLZVKKZVKGR0d3XLa+05GR0dTr9e3da1keVq9VCqlUqlkYmJiXa+NRuOOE8crvRaLxczMzNzxOo1GY90PDszNzaVSqdzxnJXwdLv3stJTsVhMX19fpqam0tfX11P3UyqVMj4+nlqtlsXFxdTr9W0tC7+2zvj4+F17vZtqtZrBwcE7fqZSqaxe94EHHsgbb7yRer2eWq227t9DqVTKzMxMyuVyWz0dRLKt9p3Y7wYAAAAAAAAOkytXruxZKJ5kXci3uLi45WTwxinjer2eer2ecrm8q2D8ypUrdwxKN16v0WhsCmnvNL2+9vyVXrczKV0sFjMyMpLp6enVIP5utjtJv/b6K2Hxyvl9fX09dT/J8r+f7QbrK7XW1hkeHt7WuXdSqVQyPz+fqampLb/n7navlUqlIyE9vc3EOEeSn6oBAAAAAGC3Go1GFhcX09fX15H9vNfWW6tbe4X3gpW9qKempjYtRX4Y9dr9tKNWq6VarebFF19cnWZfCctXJtVLpVLK5XIGBwdz/vz5I/G/FdlW+wTjHEl+8wAAAAAAAOCwkG2179h+NwAAAAAAAAAA3SQYBwAAAAAAAKCnCcYBAAAAAAAA6GmCcQAAAAAAAAB6mmAcAAAAAAAAgJ4mGAcAAAAAAACgpwnGAQAAAAAAAOhpgnEAAAAAAAAAeppgHAAAAAAAAICeJhgHAAAAAAAAoKcJxgEAAAAAAADoaYJxAAAAAAAAAHqaYBwAAAAAAACAniYYBwAAAAAAAKCnndjvBmA/ffe7382ZM2davvfJT34yn/zkJ/e4IwAAAAAAAI6iP/zDP8wf/uEftnzvu9/97h5303sE4xxpt2/fzvXr11u+d+PGjT3uBgAAAAAAgKPqxo0bW+ZWtE8wzpF27NixvPe972353v3337/H3QAAAAAAAHBU3X///Tl9+nTL97773e/m9u3be9xRbyk0m83mfjcBe+3MmTO5fv16Tp8+nddee22/2wEAAAAAAIAtybbad2y/GwAAAAAAAACAbhKMAwAAAAAAANDTBOMAAAAAAAAA9DTBOAAAAAAAAAA9TTAOAAAAAAAAQE8TjAMAAAAAAADQ0wTjAAAAAAAAAPQ0wTgAAAAAAAAAPU0wDgAAAAAAAEBPE4wDAAAAAAAA0NME4wAAAAAAAAD0NME4AAAAAAAAB0Kj0djvFoAeJRgHAAAAAABg3zQajUxPT2dwcDCnTp3K5OTkfrcE9KAT+90AAAAAAAAAR0O9Xk+tVsuLL76Yer2earVqShzYE4JxAAAAAACAbRgcHEy1Wk2SFIvFde/19fXd8dzFxcXVX68NgovFYkqlUs6fP5+BgYGMjIx0rN+DaGJiItPT0/vdBnAECcYBAAAAAAC2oVwuJ1meeq7X6+ve2+3Uc6PRSK1WS61WS5KMjo5mZGQkExMTm8L3XjA+Pp7h4eEky/d++fLl1XsH6CbBOAAAAAAAwDZMTEysez07O7sa8m40NDSUxx9/POVyOX19fetC7pXlxOfm5lYn0Neanp7O9PR05ubmUqlUOnoP+61UKqVUKq2+LhaLGRwc3MeOgKNCMA4AAAAAALALQ0NDGRoayuzs7LrjxWIxMzMzW55XKpVSqVQyNjaWRqORixcvbqqRLC/d3ovh+FprQ3KAbjq23w0AAAAAAAAcVu1OO6+E6Bun0VcMDw/vepn2vVSr1TI4OJjJycn9bgWgJcE4AAAAAADALvX19XWkztjYWIaGhjYdbzQamZ6e7sg1umF2djaDg4MZGBhItVrNG2+8sd8tAbQkGAcAAAAAADgAtpoaf/bZZ/e4k+0ZHh7O8PDwun3SH3jggX3sCGBrgnEAAAAAAIBdKhaLHatVKpVSLpc3Ha/Vah27Rie1mpa3ZzhwUJ3Y7wYAAAAAAIDe0WwmX7uWvPRq8vJ3krfeSe67J3n4fcljDyWPnk0Khf3u8uA6f/78gQ3CN2r1QwGCceCgEowDAAAAAABte+dm8oWvJFPVpP69pJDkxPHloLxQSG7eSppJSj+WjFaSj304uUdKsUknJ9D3w2HvH+hd/i8HAAAAAABoyzeuJ7/5+eQvX/vRsWaSd25t/uwr30s+/c+Tf/Yvks9+Innk9J61eWgd1Cls+4kDh4k9xgEAAAAAgF37s28mH/n95WXTm1n+upOVz7z8neXz/uyb3e/xMGk0GpuODQ0N7X0ju9Rq33GAg8DEOAAAAAAAsCvfuJ589I+St28mt++WiG9w6/byMusf/aPk+d81Ob6iWq1uOvbUU08lWQ7Nr169muRHAfTGpctXgvXFxcUky9PmrSbO6/V66vX6Heus1KhUKru7mQ5qNBoZHx9PtVpNvV5PstxzqVRKpVLJU089lXK53LHr1ev1zM7OZm5uLvV6PYuLi2k0GqvXLJVKeeqpp1KpVNpaPr5Wq2VqaipXrlzJpUuXMjY2tu79vb5v6GWCcQAAAAAAYMfeubm8fPo7t3Yeiq+43Vw+/7f+afL8Z+w5vhJWr1WpVFaDz2q1muHh4R3VnJiY2BS2rtQaHR3dVo2lpaVth7/d2GN8enq6Za+NRiO1Wi21Wi2Tk5OpVCqZmZlpq4dqtZrx8fHUarXVY8ViMX19fWk0GuuuOTs7myQZGRnJxMTEtq5bq9Vy9erVzM/P58qVKy1XCFixl/cNR8ER/78YAAAAAABgN77wleU9xXeZia+6dTv5+reX6338FzvS2qHVKgSdmppa/fVKADo3N5fp6ekt64yMjGRwcDDFYjHnz59v+Zknn3wypVIp9Xo9MzMzmybVy+VyRkdHUyqVWgautVotzz777Kbjk5OTSZI33nhj3dR5o9HI8PBwRkZGtuy7ldHR0Tve61rVajXnzp3L/Pz8rvZlHxwcXH0OxWIxExMTefLJJ9fd/8qE99qepqenMz09nampqS3vb3x8fPXZbMde3jccFYJxAAAAAABgR5rNZGrzit9tmX4h+bVfSAqFztY9LKanpzeF0zMzM+uCzmKxmKGhoQwNDWVwcLDl9PjIyMi6MH0rxWJxdYn0kZGRDAwMrE5Jl8vlzM/PtzyvWq1mYmKi5ZLvyXIAvJWdTruvDaorlUpKpVIGBgYyPz+fq1evrpvqXtFoNDI4OJiFhYVtX6der2dwcHB1Wr9SqWRubq7lZ8vlcqampjI6OpoLFy6sm/geHR3N/Px8y+f/wAMPrD7vVisD7Md9w1EjGAcAAAAAAHbka9eS+vc6V6+ZZOFvkr/4dvLo2c7VPSwmJyc3BcozMzMZGhra8pyhoaFUKpVNAfXKhPZOrQ14Z2ZmWn5mbWC7G9udZl5YWFgN6oeGhjIxMdHy3FqtluHh4U0h88r+4Hd6fitWAuWVGuVyectQfK2VHx7o7+9fd3x6ejr9/f2blq8fGxtbd6zVRPhe3jccRYVms9nuKidw6Jw5cybXr1/P6dOn89prr+13OwAAAAAAh8p//f9NPvXftL+M+lqFJP/PjyW/+vMdLLoHqtVqBgcH1x0rFotZWlpafV2v11sGnLOzs7l8+fK6CeBSqZSZmZnVfcXbvfZ21Ov11YB3bGwsExMTLT+3sqf2ynWmpqbWHUuSubm59PX1tTy/1T2tvfZGd/vhgBX9/f0t92bfTsC9Meyfn5/f1rNf0erfQbL8HFYmxHdyXrI3983hI9tqn4lxAAAAAABgR17+TnLiePLOrc7VPHF8uW4vGhwczOLiYvr6+lIsFtNoNDYFmqVSKePj4zvag3tlme21tRqNRqrV6h1D2Y3WLv196dKlLT+3MaxtNVm+k+veyXbD4SSZmJjYtEz7dibbZ2dn132uXC7vKBRPlu+31eT+6OjoHZc132p6fi/uG46qY/vdAAAAAAAAcLi89c7yPuOd1GwmP3y7szUPitHR0fT19aVer6dWq2VxcTGlUimVSiUTExOZn5/PwsLCjkLxtbU32s4e42utLOk9MjKSYrG44x46rVKp7Gg58KGhoZZB85328U4274f+1FNPbfuaa7WasF9Z1nwn9uq+4agSjAMAAAAAADty3z1JodDZmoVC8q57O1vzoBgbG8vCwkKazWaazWaWlpaysLCQubm5jI2N7XhKea1WYfrs7Oy6PcPvZO1nNwbF+2U3z6PVpPqdnkG1Wm25DPlulMvllgH1Tn9AYS/uG44ywTgAAAAAALAjD78vudnBZdST5XoPv6+zNY+CYrHYMhy/cuXKts6/fPlykq2nj/fDAw88sONzWu1Tvri4uOXnWy0D3879t5rc3+my5ntx33CUCcYBAAAAAIAdeeyhpMMrqaf5t3XZud0up76ytHty573FD4OdhtqtQut2lpHfatp85fl2y0H5YQY4DATjAAAAAADAjjx6Nin9WNKp1dQLSfp/PPmZn+hQwSOmXC5vWoa7Vqvdda/plb2xW53f6zY+m3b3Vt/q+ZnehoNDMA4AAAAAAOxIoZCM7m475i2NXOj8vuVHSauJ77tNjU9PT295bi/r1h7crcL1u/1wArB3BOMAAAAAAMCOfezDyd87kxxvM2k4fiz5wE8kv/rznenrqBoaGtoUzK4E362svFcsFjM0NNTN1g6cVmF1J8Lyvr6+bR0D9odgHAAAAAAA2LF7TiSf/URyz/Hk2C4nvY8Vls//419PThzvbH9H0cjIyLrXjUYjs7OzLT+7Mk2+8Rx2r9XEeLtLtAOdIxgHAAAAAAB25ZHTyRd/O7n3xM4nx48fWz7vi7+9XIf2jY6ObjrWajn1Wq2WWq2W5Ogto54kpVKp5fGVZ7IX1wL2nmAcAAAAAADYtQ+9P3n+d5fD7UKWv+5k5TOPnF4+70Pv736PR0WpVEqlsn7z92q1ummZ8JWwvNXy60fBVvd89erVtupufM7FYlEwDgeIYBwAAAAAAGjLI6eT5z+TPP0fJed+bPlYIcvLpJ84tvzPlcC89OPLn3v+MybFu2F8fHzTsbV7jTcajdXXR3FafEW5XN50bH5+vq2ai4uL615v/CEFYH+d2O8GAAAAAACAw++eE8nHfzH5tV9I/uLbyUuvJi9/J/nh28m77k0efl/y2EPJz/xEUtjlnuTcXaVSSalUSr1eXz12+fLljI2NJUmuXLmSZDkYbhUOHxWVSmXT0ulXrlxpufT8djQajU0T40899dRu2wO6wMQ4AAAAAADQMYVC8ujZ5Fd/PvmDjyb/r19d/uev/vzy8V4LxTeGoVsd20sb9xpvNBqZnJxMkkxMTCTp3rT4ft/7drUKrRuNRqrV6q7qbTyvXC5naGhoV7WA7hCMAwAAAAAA9JCRkZFNxy5fvpxqtZp6vZ5isdi10HbjcuK78cYbb3SgkzuH9FtNzLdain47Nk6ar/wAwk7sxX3DUSYYBwAAAAAA2KVOBMGd1ir4bjQaGRwcTNK5afFisbjp2Nol3A+6VuF1rVZbtyf7dtRqtXUT4yMjI/YXhwNIMA4AAAAAALBL8/PzLY/vd0B8p/C71UT5bvT392861ipsrtfrWy5R3uo5dWri+W4/tFCpVFb3Xl9rdHR00/7jd3Lx4sV1NbezT/l+3jccVYJxAAAAAACAXajVarly5UrL93a7JHenlMvllEqlTcdHRkZaTnrvRqv61Wo1/f39GR8fz/j4eAYHB9Pf379p3/MVMzMzm45duXKlIyFxq9obTUxMtJzuvnDhQmZnZ+96/vDw8GqIPjQ0lLm5uV33tpf3DUdRodlsNve7CdhrZ86cyfXr13P69Om89tpr+90OAAAAAACHwPj4eGq1WhYXF1Ov17cVYpZKpRSLxfT19WV8fHxPl9ienp7eFEgvLCy0DLR3a2Bg4K7T1cViMfPz8ymVSpmcnMzc3Ny2nmGpVFp9fncLe2dnZzM8PNzyvXK5nL6+vgwPD285LT86OtpyCfWhoaGMjo5u+vc2Ozub8fHx1cnvqampO07iH9T75vCQbbXvxH43AAAAAAAAcBhUq9VtL7G9MpW9EoQm2TLA7JYnn3xyXTBeqVQ6GoonyTPPPJMLFy7cMeh94YUXVq/74osvbrmserJ+3/K1z243VmrV6/XUarU73vvU1FSGh4dXf/hhxezs7Ork+Mr5a3saGxvLpUuX7jqFf1DvG44SE+McSX6qBgAAAACAo2B4eHg12J2bm+vaxPr4+Hiq1erqNHSxWEypVNpyqfKDrFar5dlnn113P8mPpv8rlUoGBwcP3X1xuMm22mdiHAAAAAAAoEc9/vjjmZ2dTalU6mqQOzEx0bXae61cLqdcLu93G0CHHdvvBgAAAAAAAOiOZ599NsnyRDfAUSYYBwAAAAAA6EEre0wnycjIyD53A7C/BOMAAAAAAAA9aGpqKolQHCARjAMAAAAAAPSk6enpJJZRB0gE4wAAAAAAAD1neno6jUYjlUolpVJpv9sB2HeCcQAAAAAAgB4zMTGRxLQ4wArBOAAAAAAAQA+ZnJxMvV5PqVRKpVLZ73YADgTBOAAAAAAAQI+o1+urU+IrU+MACMYBAAAAAAAOnVqttulYo9HI4OBgkqRUKmVoaGiv2wI4sATjAAAAAAAAh8j09HQGBgYyOjqaWq2WRqOR2dnZnDt3LvV6PUkyNTW1z10CHCwn9rsBAAAAAAAAtm8l9J6ens709PSm90dGRuwtDrCBiXEAAAAAAIBDotFotFxGfUWlUjEtDtCCYBwAAAAAAOCQuHLlypbvTUxMZG5ubg+7ATg8LKUOAAAAAABwSIyMjKSvry9zc3NZXFxMX19fBgYG8uSTT6ZYLO53ewAHlmAcAAAAAADgEBkaGsrQ0NB+twFwqFhKHQAAAAAAAICeJhgHAAAAAAAAoKcJxgEAAAAAAADoaYJxAAAAAAAAAHqaYBwAAAAAAACAniYYBwAAAAAAAKCnCcb3WKPRSL1e3+82DoxGo3EoagIAAAAAAACH14n9bqDXVavVTE1NpVartQzEy+VynnrqqYyMjKRYLO59gzs0Ozub8fHxVCqVTE1NtVWr0Wjk1KlT646tPIO+vr6WxzeG3ouLiy2PLy0tHYrnCQAAAAAAAHSfYLxLZmdnc/HixbtOL9dqtdRqtYyPj2dsbCwTExN70+AOTU9PZ3x8fPV+ujX1vlLf1DcAAAAAAADQKZZS77BGo5Hh4eEMDw+vhrtjY2OZn5/P0tJSms1mFhYWMjU1lVKptO7cycnJDAwMHJhQuNFoZHJyMqdOncro6GjH++rmRLdpcQAAAAAAAGCFifEOGxgYWJ2mLpVKmZ+f3xTSlkqljIyMZGRkJKOjo5menl59r1ar5cKFC5mfn9/Lttep1WqZmppa1xcAAAAAAADAYWVivIOGh4dXQ/FisdgyFN9oamoqQ0ND647VarWMjo52q82WGo1Gpqen09/fn4GBgdVQvFQqHcrp64MydQ8AAAAAAADsPxPjHTI5OZnZ2dnV188888y2A+Vnnnlm3bnJj/b03rjceqfNzs5mamoq1Wp13fFKpZLx8fFUKpVNU+3dsPKDBMn6UHtxcXHTsbXH71QPAAAAAAAAIBGMd0Sj0cj4+Pjq61KptGkK/E6KxWLGxsYyOTm57vj4+HhmZmY61udG9Xo9w8PD644NDQ1lYmJiXSC/FyFzX19f138IAAAAAAAAADiaLKXeAZcvX173ejfLoF+6dGnTsdnZ2dWl2bthJYheCeaXlpYyMzOzLwG1CW8AAAAAAACgWwTjbWo0GpsmvXcyLb6iWCymXC5vOr5xifVOm5+fz9LSUiYmJvY1nO7r69u3awMAAAAAAAC9TTDepo17cxeLxV1PXFcqlU3H5ubmdlVru1qF8QAAAAAAAAC9RDDepmeffXbd6/Pnz++61uDg4KZjG4P3XmUpdQAAAAAAAKBbBONt2hhctzOBvVWoXqvVdl3zsLCUOgAAAAAAANAtgvE21Gq1NBqNdcf6+/t3XW+rqel6vb7rmgAAAAAAAABHnWC8DVevXt10rN3J51YT50chGLeUOgAAAAAAANAtgvE2zM/PbzpWKpXaqtkqWH/xxRfbqnkYPPDAA/vdAgAAAAAAANCjBONtaDXJ3e7kc6tgfeNy7b3ibvc1PT2d4eHh9Pf359SpUykUCjl16lQGBgYyOjqa2dnZvWkUAAAAAAAAONRO7HcDh1mrYLzdpdRbBeuLi4tt1TwMVu670WhkfHw809PTLT/XaDRSq9VSq9VWPzMxMZGxsbG9ahUAAAAAAAA4ZEyMt6Ebe3+3WlK8VyfGNxofH8+pU6e2DMXvdF5/f/+R2IsdAAAAAAAA2DkT4x3W7lLq7Z5/mKydhB8dHW2rVr1eT39/f+bm5lKpVNptDQAAAAAAAOghgvFd2ssp7qOwlPpapVIpQ0ND6e/vT19fXxYXF9NoNDI3N5dqtXrHc4eHhzM/P99yr3YAAAAAAADgaBKMHzDt7lF+mGz84YJSqZSZmZmUy+WWnx8bG9vWHuQr4fh2vP322/nTP/3THfV99uzZnD17dkfnAAAAAAAAQJJcu3Yt165d29E5b7/9dpe6OToE47u0l1PcvRqWr32GQ0NDmZmZues5xWIxU1NTGR0dzcDAQMvP1Gq1VKvVbS2p/v3vfz8f/vCHt990kt/7vd/LP/pH/2hH5wAAAAAAAECS/Mmf/En+8T/+x/vdxpFzbL8bOKz2cin1Xjc2NratUHytcrl8x6nwiYmJdtsCAAAAAAAAeoRgfJeKxWLL490IzLe61mFXqVTSbDZ3HWKXy+Utz73bXuQAAAAAAADA0WEp9V3ay+XNe3Up9U4YGxvL5cuXW/5AwnaWU3/Pe96T5557bkfXtL84AAAAAAAAu/Xxj398W1sCr/Urv/Ir+f73v9+ljo4GwXiHLS4u9uyE90E1MjKSycnJTcfr9fpdz7333nvzcz/3c91oCwAAAAAAADY5e/bsjgcx77333i51c3QIxnepW0upLy4ubjpWKpXaqtnrnnrqqZbBuH3gAQDYjWYz+dq15KVXk5e/k7z1TnLfPcnD70seeyh59GxSKOx3lwAAAADshGC8w1oF2+0aGBjoeM1eUi6X97sFAAB6wDs3ky98JZmqJvXvJYUkJ44vB+WFQnLzVtJMUvqxZLSSfOzDyT3+RgUAAABwKBzb7wYOs1aT3O1OKbc638T43bV6Rpa0BwBgu75xPRn8/eTT/zx55XvLx5pJ3rmV3Ly9/M/m3372le8tf27w95fPAwAAAODgE4y3oVUYu519re9kYWFhW9dhvVYhuOcGAMB2/Nk3k4/8/vKy6c38KADfyspnXv7O8nl/9s3u9wgAAABAewTjbWgVvLYKtnfCHuOdc/78+f1uAQCAA+4b15OP/lHy9s3k1u2dnXvr9vJ5H/0jk+MAAAAAB51gvA2t9v5ud2J84/mVSqWtekfFxiXoy+WypdQBALijd24mv/n55WXSb99tTHwLt5vL5//WP12uBwAAAMDBJBhvQ6tJ7qtXr7ZVc2MwPjg42Fa9o2LjpP1TTz21T50AAHBYfOEryV++tvNJ8Y1u3U6+/u3legAAAAAcTILxNrSa5m40Gpuml7er1bm9NjFer9dTrVY7WrPVcxsZGenoNQAA6C3NZjLV2T+WZvqF5boAAAAAHDyC8Ta1Cq53G/xunDYvFospl8u7qnUQNRqN9Pf3Z3h4uKN1Nz7vsbExy6gDAHBHX7uW1L+XdCrHbiZZ+JvkL77doYIAAAAAdJRgvE2tQt5nn312V7VmZmbWvd7p1HO7+5t3W7FYTKVSSaPRyOTkZMfqXr58efXXpVIpExMTHasNAEBveunVpNDhmoW/rQsAAADAwSMYb9OTTz656djs7Oyual25cmXd60uXLm3rvGq1mlOnTqW/vz+FQiGjo6O7uv5eGB8fX/3nbpecX6tWq6VWq62+npqaarsmAAC97+XvJCeOd7bmiePLdQEAAAA4eATjbSoWixkaGtp0fHp6ekd1qtXquqB4ZGRkW8uB12q1DA4Orjt3enq6o8uVtwqwFxcXd1WrUqms3tdKSL5bjUZj3X1OTU313J7sAAB0x1vvdH4/8GYz+eHbna0JAAAAQGcIxjug1dLdOw19136+WCxueznwtcuIrzU7O9uxpdVbheDtTHuvLBE/PT29btp7JxqNRi5cuLB6j1NTUzteeh4AgKPrvnuSQofXUi8Uknfd29maAAAAAHSGYLwDWu1rvXGa+U4mJyfXBcQvvPDCtqbFkzvvK77b0HmtRqPRcmn4er2+6/prl3q/cOFCqtXqjs6vVqsZGBhYvb5QHACAnXr4fcnNW52tefPWcl0AAAAADh7BeIeMjY1lbGxs3bHZ2dm7huOTk5PrpsWnpqZSLpe3fd3z589v+d5O6mxUr9czOzubgYGBLT9z4cKF1anvnUyQl0qllEqlJMvB++DgYAYGBjI9Pb1l0F+v1zM9PZ2BgYEMDg6mXq+nVCplYWFBKA4AwI499lDS4ZXU0/zbugAAAAAcPIVms9M76x1tG4PuZHlp9JGRkTz++OMplUpZXFxMrVbL1NTUahBcLBYzMzOz4z2yG41Gzp07tymYHhsb2/Zy7Ely6tSptpZHX6tYLGZpaemOnxkfH8/k5OSW768E58nmqfhisZhLly5t+kGEnThz5kyuX7+e06dP57XXXtt1HQAADqdmM/l3/u/JK9/rTEBeSFL68eR//X90fol2AAAAANlW+wTjXVCv1zM8PLztpcaHhoYyMTGxLgze6fVGR0dTrVZTKpUyPj6+4ynqQof/693dvq3W9rxdnQjEV/jNAwCAP/ly8ul/3rlg/On/KPn4L3agGAAAAMAGsq32Cca7qF6vZ2pqKrVaLfV6PfV6PcViMaVSKX19fRkcHMzIyMi29xPvRY1GI9PT03nxxRdTr9fTaDRWn1NfX19KpVIGBwdTqVTaWhp+I795AADwzs1k8PeTl7+T3Lq9+zrHjyWPnE7mfjc5cbxz/QEAAACskG21TzDOkeQ3DwAAkuQb15OP/H7y9s3k9i7+ZnSskNx7Inn+d5fDcQAAAIBukG2179h+NwAAALBfHjmdfPG3l8Pt4zv829HxY8vnffG3heIAAAAAB51gHAAAONI+9P4fTXwXsvx1JyufeeT08nkfen/3ewQAAACgPSf2uwEAAID99sjp5PnPJF/4SjJVTerfWw6/TxxPms2kUEhu3kqaSUo/noxcSD724eQef6MCAAAAOBT8ZxwAAIAsh9wf/8Xk134h+YtvJy+9mrz8neSHbyfvujd5+H3JYw8lP/MTy0E5AAAAAIeHYBwAAGCNQiF59OzyFwAAAAC9wR7jAAAAAAAAAPQ0wTgAAAAAAAAAPU0wDgAAAAAAAEBPE4wDAAAAAAAA0NME4wAAAAAAAAD0NME4AAAAAAAAAD1NMA4AAAAAAABATxOMAwAAAAAAANDTBOMAAAAAAAAA9DTBOAAAAAAAAAA9TTAOAAAAAAAAQE8TjAMAAAAAAADQ0wTjAAAAAAAAAPQ0wTgAAAAAAAAAPU0wDgAAAAAAAEBPE4wDAAAAAAAA0NME4wAAAAAAAAD0NME4AAAAAAAAAD1NMA4AAAAAAABATxOMAwAAAAAAANDTBOMAAAAAAAAA9DTBOAAAAAAAAAA9TTAOAAAAAAAAQE8TjAMAAAAAAADQ0wTjAAAAAAAAAPQ0wTgAAAAAAAAAPU0wDgAAAAAAAEBPE4wDAAAAAAAA0NNO7HcDAAAAHADXriWvv965eg8+mJw927l6AAAAAG0QjAMAABx1164l739/8tZbnat5333JN78pHAcAAAAOBEupAwAAHHWvv97ZUDxZrtfJCXQAAACANgjGAQAAAAAAAOhpgnEAAAAAAAAAeppgHAAAAAAAAICeJhgHAAAAAAAAoKcJxgEAAAAAAADoaYJxAAAAAAAAAHqaYBwAAAAAAACAniYYBwAAAAAAAKCnCcYBAAAAAAAA6GmCcQAAAAAAAAB6mmAcAAAAAAAAgJ4mGAcAAAAAAACgpwnGAQAAAAAAAOhpgnEAAAAAAAAAeppgHAAAAAAAAICeJhgHAAAAAAAAoKcJxgEAAAAAAADoaYJxAAAAAAAAAHqaYBwAAOCoe/DB5L77OlvzvvuW6wIAAAAcACf2uwEAAAD22dmzyTe/mbz+eudqPvjgcl0AAACAA0AwDgAAwHKILcgGAAAAepRgHAAAOJquXTMhDQAAAHBECMYBAICj59q15P3vT956q3M177tveTly4TgAAADAgXNsvxsAAADYc6+/3tlQPFmu18kJdAAAAAA6RjAOAAAAAAAAQE8TjAMAAAAAAADQ0wTjAAAAAAAAAPQ0wTgAAAAAAAAAPU0wDgAAAAAAAEBPE4wDAAAAAAAA0NNO7HcDAADA/mk2k69dS156NXn5O8lb7yT33ZM8/L7ksYeSR88mhcJ+dwkAAAAA7RGMAwDAEfTOzeQLX0mmqkn9e0khyYnjy0F5oZDcvJU0k5R+LBmtJB/7cHKPvz0AAAAAcEj5T1sAAHDEfON68pufT/7ytR8dayZ559bmz77yveTT/zz5Z/8i+ewnkkdO71mbAAAAANAx9hgHAIAj5M++mXzk95eXTW9m+etOVj7z8neWz/uzb3a/RwAAAADoNME4AAAcEd+4nnz0j5K3bya3bu/s3Fu3l8/76B8t1wEAAACAw0QwDgAAR8A7N5eXT3/nVnL7bmPiW7jdXD7/t/7pcj0AAAAAOCwE4wAAcAR84SvLe4rvdFJ8o1u3k69/e7keAAAAABwWgnEAAOhxzWYyVe1szekXlusCAAAAwGEgGAcAgB73tWtJ/XtJp3LsZpKFv0n+4tsdKggAAAAAXSYYBwCAHvfSq0mhwzULf1sXAAAAAA6DE/vdAOyn7373uzlz5kzL9z75yU/mk5/85B53BADQeS9/JzlxPHnnVudqnji+XBcAAACAzvjDP/zD/OEf/mHL97773e/ucTe9RzDOkXb79u1cv3695Xs3btzY424AALrjrXc6vx94s5n88O3O1gQAAAA4ym7cuLFlbkX7BOMcaceOHct73/velu/df//9e9wNAEB33HdPUkgznVxQvZBm3nVvpxdo30MPPpjcd1/y1ludq3nffct1AQAAAHbh/vvvz+nTp1u+993vfje3b9/e4456i2CcI+29731vXnvttf1uAwCgqx6+bzE3bxWTQueC7Ju3mnn4vsUkD3Ss5p46ezb55jeT11/vXM0HH1yuCwAAALALd9rm98yZM6bJ2yQYBwCAHvfYv/k3aRb6OlqzWTiWx971vRzaYDxZDrEF2QAAAABHwrH9bgAAAOiuRx/8YUpv/lUKzc4st1Vo3k5/45v5mQd/2JF6AAAAANBtgnEAAOhxhUIy+i//i47WHPn6H3VyZXYAAAAA6CrBOAAAHAEfe/mZ/L3Fr+X47XfaqnP89jv5wOKf51dfnu5QZwAAAADQfYJxAAA4Au5p3sxn/+f/OPfcfifHbt/aVY1jt2/lntvv5I//54/lRHN3NQAAAABgPwjGAQDgiHhk6ev54v/07+fe2//njifHj99+J/fe/j/zxf/p388jS1/vUocAAAAA0B2CcQAAOEI+9L//izz/P/xsHln6lyk0b6fQvH3Hz6985pGlf5nn/4efzYf+93+xR50CAAAAQOcIxgEA4Ih5ZOnref6//9k8/b/8pzl341tJlgPwe269nRO33s49t95eDcxLb/6rPP2//Kd5/r//WZPiAAAAABxaJ/a7AQAAYO/d07yZj3/js/m1b3w2f/HAY3npwcfz8qkP5Icn/s286+b/kYeXvp7HXn8xP/PGSynsd7MAAAAA0CbBOAAAHGGFJI++8VIefeOl/W4FAAAAALrGUuoAAAAAAAAA9DTBOAAAAAAAAAA9TTAOAAAAAAAAQE8TjAMAAAAAAADQ0wTjAAAAAAAAAPQ0wTgAAAAAAAAAPU0wDgAAAAAAAEBPO7HfDQAAAHBwNZvJ164lL72avPyd5K13kvvuSR5+X/LYQ8mjZ5NCYb+7BAAAALgzwTgAAACbvHMz+cJXkqlqUv9eUkhy4vhyUF4oJDdvJc0kpR9LRivJxz6c3ONvmAAAAMAB5T9bAABAr3vwweS++5K33upczfvuW65LT/rG9eQ3P5/85Ws/OtZM8s6tzZ995XvJp/958s/+RfLZTySPnN6zNgEAAAC2TTAOAAC97uzZ5JvfTF5/vXM1H3xwuS4958++mXz0j5ZD8OY2Pr/ymZe/k3zk95Mv/nbyofd3s0MAAACAnROMAwDAUXD2rCCbu/rG9eVQ/O2bye3tpOJr3Lq9vMz6R/8oef53TY4DAAAAB8ux/W4AAACA/ffOzeXl09+5tfNQfMXt5vL5v/VPl+sBAAAAHBSCcQAAAPKFryzvKX7rdnt1bt1Ovv7t5XoAAAAAB4VgHAAA4IhrNpOpamdrTr+wXBcAAADgIBCMAwAAHHFfu5bUv5d0KsduJln4m+Qvvt2hggAAAABtEowDAAAccS+9mhQ6XLPwt3UBAAAADgLBOAAAwBH38neSE8c7W/PE8eW6AAAAAAeBYBwAAOCIe+udzu8H3mwmP3y7szUBAAAAdkswDgAAcMTdd09S6PBa6oVC8q57O1sTAAAAYLcE4wAAAEfcw+9Lbt7qbM2bt5brAgAAABwEgnEAAIAj7rGHkg6vpJ7m39YFAAAAOAgE4wAAAEfco2eT0o8lnVpNvZCk/8eTn/mJDhUEAAAAaJNgHAAA4IgrFJLRSmdrjlzo/L7lAAAAALslGAcAACAf+3Dy984kx9v8W+LxY8kHfiL51Z/vTF8AAAAAnSAYBwAAIPecSD77ieSe48mxXU56Hyssn//Hv56cON7Z/gAAAADaIRgHAAAgSfLI6eSLv53ce2Lnk+PHjy2f98XfXq4DAAAAcJAIxgEAAFj1ofcnz//ucrhdyPLXnax85pHTy+d96P3d7xEAAABgp07sdwMAAAAcLI+cTp7/TPKFryRT1aT+veXw+8TxpNlMCoXk5q2kmaT048nIheU9yu/xN0wAAADggPKfLQAAANjknhPJx38x+bVfSP7i28lLryYvfyf54dvJu+5NHn5f8thDyc/8xHJQDgAAAHCQ7UswfuPGjVSr1dTr9SwsLOTq1atpNBpZXFxMkjQajRSLxfT19a37Z6lUyuDgYM6fP5/7779/P1oHAAA4UgqF5NGzy18AAAAAh9WeBePPPfdcnn322VSr1TQajXXvNZvNTZ9fWlrK0tJSkqSwZvxgcnIySVIsFlOpVPL4449nZGREUA4AAAAAAABAS4Vmq1S6Q770pS9lamoqs7Ozq8e2ulxhi7X37tTe2nPK5XJ+4zd+I8PDw0Jy7urMmTO5fv16Tp8+nddee22/2wEAAAAAAIAtybbad6wbRZ977rk8/vjjGRwczOzsbJrN5upXoVBo+bWVrT5fKBTW1Z2fn8/IyEhOnTqVj370o3n11Ve7cWsAAAAAAAAAHDIdDcafe+65PPDAAxkeHs78/HzLMHyttcH2dr/W2lh35TMzMzPp7+8XkAMAAAAAAADQmT3Gb9y4keHh4VSr1dXwulUIvlapVFr9KhaLeeCBB1IsFlffbzQaeeONN9JoNLK4uLjun/V6fVMPa6+3cq2ZmZnMzMxkdHQ0Tz/9tCXWAQAAAAAAAI6gtoPxZ555Jr/xG7+RJKvT4Su/XlEqlVIulzM4OJjz58/ngx/8YLuXzSuvvJJarZa5ublcvXo1tVpt9b2NIfnU1FSeffbZfP7zn88/+Af/oO1rAwAAAAAAAHB4FJobR7l34KmnnlrdQ3xjIF6pVDI6OppKpZKTJ092ptu7+OpXv5pqtZqpqanVqfK1fRUKhYyOjuaP//iP96QfDq4zZ87k+vXrOX36dF577bX9bgcAAAAAAAC2JNtq366C8Rs3buTChQup1WqrgXOz2UypVMr4+HiefPLJPQvDt/LKK69kZmYmTz/9dBqNxmqPhUIhAwMDeeGFF/Lud797X3tk//jNAwAAAAAAgMNCttW+Yzs94c0338zAwMC6pcvPnTuXqampfOtb38rFixf3PRRf6WlsbCyLi4u5cuVKzp07t/re1atXc+7cufz1X//1PnYIAAAAAAAAwF7YUTD+5ptv5vz586nX62k2m2k2mxkfH18NxA+qoaGhfOtb38rnPve51dB+cXExAwMD+fM///N97g4AAAAAAACAbtp2ML4xFC+Xy1lYWMjly5e72V9HjYyM5JVXXskTTzyRZDkc/6Vf+iXhOAAAAAAAAEAP21YwfuPGjXWh+Ojo6Opy5IfNyZMnMzMzk+effz7FYjFLS0u5cOGCZdUBAAAAAAAAetS2gvFf+qVfysLCQprNZqampvLZz3622311XaVSSb1ezwc/+MEsLi6mXC7n1Vdf3e+2AAAAAAAAAOiwbQXjn/70p1MqlTI/P3+g9xLfqWKxuHpPFy5cyEMPPbTfLQEAAAAAAADQYYVms9nc7yZgr505cybXr1/P6dOn89prr+13OwAAAAAAALAl2Vb7Tux3AwAA0HHXriWvv965eg8+mJw927l6AAAAAMCeEowDANBbrl1L3v/+5K23OlfzvvuSb35TOA4AAAAAh5RgHACA3vL6650NxZPleq+/LhiHo8bqEwAAANAzBOMAAACwkdUnAAAAoKfseTB+48aNTE9PZ25uLlevXk2j0Vh9r1QqpVQqpVgsplQq5amnnspjjz221y0CAABw1Fl9AgAAAHrKngbjly5dyuTk5OrrZrO57v2FhYXU6/XV15OTkykWi6lUKvnoRz+af/AP/sGe9QoAAAAAAABAbzi2Vxd6/PHHMzk5mWazufpVKBQ2fa19v9lsZmlpKbOzsxkaGsrx48fzmc98Jjdu3NirtgEAAAAAAAA45PYkGH/qqacyPz+/KQxfcbewfO1nJiYmcurUKQE5AAAAAAAAANvS9aXUv/rVr2ZmZmZTEL5iZT/xvr6+LC4uptForP5zrY3nT0xMZHp6OjMzM/nFX/zFbt8GAAAAJEmaSb72wAfz0nsez8unPpC3jr8r9936YR5e+noe+/6LefSNr6Zw1yoAAADAXup6MD41NbXudbPZTKVSyfj4eC5cuHDHc1955ZXUarW8+OKLqVarqdVq695fXFxcrfUHf/AHHe8dAAAAVrxTOJEvPHwxU//2f5b6yZ9OoXk7J27fTLNQSKHZzM1jJ9IsHEvpzb/K6L/8L/Kxl5/JPc2b+902AAAAkD0IxqvV6ure4YVCIfPz8/ngBz+4rXPPnTuXc+fO5Yknnlg9Njs7m+np6VSr1SQ/mh5vNBr54z/+467cAwAAAEfbN059IL/5C/9N/rLv0dVjzcKxvHP83k2ffeX+n8qn/93/Mv/s4ZF89n/+j/PI0tf3slUAAACgha7vMb64uLgail+5cmXbofhWhoaG8vzzz2dpaSlPP/10isVims1mpqam8k/+yT/pUNcAAACw7M/+rZ/PR/6D/y0vn/pAmoVjaRbu/Ffplc+8fOoD+ch/8L/lz/6tn9+jTgEAAICtdD0YbzQaKRQKqVQq6ya/23Xy5MmMjY3llVdeycWLF9NsNjM2NpYvf/nLHbsGAAAAR9s3Tn0gH/33/se8fezfyK1j9+zo3FvH7snbx/6NfPTf+x/zjVMf6FKHAAAAwHZ0PRgvFotJksHBwa7UP3nyZKampnLlypU0m80MDw935ToAAAAcLe8UTuQ3f+G/yTvH7sntY8d3VeP2seN559g9+a1f+ELeKXR9NzMAAABgC10Pxs+fP5/kRwF5twwNDeVTn/pUFhcXLakOAABA277w8MX8Zd+jO54U3+jWsXvy9b6/ny88fLFDnQEAAAA71fVgvFKpJFleUr3bJiYmUiqV8gd/8AddvxYAAAC9q9lMpv7t/6yjNac/8NtpNjtaEgAAANimrgfjw8PDaTabuXr1arcvlSR54okn0mg07DUOAADArn3t9XelfvKn0yx05q/NzcKxLBTfn794/V0dqQcAAADsTNeD8XPnzuXChQuZmZnJD37wg25fLj/1Uz+VZrOZK1eudP1aAAAA9KaXvvd3Umje7mjNQvN2Xvr+v9nRmgAAAMD2dD0YT5aXOG82m7l4ce/2U9urCXUAAAB6z8tL9+XE7ZsdrXni9s28vGhiHAAAAPbDib24SLlczhNPPJGZmZk0Go3MzMzk3e9+d1euNT8/nySp1+tdqQ8AwOHVTPK1Bz6Yl97zeF4+9YG8dfxdue/WD/Pw0tfz2PdfzKNvfDWF/W4SOBDeunkszUJnf0doJvnhzT35+XQAAABggz0JxpPk85//fKrVaubm5lIsFjM5OZl/+A//YUev8eabb64uod5oNDpau1MajUYWFxdTKpX2u5VDxXMDANrxTuFEvvDwxUz92/9Z6id/OoXm7Zy4fTPNQiGFZjM3j51Is3AspTf/KqP/8r/Ix15+Jvc0OzspChwu9524nUKz2dGahSTvOtHZ5dkBAACA7dmzH1U/efJk5ufn0/zb/7AwNjaWBx54IJ/5zGfy6quvduQaw8PDq4F4sVjsSM12VavVDA8Pp7+/P4VCIadOnVr9daFQyMDAQCYnJw9skL/R7Oxs+vv7Mzo62tXr9NpzAwD20IMPJvfdt/ryG6c+kMH/8MV8+t/9L/PK/T+VJGkWjuWd4/fm5rF78s7xe9MsLP+x+JX7fyqf/nf/ywz+hy/mG6c+8KOa9923XBc4Mh4+9VZuHuvsz5LfPHYiD/f9sKM1AQAAgO0pNJsd/hH4u6hWq/nIRz6SQqGQZrOZwt8uTVcqlVKpVDI4OJhyuZyHHnpo2zVfeumljI+PZ25ubrXuwMBAXnzxxS7dxd3Nzs7m4sWLOwpux8bGMjEx0b2m2jA9PZ3x8fHV+6lUKpmbm+v4dfbquZ05cybXr1/P6dOn89prr+2wSwDgwLt2LXn99fzZd/4v+ej/+6fyzu1CbjW3vyTy8UIz9xxr5ov/12/lQ+/7/y2H4mfPdrFh4KD58//PN1KZfaTjdV8Y+kYe/eXO1wUAAKC3ybbat+fBeLIcjj/55JNpNBqrQXaS1ZA8WZ74Pn/+fEqlUorFYh544IHVXzcajdTr9SwsLOTq1aup1WpJsq7OxMREfud3fmevby2NRiMXL17M7Ozs6rGxsbE89dRTq/3X6/VUq9VMTExs2gu9XC7nhRdeOBAT741GI9PT07l8+fKmoLrTwfhePze/eQBA7/vG9eQjv5+8fTO5vYs/8R4rJPeeSJ7/3eSR053vDzjYmn99Lf/O2P+ZV97dv7qqRDsKzdsp/eBb+V8n70vhJ/2gDQAAADsj22rfvgTjyXIQOjw8nBdeeGE1EN/YytqgfCtrz1k7hb60tJT777+/s01vQ39//2poWyqVMj8/f8ewdnR0NNPT0+uOlcvlzM/Pd7PNO6rVapmamtrU11qdDsb3+rn5zQMAets7N5PB309e/k5yq43tfI8fWw7Fn/9Mck9nV1QGDoE/eW4xn/4fT6WZ7a84sZVCmnn631/Kx3+lrwOdAQAAcNTIttq3Z3uMb1QsFjM3N5enn346J0+eXA201341m827fiVZ9/kkuXLlyr6E4sPDw6vhbrFYvGu4myRTU1MZGhpad6xWq3V9D++NVqbD+/v7MzAwsBo6r0xrd9Nhfm4AwMH0ha8kf/lae6F4snz+17+9XA84ej72f+vL3ztTyPE2/+Z8/FjygZ8o5Ff/A6E4AAAA7Jd9C8ZXjI2NZXFxMU8//fS6sDvJpqB8q69keXL81KlTmZ2dzRNPPLHn9zE5ObluGfBnnnlm24HyM888s+nY9PT0puXCu2F2djaDg4M5depURkdHV6+5MhG+sLCQJ598smvXP6zPDQA4uJrNZKra2ZrTLyzXBY6We04kn/1Ecs/x5e0VduNYYfn8P/715MTxzvYHAAAAbN++B+MrxsbGsrS0lE996lOrE+StVnlvNTG+Mm1eqVRSLBbz0ksv5caNG3vWe6PRyPj4+OrrUqm0aZr5TorFYsbGxjYdX1uzG+r1eoaHh1Ot/ui/HA8NDWVhYSFzc3OpVCqr/XXDYX1uAMDB9rVrSf17Sady7GaShb9J/uLbHSoIHCqPnE6++NvJvSey48nx48eWz/viby/XAQAAAPbPgQnGk+TkyZOZmJjI4uJi5ubmMjIysi4kb7Xc+opms7k6/TwwMJBTp07l+PHjOX78eB544IE88MAD+bt/9++ufj3++OPrvlaOr3z2M5/5zLb7vnz58rrXu1nO+9KlS5uOzc7OdnX6uVQqJflRwLy0tJSZmZnV4912WJ8bAHCwvfRqOrAb8HqFv60LHE0fen/y/O8uh9uF3P33mJXPPHJ6+bwPvb/7PQIAAAB3dmK/G9jKhQsXcuHChXzuc5/LCy+8kJmZmVy9ejW1Wm3d51oF5BstLS2t++d2zM/Pb+tzjUYjk5OT647tZOp5RbFYTLlc3nR/s7OzLaeiO2V+fj7lcrlr9bdy2J8bAHBwvfyd5eWK37nVuZonji/XBY6uR04nz38m+cJXlrdrqH9vOfw+cXx5q4VCIbl5a3mVidKPJyMXko99eHk5dgAAAGD/HYq/oq+E5Cu++tWvplqt5sUXX0ytVttyOnhtYL4TzWYzV69e3dZn1y5DniwHtbuduK5UKpsC3rm5ua4GvPsRiieH/7kBAAfXW+90fj/wZjP54dudrQkcPvecSD7+i8mv/cLy9govvbr8QzM/fDt5173Jw+9LHnso+ZmfWA7KAQAAgIPjUATjG33wgx/MBz/4wXXHXnnlldTr9dTr9czPz6der2dxcTH1ej2NRuOO9VoF6I1GIy+99FIee+yxO5777LPPrnt9/vz5bd1DK4ODg5umqDcGyL3CcwMAuuW+ezofSBUKy6EXQLL8e8KjZ5e/AAAAgMPhUAbjrZw7dy7nzp3LhQsXcvHixU3vrwTnjUYj9Xo9CwsL64LzjVPnK1PjdwvGNwaw7UxgbxUO12q1fZvs7hbPDQDolofft7yccSfdvLVcFwAAAAA4nHomGL+bleD8Tt58883VsLxer+cTn/jEHT9fq9U2TaP39/fvusdisdjyeL1e76mA13MDALrpsYeW9/jtpObf1gUAAAAADqdj+93AQXLy5Mk7Tp1v1Gof8r6+vrZ6aBXkbrWH+mHluQEA3fTo2aT0Y0mnVlMvJOn/8eU9gwEAAACAw0kw3ob5+flNx0qlUls1WwXEL774Yls1DxrPDQDopkIhGa10tubIhc7vWw4AAAAA7J1tBeM3btzIpUuXut3LvvnSl76U5557bsfntZpI3mpZ7+1qFRBvXHb8sPPcAIBu+9iHk793Jjne5o+BHj+WfOAnkl/9+c70BQAAAADsj239p8JyuZzJycn89E//dP76r/+62z3tqUuXLmVwcDDDw8N59dVXd3Ruq4C33SXBWwXEi4uLbdU8aDw3AKDb7jmRfPYTyT3Hk2O7nPQ+Vlg+/49/PTlxvLP9AQAAAAB7a1vB+JUrV9JsNrOwsJByuZwvf/nL3e6r627cuJFf/uVfzuTkZJrNZj73uc/loYce2lGNbuxh/cADD2w61muTz54bALAXHjmdfPG3k3tP7Hxy/Pix5fO++NvLdQAAAACAw23bE+PPP/98ms1mGo1GKpVKPvOZz3S7t6557rnncu7cuVSr1TSbzUxOTubixYsdqd3ukuDtnn9YeW4AQDd86P3J87+7HG4Xsvx1JyufeeT08nkfen/3ewQAAAAAuu/Edj9YqVRy5cqVPPnkkykUCpmYmEi1Ws3MzEx+8id/sps9dsyNGzcyPDy8GognyeTkZH7nd35nx7X2chq5l5YEP2jP7e23386f/umf7qju2bNnc/bs2d22BQDssUdOJ89/JvnCV5KpalL/3nL4feJ40mwmhUJy81bSTFL68WTkwvIe5fds+0/KAAAAALB9165dy7Vr13Z0zttvv92lbo6OHf3nvqGhoXXh+NWrV1MqlTI+Pp5Pf/rTuf/++7vVZ1tu3LiRy5cvZ3JyMklWQ/GZmZk88cQT+9naJu3utX1U7fa5ff/738+HP/zhHZ3ze7/3e/lH/+gf7ep6AMD+uOdE8vFfTH7tF5K/+Hby0qvJy99Jfvh28q57k4fflzz2UPIzP7EclAMAAABAt/zJn/xJ/vE//sf73caRs+M5mKGhoTz//PP5yEc+kkKhkGazmYmJiUxMTBy4gPzVV1/NxMREpqenk/woEE+Subm5XLhwYde193KKu5fCcs8NANhPhULy6NnlLwAAAADg6NjWHuMbVSqVXL16Nffff38KfztSsxKQnzp1Kr/8y7+c/+6/++862uh2vfrqq7l06VL+7t/9u+nv78/09PS6QLxUKmV+fr6tUDzZ2yXBe4nnBgAAAAAAAOy1Xe+cWC6X88orr+TChQv56le/ujo9niTVajXVajXJcoheLpczODiY8+fPd3Sa/MaNG7l69WpqtVrm5uZy9erV1eB1pZdCobDa2/DwcJ599tmOXLtYLLY83mg0tnyv09c6jA7ac3vPe96T5557bkd17S8OAAAAAADAbn384x9PpVLZ0Tm/8iu/ku9///td6uho2HUwniwHj/Pz85mens5v/MZvJMm6CfLkRyH5yv7exWIxlUolpVIp/f39KZVK6evrWw0xV5a/XlxcTKPR2PTPN954I/V6PbVaLfV6fV0/ayfD1/ZRKpUyNTXV9pT4Wnu5THcvLQl+0J7bvffem5/7uZ/bg24AAAAAAABgeQhzp4OY9957b5e6OTraCsZXjIyM5Mknn8zFixfz3/63/22SzQH5iqWlpczOzrZ9zY11115z5f1isZhLly7lU5/6VNvX267FxcWemvDeK54bAAAAAAAA0C272mO8lWKxmJmZmczPz+eJJ55Is9lMs9lcXcp87dfKe+183anuuXPnMjU1lcXFxa6F4ndaErwdi4uLm46VSqW2ah4knhsAAAAAAACw1zoWjK/44Ac/mJmZmSwtLeVTn/pUTp48uRpYr2gVau/0a8XasLxcLmdmZibf+ta3cvHixU7f2ra0CmjbNTAw0PGaB43nBgAAAAAAAHRLx4PxFSdPnszExEQWFxfz/PPPZ2hoaF1IvjEs345Wk+OVSiVTU1NZWlrK1atX88QTT3TpjjZrNZHc7uRzq/N7bfLZcwMAAAAAAAD2Ukf2GL+bSqWSSqWSJHnllVdSrVYzNzeXer2eer2+7VC0XC7n/PnzGRgYyPnz5/PBD36wi13fXalUSr1eX3ds4+udWlhYaHmdXuK5AQAAAAAAAHtpT4Lxtc6dO5eLFy+uW+r8zTffzOLi4mpAvri4mL6+vhSLxfT19eXkyZN73ea2tApeWwW0O3EU9sr23AAAAAAAAIC9tOfBeCsnT548sOH3nbTaw7rdyeeN569M2vcSzw0AAAAAAADYS13bY/woaDWRfPXq1bZqbgx4BwcH26p3EHluAAAAAAAAwF4SjLeh1VRyo9HY9p7p2zm3FyefPTcAAAAAAABgLwnG29QqgK1Wq7uqtXFqulgsplwu76rWQee5AQAAAAAAAHtFMN6m4eHhTceeffbZXdWamZlZ93pkZGRH57e7T/deOkjPDQAAAAAAAOhtgvE2Pfnkk5uOzc7O7qrWlStX1r2+dOnSts6rVqs5depU+vv7UygUMjo6uqvr76WD8NwAAAAAAACAo0Ew3qZisZihoaFNx6enp3dUp1qtrtsne2RkJMVi8a7n1Wq1DA4Orjt3enq65UT2brXa+3txcbGtmvv93AAAAAAAAICjo9BsNpv73cRhV6/X09/fv+5YsVjM0tLStmsMDAykVqutnvvKK69sK+AdHh7ectJ6YWEhpVJp2z3s5BqlUikLCwtt1d3P53bmzJlcv349p0+fzmuvvbajvgEAAAAAAGAvybbaZ2K8A0qlUiYmJtYdazQa257anpycXA13k+SFF17Y9tTznfYVX1tztxqNRsvgvV6vt11/P58bAAAAAAAAcHQIxjtkbGwsY2Nj647Nzs7eNeSdnJzM+Pj46uupqamUy+VtX/f8+fNbvreTOhvV6/XMzs5mYGBgy89cuHAh09PTqdVqLZdb3479em4AAAAAAADA0WEp9Q7bGNgmy0t8j4yM5PHHH0+pVMri4mJqtVqmpqZWJ76LxWJmZmZSqVR2dL1Go5Fz585tCqbHxsY2TWPfyalTp3Ydbm+00+XQk71/bpabAAAAAAAA4LCQbbVPMN4F9Xo9w8PD215qfGhoKBMTE7veD7xer2d0dDTVajWlUinj4+MZGRnZUY1CobCra29lN99We/nc/OYBAAAAAADAYSHbap9gvIvq9XqmpqZSq9VSr9dTr9dTLBZTKpXS19eXwcHBjIyM2Bd7g714bn7zAAAAAAAA4LCQbbVPMM6R5DcPAAAAAAAADgvZVvuO7XcDAAAAAAAAANBNgnEAAAAAAAAAeppgHAAAAAAAAICeJhgHAAAAAAAAoKcJxgEAAAAAAADoaYJxAAAAAAAAAHqaYBwAAAAAAACAnnZiry5048aNTE9PZ25uLouLi6nX6+nr60uxWEypVEpfX18GBgZSqVTy0EMP7VVbAAAAAAAAAPS4PQnGf/M3fzPT09Orr5vNZpJkaWkpSVKr1dZ9vlgsplKp5CMf+Uh+/dd/fS9aBAAAAAAAAKBHdX0p9d/4jd/I1NRUms3m6lehUFj3tfa9ZrOZpaWlzM7OZmRkJMePH89HP/rRfOlLX+p2qwAAAAAAAAD0oK4H41euXNkUhCdZF4QnueNnZmZmMjg4mJ/+6Z/Ol7/85W63DAAAAAAAAEAP2bM9xlc0m82USqWUy+X09fVlcXExjUYj9Xo99Xp93WdXAvKV8771rW+lUqlkYGAgzzzzTP7+3//7e90+AAAAAAAAAIdM14Px8+fPp1qtJlkOumdmZvLEE09s+fk333wz1Wo1zz77bKrVahqNxuq5yXJAfvXq1ZTL5UxPT9uDHAAAAAAAAIA76vpS6sPDw0mWg+1KpXLHUDxJTp48mSeeeCJXrlzJ4uJiFhYW8qlPfSonT55ct+x6s9nMyMhIPvOZz3T7FgAAAAAAAAA4xLoejD/55JNtnX/u3LlMTExkcXExV65cSaVSSbPZXA3HJyYm8k/+yT/pULcAAAAAAAAA9JquB+MnT57MxYsXV5dAb8fQ0FCef/75fOtb38ov/dIvJVleWn1sbCxf/vKXO9EuAAAAAAAAAD2m68F4kkxNTeXkyZNpNBodCbBLpVLm5uby/PPPp1QqpdlsZnh4OD/4wQ860C0AAAAAAAAAvWRPgvEkeeaZZ9JsNjM+Pt6xmpVKJd/61rfyqU99KouLi7lw4ULHagMAAAAAAADQG/YsGB8aGsqnPvWpzM/Pd3xP8ImJiTz99NO5evWq/cYBAAAAAAAAWKfQbDabe3nBwcHBfOlLX0q1Ws0v/uIvdrT2wMBAXnrppSwtLeX+++/vaG16y5kzZ3L9+vWcPn06r7322n63AwAAAAAAAFuSbbVvzybGV8zNzeWxxx5LpVLJn//5n3e09qVLl9JsNvPpT3+6o3UBAAAAAAAAOLz2PBhPki996Ut56KGHUi6X8+Uvf7ljdQcHB5MkU1NTuXHjRsfqAgAAAAAAAHB47UswfvLkydRqtdXJ8c985jMdq7tiZmamIzUBAAAAAAAAONz2JRhPlkPs+fn5/M7v/E6efvrp/OzP/mz++q//umP1r1y50rFaAAAAAAAAABxeXQ/Gn3vuuTz++ON5/PHH88u//Mv5zd/8zXz+85/Pq6++miSZmJjI3NxcvvWtb6VUKuW3fuu3dr0M+ptvvpkkaTabuXr1aqduAQAAAAAAAIBD7ES3L/CJT3wib775ZprNZgqFwqb3y+Vyzp8/n4mJiczMzORzn/tcpqamMjo6mpGRkTz22GPbvla9Xu9g5wAAAAAAAAD0gq4H4+fOnctXv/rVFAqFNJvNTe/Pz8+nVqutO9ZsNjM1NZWpqamUy+U89dRTqVQqdw3Jp6amkiSFQiHnz5/v2D0AAAAAAAAAcHh1PRi/dOlSnnzyySRpOTGeZF1gvvKZlWMbg/NyuZxSqZTHH398ddr8/vvvz5tvvpnp6enV80dHR7tyPwAAAAAAAAAcLoVmqzHuDuvv71/dU/xOl9tOcL7V50qlUhYWFlbfv3Xr1i675Sg4c+ZMrl+/ntOnT+e1117b73YAAAAAAABgS7Kt9nV9YjxZXuL8Ix/5SAqFQgYHB/O5z30ufX19qdfrqdfrefHFF1Ov11Or1VruE94qCN8Yli8sLKybNj9+/HhKpVJKpVLK5XL6+/tz/vz5lEql3H///d25UQAAAAAAAAAOnD2ZGE+Wlzb//Oc/n4mJifzO7/zOHT/7yiuvpFar7SowX7FyW60+UywWUyqVcv78+QwMDKz+WmB+dPipGgAAAAAAAA4L2Vb79iwYf/PNN/PQQw/lPe95T/7qr/5qVzV2G5hvdYutQvOV6fKnn346Dz300K765ODzmwcAAAAAAACHhWyrfXsWjCdJtVrNRz7ykfzn//l/nn/4D/9hx+p2IzCfmprKJz7xiY71yMHiNw8AAAAAAAAOC9lW+/Zkj/EVlUoln/rUpzI2NpahoaH85E/+ZEfqnjt3LufOncsTTzyx7vhXv/rVXL16NfPz87l69Wpqtdq69++0d/n8/LxgHAAAAAAAAKAH7OnE+Ir+/v709fXlxRdf3OtL55VXXkm1Ws38/Hyq1eqmyfKVsLxUKuVf/at/tef9sTf8VA0AAAAAAACHhWyrffsSjL/yyiup1+u5cOHCXl96kzfffHN1mnxubi5Xr15No9FIoVDI0tJS7r///v1ukS7wmwcAAAAAAACHhWyrffsSjB90K3uWb1yand7hNw8AAAAAAAAOC9lW+/Z0j/HDYmXPcgAAAAAAAAAOv2P73QAAAAAAAAAAdJNgHAAAAAAAAICeJhgHAAAAAAAAoKcJxgEAAAAAAADoaYJxAAAAAAAAAHqaYBwAAAAAAACAnnZivxsAAKA7ms3ka9eSl15NXv5O8tY7yX33JA+/L3nsoeTRs0mhsN9dAgAAAAB0n2AcAKDHvHMz+cJXkqlqUv9eUkhy4vhyUF4oJDdvJc0kpR9LRivJxz6c3ONPhQAAAABAD/OfQAEAesg3rie/+fnkL1/70bFmkndubf7sK99LPv3Pk3/2L5LPfiJ55PSetQkAAAAAsKfsMQ4A0CP+7JvJR35/edn0Zpa/7mTlMy9/Z/m8P/tm93sEAAAAANgPgnEAgB7wjevJR/8oeftmcuv2zs69dXv5vI/+0XIdAAAAAIBeIxgHADjk3rm5vHz6O7eS23cbE9/C7eby+b/1T5frAQAAAAD0EsE4AMAh94WvLO8pvtNJ8Y1u3U6+/u3legAAAAAAvUQwDgBwiDWbyVS1szWnX1iuCwAAAADQKwTjAACH2NeuJfXvJZ3KsZtJFv4m+Ytvd6ggAAAAAMABIBgHADjEXqotptBscw31DQrN23mp9kZHawIAAAAA7CfBOADAIfbyt2/mxO2bHa154vbNvHztVkdrAgAAAADsJ8E4AMAh9tbNY2kWCh2t2Uzyw5v+mAgAAAAA9A7/xRMA4BC778TtFJqd2mF8WSHJu050dnl2AAAAAID9JBgHADjEHj71Vm4eO9HRmjePncjDfT/saE0AAAAAgP0kGAcAOMQe+7F/nWahs3+kaxaO5bH3/B8drQkAAAAAsJ86O14EAMCeevTBH6b05l/llft/qiMBeaF5O6U3/1V+5kET4wC0cO1a8vrrnav34IPJ2bOdqwcAAABbEIwDABxihUL+/+39e2yk530nev6KF6U7mcjFVtuO3XLHLgZRy4o7CikZB1FsOGjS6/yx48yAlIRB5Nk4aRL2DuCMF0taSQYzwY5XIbHjE8/JsUEqCXBGRlYyidkE5w/niNWYnDieA0RiRZEtq5U5LHloSc5IrWZZnlgd8VL7R4kUL0WyLm+xbp8PQEhVrPd5fnx5eZ+u7/s8T0x+6/ficz//+4m1OfHMFyOV+vXE2gOgQ6yuRtx2W8SNG8m1eepUxHPPCccBAABoOEupAwC0uQeuPhzvv/509G6t19VO79Z63HH9b+ITV+cTqgyAjnLtWrKheESpvSRnoAMAAMAhBOMAAG2uv7gRX/7zX4n+rfXo2dqsqY2erc3o31qPL/35A9FXrK0NAAAAAIBWJRgHAOgAt689E4/+2S/FTVv/UPXM8d6t9bhp6x/i0T/7pbh97ZkGVQgAAAAA0DyCcQCADnHP3/1FPP6nH4zb174VqeJWpIpbR75++zW3r30rHv/TD8Y9f/cXJ1QpAAAAAMDJEowDAHSQ29eeicf/5IPxu//5X8T7Xvs/I6IUgPdvvhF9m29E/+YbO4F55vv/JX73P/+LePxPPmimOAAAAADQ0fqaXQAAAMnqL27EJ5/9cvzqs1+Ob95yZzx19u64OnBHvN73o3F644dxYe2ZuPPaE/GBV5+KVLOLBQAAAAA4AYJxAIAOlYqIi68+FRdffarZpQAAAAAANJWl1AEAAAAAAADoaIJxAAAAAAAAADqaYBwAAAAAAACAjiYYBwAAAAAAAKCjCcYBAAAAAAAA6GiCcQCAdnb2bMSpU8m2eepUqV0AAAAAgA7R1+wCAACow/nzEc89F3HtWnJtnj1bahcAAAAAoEMIxgEA2t3584JsAAAAAIAjCMbpat/73vfi1ltvLfu5z372s/HZz372hCsCAAAAAACgG33hC1+IL3zhC2U/973vfe+Eq+k8gnG62tbWVrz44otlP/faa6+dcDUAAAAAAAB0q9dee+3Q3Ir6Ccbpaj09PfGud72r7OduvvnmE64GAAAAAACAbnXzzTfHuXPnyn7ue9/7XmxtbZ1wRZ1FME5Xe9e73hUvvPBCs8sAAABoa8WIePqWn4un3n53XB24I270no5Tm6/HhbVn4s5XnoiLr/51pJpdJAAAQIs7apvfW2+91WzyOgnGAQAAgOOdPRtx6lTEjRs7T62n+uKRC5dj7md+I/Jv++lIFbeib2sjiqlUpIrF2Ojpi2KqJzLf/9uY/NbvxQNXH47+4sZbbZ46VWoXAAAAGixVLBaLzS4CTtr2XTXnzp0zYxwAAKBSq6sR165FRMSzr56KT115b3z71dMREVE8Yk54KkpvPbz/ltfjy5e+E7ff8ma4fvZsxPnzja0ZAACgA8i26mfGOAAAAFCZ8+cjzp+PbzwXcf8fRKxvRlRyt/12aH517Ufjo/+/98ejn4m457bGlgoAAAC79TS7AAAAAKB9PPtixP1fjHhjI2Jzq7pjN7dKx93/xVI7AAAAcFIE4wAAAEBF1jciPvXmTPGtGjdm2yqWjv/0H5baAwAAgJMgGAcAAAAq8sjXI779QvUzxffb3Ip45rul9gAAAOAkCMYBAACAYxWLEXPZZNucv1JqFwAAABpNMA4AAAAc6+nViPzLEUnl2MWIWPlvEd/8bkINAgAAwBEE4wAAAMCxnvpORCrhNlNvtgsAAACNJhgHAAAAjnX1pYi+3mTb7OsttQsAAACNJhgHAAAAjnVjPfn9wIvFiNffSLZNAAAAKEcwDgAAABzrVH9EKuG11FOpiNM3JdsmAAAAlCMYBwAAAI514d0RG5vJtrmxWWoXAAAAGk0wDgAAABzrzvdGJLySehTfbBcAAAAaTTAOAAAAHOvi+YjMOyKSWk09FRGD74z4wHsSahAAAACOIBgHAAAAjpVKRUyOJNvmxKXk9y0HAACAcgTjAAAAQEUe+FDE+2+N6K3z3YTenog73hPxiQ8nUxcAAAAcRzAOAAAAVKS/L+LLvx7R3xvRU+NM755U6fgv/VpEX2+y9QEAAMBhBOMAAABAxW4/F/HoZyJu6qt+5nhvT+m4Rz9TagcAAABOSl+zCwAAAADayz23RTz+WxGf/sOIZ75beq54xOu3J5fffq40U7zTQ/FiMeLp1YinvhNx9aWIG+sRp/ojLrw74s73Rlw8b291AACAkyYYBwAAAKp2+7mIx38z4pGvR8xlI/IvlwLwvt5SMJxKRWxslgLzzDsjJi6V9ijv7+B3ItY3Kjwf74iYHOn88wEAANBKUsVi8aibuqEj3XrrrfHiiy/GuXPn4oUXXmh2OQAAAG2tWIz45nffmiH9+hsRp296a4b0B97T+TOkn30x4lN/EPHtN/+JWckM+vffWtqzvdNn0AMAAPWTbdXPfckAAABAXVKp0vLgF883u5Lm+MZzEfd/MWJ98+hAfNv2a66+FPHRz5f2XL/ntkZWCAAAQE+zCwAAAABoV8++WArF39iI2Nyq7tjNrdJx93+x1A4AAACNIxgHAAAAqMH6Rmn59PXNiK0aN6rbKpaO//QfltoDAACgMQTjAAAAADV45OulPcWrnSm+3+ZWxDPfLbUHAABAYwjGAQAAAKpULEbMZZNtc/5KqV0AAACSJxgHAAAAqNLTqxH5lyOSyrGLEbHy3yK++d2EGgQAAGAPwTgAAABAlZ76TkQq4TZTb7YLAABA8gTjAAAAAFW6+lJEX2+ybfb1ltoFAAAgeYJxAAAAgCrdWE9+P/BiMeL1N5JtEwAAgBLBOAAAAECVTvVHpBJeSz2Vijh9U7JtAgAAUCIYBwAAAKjShXdHbGwm2+bGZqldAAAAkicYBwAAAKjSne+NSHgl9Si+2S4AAADJE4wDAAAAVOni+YjMOyKSWk09FRGD74z4wHsSahAAAIA9BOMAAAAAVUqlIiZHkm1z4lLy+5YDAABQIhgHAAAAqMEDH4p4/60RvXW+u9LbE3HHeyI+8eFk6gIAAOAgwTgAAABADfr7Ir786xH9vRE9Nc707kmVjv/Sr0X09SZbHwAAAG8RjAMAAADU6PZzEY9+JuKmvupnjvf2lI579DOldgAAAGgcwTgAAABAHe65LeLx3yqF26kofRxl+zW3nysdd89tja8RAACg2/U1uwAAAACAdnf7uYjHfzPika9HzGUj8i+Xwu++3ohiMSKVitjYjChGROadEROXSnuU93tnBgAA4ET45xcAAABAAvr7Ij75ixG/+pGIb3434qnvRFx9KeL1NyJO3xRx4d0Rd7434gPvKQXlAAAAnBzBOAAAAECCUqmIi+dLHwAAALQGe4wDAAAAAAAA0NEE4wAAAAAAAAB0NME4AAAAAAAAAB1NMA4AAAAAAABARxOMAwAAAAAAANDRBOMAAAAAAAAAdDTBOAAAAAAAAAAdTTAOAAAAAAAAQEcTjAMAAAAAAADQ0QTjAAAAAAAAAHQ0wTgAAAAAAAAAHU0wDgAAAAAAAEBHE4wDAAAAAAAA0NH6ml0AAAAAQFtaXY24di259s6ejTh/Prn2AAAA2CEYBwAAAKjW6mrEbbdF3LiRXJunTkU895xwHAAAoAEspQ4AAABQrWvXkg3FI0rtJTkDHQAAgB2CcQAAAAAAAAA6mmAcAAAAAAAAgI4mGAcAAAAAAACgownGAQAAAAAAAOhognEAAAAAAAAAOppgHAAAAAAAAICOJhgHAAAAAAAAoKMJxgEAAAAAAADoaIJxAAAAAAAAADqaYBwAAAAAAACAjiYYBwAAAAAAAKCjCcYBAAAAAAAA6GiCcQAAAAAAAAA6mmAcAAAAAAAAgI4mGAcAAAAAAACgownGAQAAAAAAAOhogvETVigUIp/PN7uMmjSi9kKhkGh7jWoTAAAAAAAAaF99zS6g02Wz2Zibm4tcLlc2VB4aGor77rsvJiYmIp1On3yBR2h07YVCIQYGBvY8t93OmTNnyj6/P/S+fv162efX1tZa7nwCAAAAAAAAzZEqFovFZhfRiRYXF+Py5ctVzV6empqKmZmZxhVVoZOqvVwwnpTjgvFbb701XnzxxTh37ly88MILDakBAACADra6GnHbbRE3biTX5qlTEc89F3H+fHJtAgAAHUG2VT/BeMIKhUJcvnw5FhcXd56bmpqK++67LzKZTKTT6cjn85HNZmNmZubATOyhoaG4cuVKU2Y7N6P2VCqVVPl7HPdj7Y8HAAAAdVtdjbh2Lbn2zp4VigMAAGXJtuonGE/Y4ODgTmCcyWRieXn5yKB4cnIy5ufn9zw3NDQUy8vLjSyzrGbULhgHAAAAAACAo8m26tfT7AI6yfj4+E6wnE6njw2WIyLm5uZibGxsz3O5XC4mJycbVWZZ7Vx7OdUsAw8AAAAAAAB0NjPGEzI7OxvT09M7jxcWFg6Exoc5bK/tlZWVyGQyidV4mGbWvj1jfDuM325z2/Xr1w88t/v5w0xMTBz5eXfVAAAAAAAA0C5kW/UTjCdgfzicyWRiZWWlqjamp6djdnZ2z3NjY2OxsLCQSI2HaXbt28F4Lf3Wwx8PAAAAAAAA2oVsq36WUk/AQw89tOdxLUuJP/jggweeW1xc3FnevFFapfbjlm0HAAAAAAAAqJVgvE6FQqHsbOlqpdPpGBoaOvD84uJizbUdp5VqP3PmTNX9AgAAAAAAAFRCMF6nbDa753E6na55X/CRkZEDzy0tLdXUViXauXYAAAAAAACASgnG6/TYY4/teXzXXXfV3Nbo6OiB5/aH10lqpdotpQ4AAAAAAAA0imC8TvvD33JLilfqsGA6l8vV3OZRWql2S6kDAAAAAAAAjSIYr0Mul4tCobDnucHBwZrbO2zWdD6fr7nNw7Rz7QAAAAAAAADVEIzX4cknnzzwXL0zn8vN2m5EuNxqtVtKHQAAAAAAAGgUwXgdlpeXDzyXyWTqarNcOP3EE0/U1WY5rVb7LbfcUlffAAAAAAAAAIcRjNeh3Gzoemc+lwun9y95noRWqP24r2t+fj7Gx8djcHAwBgYGIpVKxcDAQAwPD8fk5GQsLi7WVS8AAAAAAADQHfqaXUA7Kxcu17sceblw+vr163W1WU6r1b59bKFQiOnp6Zifny/7ukKhELlcLnK53M5rZmZmYmpqqqaaAQAAAAAAgM5nxngdGrH3d7klxU9qxni96q19eno6BgYGDg3FjzpucHCwIV8TAAAAAAAA0P7MGE9YvcuR13t8M/uu9vjds8knJyfr6jufz8fg4GAsLS3FyMhIXW0BAAAAAAAAnUUwXqNGzOI+TNJLqbd67ZlMJsbGxmJwcDDOnDkT169fj0KhEEtLS5HNZo88dnx8PJaXl8vudw4AAAAAAAB0J8F4i6l3n+9mqrb2/QF9JpOJhYWFGBoaKvv6qampivYg3w7HK/HGG2/EX/7lX1ZV9/nz5+P8+fNVHQNAwlZXI65dS669s2cj/G0HAAAAAE7A6upqrK6uVnXMG2+80aBquodgvEZJz+I+StJheavUvruOsbGxWFhYOLa9dDodc3NzMTk5GcPDw2Vfk8vlIpvNVrSk+iuvvBIf+tCHjn3dbv/6X//r+Df/5t9UdQwACVpdjbjttogbN5Jr89SpiOeeE44DAAAAAA33R3/0R/E7v/M7zS6j6/Q0u4B2dZLLkSet1WqfmpqqKBTfbWho6MhZ4TMzM/WWBUCrunYt2VA8otRekjPQAQAAAABoKYLxGqXT6bLPNyJ0PqyvpNs76dpHRkaiWCzWHGIPDQ0deuxxe5EDAAAAAAAA3cNS6jU6yb3Ak+6rnWvfb2pqKh566KGyoX4ly6m//e1vj//4H/9jVX3aXxwAAAAAAIBaffKTn6xoS+Dd/uk//afxyiuvNKii7iAYT9j169cTn+F9Utq19omJiZidnT3wfD6fP/bYm266KX7hF36hEWUBAAAAAADAAefPn696IuZNN93UoGq6h6XUa9So5civX79+4LlMJlNXm/u1c+3l3HfffWWfb7W91AEAAAAAAIDmEIwnrFw4XK/h4eHE2yynXWsfGhpqeB8AAAAAAABA+7KUeh0ymcyB5brrnaVc7vhGzLpu59rLKff1tOOy8ADUpxgRT9/yc/HU2++OqwN3xI3e03Fq8/W4sPZM3PnKE3Hx1b+OVLOLBADoQsVixNOrEU99J+LqSxE31iNO9UdceHfEne+NuHg+ImWgBgAANJBgvA7lwthK9rU+ysrKStl+ktbOtZdTLgQ/qb4BaL71VF88cuFyzP3Mb0T+bT8dqeJW9G1tRDGVilSxGBs9fVFM9UTm+38bk9/6vXjg6sPRX9xodtkAAB1vfSPika9HzGUj8i9HpCKir7cUlKdSERubpZsbM++ImByJeOBDEf3erQIAABrAUup1KBe8lguHq3FS+3S3c+2Vuuuuu5rWNwAn59mBO2L0l5+Iz/3878fzN/9UREQUUz2x3ntTbPT0x3rvTVFMlYY8z9/8U/G5n//9GP3lJ+LZgTuaWTYAQMd79sWI0c9HfO6PI55/ufRcMSLWNyM2tkr/Lb752udfLr1u9POl4wAAAJImGK9Duf2z6511vf/4kZGRuto7TDvXXs7+ZdyHhoYspQ7QBb7xEx+Oj378r+LqwB1RTPXsBOCH2X7N1YE74qMf/6v4xk98+IQqBQDoLt94LuKjny8tm16MtwLww2y/5upLpeO+8VzjawQAALqLYLwO5WZDP/nkk3W1uT9cHh0drau9w7Rz7eXsn61+3333nVjfADTHswN3xP0f+1q80fMjsdnTX9Wxmz398UbPj8T9H/uameMAAAl79sWI+78Y8cZGxOZWdcdubpWOu/+LZo4DAADJEozXodyM6EKhcGD2cqXKHduoWdfNqj2fz0c2m62pj2r6npiYSLQPAFrLeqovPvWRr8R6T39s9fTW1MZWT2+s9/THpz/ySKynbGQJAJCE9Y2IT/1BaZn0reOmiR9iq1g6/tN/WGoPAAAgCYLxOpULf2sNfvfP2E6n0zE0NFRTW5U46doLhUIMDg7G+Ph4TX0cZn/NU1NTllEH6HCPXLgc3z5zseqZ4vtt9vTHM2d+Nh65cDmhygAAutsjX4/49gvVzxTfb3Mr4pnvltoDAABIgmC8TuVC3scee6ymthYWFvY8rnbWc7V7hJ907el0OkZGRqJQKMTs7GxN/ZTz0EMP7fx/JpOJmZmZxNoGoPUUixFzP/MbibY5f8dnoljjjCYAAEqKxYi5ZBeJi/krYZwGAAAkIlUs+udFPQqFQgwMDBx4vpbTOjAwsGdJ8LW1tYpmPmez2RgfH985dmJiIubm5o49rhm1Z7PZnb3HK/36jpLL5WJ4eHjn8dLSUkXLz996663x4osvxrlz5+KFF16oqwYATtbf/G/Pxsji7Ym3e2Xs2bj4f0m+XQCAbvE3/zVi5N8m3+6VfxVx8Xzy7QIAQDuRbdXPjPE6pdPpGBsbO/D8/Px8Ve1ks9k9wfLExERFoXEul4vR0dE9x87Pz1e0XHkzah8ZGdn53PT0dFX97FcoFPZ8nXNzcw3bkx2A1vHUyz8WqWKda3PukypuxVOv/GiibQIAdJunvhORSrjN1JvtAgAA1EswnoByS3dXG/rufn06na54OfDdy4jvtri4WNHS6s2ofXuZ9fn5+cjlclX1ta1QKMSlS5d2vsa5ubmql54HoD1dXTsVfVsbibbZt7URV6+fTrRNAIBuc/WliL7eZNvs6y21CwAAUC/BeALK7Wu9fzbzUWZnZ/cExFeuXKl4ifGjwu9KQudm1D45Obnz/5cuXYpstroNyLLZbAwPD+/0KxQH6C43NnqimEp2LlIxIl7fMCwCAKjHjfXk9wMvFiNefyPZNgEAgO7kHeCETE1NxdTU1J7nFhcXjw2YZ2dn98y4npubi6GhoYr7veuuuw79XKXtnHTtmUwmMplMRJRC+NHR0RgeHo75+flDg/58Ph/z8/MxPDwco6Ojkc/nI5PJxMrKilAcoMuc6tuKVMLvuKYi4nRfssuzAwB0m1P9EQnfvxipVMTpm5JtEwAA6E59zS6gk8zMzMQtt9yyJyxeXFyMgYGBmJiYiLvvvjsymUxcv349crlczM3N7QTB6XQ6FhYWqt4je2ZmJr761a/u2eM7ohR2b4fPrVj72NhYzM7O7jzO5XJ7ZpLvrn1/WJ5Op+PBBx88EOYD0B0uvKcvNp5Odgiz0dMXF84nvO4nAECXufDuiI3NZNvc2Cy1CwAAUK9UsZj0Ilfk8/kYHx+veP/ssbGxmJmZqSrI3t/f5ORkZLPZyGQyMT09XfMs6pOqfXfNlUoyEL/11lvjxRdfjHPnzsULL7xQd3sAnJy/+a8RI/82+Xav/KuIi+eTbxcAoFsYpwEAQOPItuonGG+gfD4fc3NzkcvlIp/PRz6fj3Q6HZlMJs6cOROjo6MxMTFR8X7iJ+mkai8UCjE/Px9PPPFE5PP5KBQKO32dOXMmMplMjI6OxsjISFVLzB/HHw+A9lUsRvwPvx3x/MulvcHrlYqIzDsj/o//V/JLfwIAdJNiMeJ/+Nx6PH+9L4pR/8AqFcXInNmI/+N3+43TAADoerKt+gnG6Ur+eAC0tz/6TxGf++PkgvHf/WcRn/zFBBoDAOhmq6vxR//Xfxefu/t/jGKqp+7mUsWt+N0n/mV88n/9f0ScN2UcAIDuJtuqX/3/SgEAOGEPfCji/bdG9NY5kuntibjjPRGf+HAydQEAdLVr1+KBb34p3n/96ejdWq+rqd6t9bjj+t/EJ775P0dcu5ZQgQAAQDcTjAMAbae/L+LLvx7R3xvRU+Oymj2p0vFf+rWIvt5k6wMA6Fb9xY348p//SvRvrUfP1mZNbfRsbUb/1np86c8fiL5ibW0AAADsJxgHANrS7eciHv1MxE191c8c7+0pHffoZ0rtAACQnNvXnolH/+yX4qatf6h65njv1nrctPUP8eif/VLcvvZMgyoEAAC6kWAcAGhb99wW8fhvlcLtVJQ+jrL9mtvPlY6757bG1wgA0I3u+bu/iMf/9INx+9q3IlXcilRx68jXb7/m9rVvxeN/+sG45+/+4oQqBQAAuoVgHABoa7efi3j8NyN+959FvO8dpedSUVomva+n9N/twDzzztLrHv9NM8UBABrt9rVn4vE/+WD87n/+F/G+1/7PiCgF4P2bb0Tf5hvRv/nGTmCe+f5/id/9z/8iHv+TD5opDgAANERfswsAAKhXf1/EJ38x4lc/EvHN70Y89Z2Iqy9FvP5GxOmbIi68O+LO90Z84D0RqRr3JAcAoHr9xY345LNfjl999svxzVvujKfO3h1XB+6I1/t+NE5v/DAurD0Td157Ij7w6lPHrv4DAABQD8E4ANAxUqmIi+dLHwAAtI5URFx89am4+OpTzS4FAADoUpZSBwAAAAAAAKCjCcYBAAAAAAAA6GiCcQAAAAAAAAA6mmAcAAAAAAAAgI4mGAcAAAAAAACgownGAQAAAAAAAOhognEAAAAAAAAAOppgHAAAAAAAAICOJhgHAAAAAAAAoKMJxgEAAAAAAADoaIJxAAAAAAAAADqaYBwAAAAAAACAjiYYBwAAAKB+Z89GnDqVbJunTpXaBQAAqFNfswsAAAAAoAOcPx/x3HMR164l1+bZs6V2AQAA6iQYBwAAACAZ588LsgEAgJZkKXUAAAAAAAAAOppgHAAAAAAAAICOJhgHAAAAAAAAoKMJxgEAAAAAAADoaIJxAAAAAAAAADqaYBwAAAAAAACAjiYYBwAAAAAAAKCjCcYBAAAAAAAA6GiCcQAAAAAAAAA6mmAcAAAAAAAAgI4mGAcAAAAAAACgownGAQAAAAAAAOhognEAAAAAAAAAOppgHAAAAAAAAICOJhgHAAAAAAAAoKMJxgEAAAAAAADoaIJxAAAAAAAAADqaYBwAAAAAAACAjiYYBwAAAAAAAKCjCcYBAAAAAAAA6GiCcQAAAAAAAAA6mmAcAAAAAAAAgI4mGAcAAAAAAACgownGAQAAAAAAAOhognEAAAAAAAAAOppgHAAAAAAAAICOJhgHAAAAAAAAoKMJxgEAAAAAAADoaIJxAAAAAAAAADqaYBwAAAAAAACAjiYYBwAAAAAAAKCjCcYBAAAAAAAA6GiCcQAAAAAAAAA6mmAcAAAAAAAAgI4mGAcAAAAAAACgownGAQAAAAAAAOhognEAAAAAAAAAOlpfswsAAAAAgI61uhpx7Vpy7Z09G3H+fHLtAQBAlxCMAwAAAEAjrK5G3HZbxI0bybV56lTEc88JxwEAoEqWUgcAAACARrh2LdlQPKLUXpIz0AEAoEsIxgEAAAAAAADoaIJxAAAAAAAAADqaYBwAAAAAAACAjiYYBwAAAAAAAKCjCcYBAAAAAAAA6GiCcQAAAAAAAAA6mmAcAAAAAAAAgI7W1+wCAIBjrK5GXLuWXHtnz0acP59cewAAAAAA0OIE4wDQylZXI267LeLGjeTaPHUq4rnnhOMAAAAAAHQNS6kDQCu7di3ZUDyi1F6SM9ABAAAAAKDFCcYBAAAAAAAA6GiCcQAAAAAAAAA6mmAcAAAAAAAAgI7W1+wCAAAAAKDbFCPi6Vt+Lp56+91xdeCOuNF7Ok5tvh4X1p6JO195Ii6++teRanaRAADQQQTjdLXvfe97ceutt5b93Gc/+9n47Gc/e8IVAQAAAJ1sPdUXj1y4HHM/8xuRf9tPR6q4FX1bG1FMpSJVLMZGT18UUz2R+f7fxuS3fi8euPpw9Bc3ml02AAAn4Atf+EJ84QtfKPu5733veydcTecRjNPVtra24sUXXyz7uddee+2EqwEAAAA62bMDd8SnPvKV+PaZizvPFVM9sd5704HXPn/zT8Xnfv734z9cmIgv//mvxO1rz5xkqQAANMFrr712aG5F/QTjdLWenp5417veVfZzN9988wlXAwAAAHSqb/zEh+P+j30t1nv6o5jqOfb126+5OnBHfPTjfxWP/tkvxT1/9xeNLhMAgCa6+eab49y5c2U/973vfS+2trZOuKLOIhinq73rXe+KF154odllAAAAAB3s2YE74v6PfS3e6PmR2OrprerYzZ7+KEZP3P+xr8Xjf/pBM8cBADrYUdv83nrrrWaT1+n421MBAAAAgOqdPRvrp/9RfOojX4n1nv6qQ/FtWz29sd7TH5/+yCOxfvofRZw9m3ChAADQ+QTjAAAAANAI58/HI1/5r/HtW342Nnv662pqs6c/nrnlznjkK/814vz5hAoEAIDuIRgHAAAAgAYoFiPmls9ERCqhFlMxnzsTxWJCzQEAQBcRjAMAAABAAzy9GpF/OSKpHLsYESv/LeKb302oQQAA6CKCcQAAAABogKe+k9xc8W2pN9sFAACqIxgHAAAAgAa4+lJEX2+ybfb1ltoFAACqIxgHAAAAgAa4sR6J7wdeLEa8/kaybQIAQDcQjAMAAABAA5zqj0glvJZ6KhVx+qZk2wQAgG4gGAcAAACABrjw7oiNzWTb3NgstQsAAFRHMA4AAAAADXDneyMSXkk9im+2CwAAVEcwDgCt7OzZiFOnkm3z1KlSuwAAQENdPB+ReUdEUquppyJi8J0RH3hPQg0CAEAX6Wt2AQDAEc6fj3juuYhr15Jr8+zZUrsAAEBDpVIRkyMRn/vj5NqcuJT8vuUAANANBOMA0OrOnxdkAwBAm3rgQxH/4S8irr4UsblVezu9PRG3n4v4xIeTqw0AALqJpdQBAAAAoEH6+yK+/OsR/b0RPTXO9O5JlY7/0q9F9PUmWx8AAHQLwTgAAAAANNDt5yIe/UzETX2lmd/V6O0pHffoZ0rtAAAAtbGUOgC0qWIx4unViKe+U1qW8cZ6xKn+iAvvjrjzvREXz9t7EAAAWsU9t0U8/lsRn/7DiGe+W3queMTrt4fyt58rzRQXigMAQH0E4wDQZtY3Ih75esRcNiL/cukNs77eUlCeSkVsbJbeYMu8I2JypLSnYb8rPgAANN3t5yIe/80Kx/PvjJi4ZDwPAABJSRWLxaNuToWOdOutt8aLL74Y586dixdeeKHZ5QBU7NkXIz71BxHffvNPVyUzTN5/a2lPQzNMAACgdRSLEd/87lsrQL3+RsTpm95aAeoD77ECFAAAb5Ft1c/9pgDQJr7xXMT9X4xY3zw6EN+2/ZqrL0V89POlPQnvua2RFQIAAJVKpUrbH1083+xKAACgO/Q0uwAA4HjPvlgKxd/YiNjcqu7Yza3Scfd/sdQOAAAAAAB0G8E4ALS49Y3S8unrmxFbNW6AslUsHf/pPyy1BwAAAAAA3UQwDgAt7pGvl/YUr3am+H6bWxHPfLfUHgAAAAAAdBPBOAC0sGIxYi6bbJvzV0rtAgAAAABAt+hrdgEAwOGeXo3Iv5xce8WIWPlvEd/8bsTF88m1CwAAULHV1Yhr15Jr7+zZiPP+gQMAwNEE4wDQwp76TkQqSoF2UlJvtisYBwAATtzqasRtt0XcuJFcm6dORTz3nHAcAIAjWUodAFrY1Zci+nqTbbOvt9QuAADAibt2LdlQPKLUXpIz0AEA6EiCcQBoYTfWk98PvFiMeP2NZNsEAAAAAIBWJhgHgBZ2qj8ilUq2zVQq4vRNybYJAAAAAACtTDAOAC3swrsjNjaTbXNjs9QuAAAAAAB0i75mFwAAHO7O90YkvJJ6FN9sFwAAoJUUI+LpW34unnr73XF14I640Xs6Tm2+HhfWnok7X3kiLr7615HwgloAAHQRwTgAtLCL5yMy74h4/uVkAvJURGTeGfGB9yTQGAAAQALWU33xyIXLMfczvxH5t/10pIpb0be1EcVUKlLFYmz09EUx1ROZ7/9tTH7r9+KBqw9Hf3Gj2WUDANBmLKUOAC0slYqYHEm2zYlLye9bDgAAUItnB+6I0V9+Ij73878fz9/8UxERUUz1xHrvTbHR0x/rvTdFMVV6C/P5m38qPvfzvx+jv/xEPDtwRzPLBgCgDQnGAaDFPfChiPffGtFb51W7tyfijvdEfOLDydQFAABQj2/8xIfjox//q7g6cEcUUz07Afhhtl9zdeCO+OjH/yq+8RP+cQMAQOUspQ5AWygWI55ejXjqOxFXX4q4sR5xqj/iwrtL+2VfPN+5s6D7+yK+/OsRH/186Txs1bCmek8qor834ku/FtHXm3yNAAAA1Xh24I64/2Nfizd6fiS2eqr7R8pmT38Uoyfu/9jX4vE//WDcvvZMg6oEAKCTCMYBaGnrGxGPfD1iLhuRf7m0R3ZfbykgTqUiNjZLe29n3lFacvyBD5WC5E5z+7mIRz8Tcf8XI9Y3Iza3Kj+2t6cUij/6mVI7AAAAzbSe6otPfeQrsd7TX3Uovm2rpzfWoz8+/ZFH4vE/+WD0J1wjAACdx1LqALSsZ1+MGP18xOf+OOL5l0vPFaMUDG9slf67PXn6+ZdLrxv9fOm4TnTPbRGP/1Yp3E5F6eMo26+5/VzpuHtua3yNAAAAx3nkwuX49pmLsdlTX5y92dMfz5z52XjkwuWEKgMAoJMJxgFoSd94rrR0+NWXSuH3cauHb7/m6kul477xXONrbIbbz0U8/psRv/vPIt73jtJzqSjNCO97c2b4dmCeeWfpdY//ppniAABAaygWI+Z+5jcSbXP+js9EsYYtpwAA6C4duNgsAO3u2RdLS4a/sVH9ftqbW6U3Wu7/4luzqztNf1/EJ38x4lc/EvHN77617/rrb0Scvumtfdc/8J7O3XcdAABoT09fOx35t/10Yu0VUz2xkr4tvnnt2biYWKsAAHQiwTgALWV9I+JTf1BaJr3aUHzbVrF0/Kf/sDRbuhP3HI8ohd4Xz5c+AAAA2sFTL/9YpIpbUUwlt5BlqrgVT73yo4JxAACOZCl1AFrKI1+P+PYLpZnf9djcinjmu6X2AAAAaA1X105F39ZGom32bW3E1eunE20TAIDOIxgHoGUUixFz2WTbnL8S9poDAABoETc2eqKY8J5PxYh4fcPbnAAAHM2IEYCW8fRqRP7l0psaSShGxMp/K+3DDQAAQPOd6tuKVMJ3L6ci4nRfncuOAQDQ8Tp011UA2tFT3ym9oZHkWySpN9u1DzcAAEDzXRi4ERs9yb4ludHTFxfOvJ5omydqdTXi2rXk2jt7NuK8fwQDAOwnGAegZVx9KaKvN2J9M7k2+3pL7QIAANB8d77j76OYSnYRy2KqJ+58+w8TbfPErK5G3HZbxI0bybV56lTEc88JxwEA9rGUOgAt48Z68vuBF4sRr7+RbJsAAADU5uKFH4vMa/8lUsVklj5PFbdi8LW/jQ9c+LFE2jtx164lG4pHlNpLcgY6AECHEIwD0DJO9UekUsm2mUpFnL4p2TYBAACoTeonz8fkfbck94+/VCom7jsbqZ80OxoAgKMJxgFoGRfeHbGR4DLqEaX2Lrw72TYBAACo3QP/+Ey8/9ZU9Nb5zmRvT8Qd70nFJz5+JpnCAADoaIJxAFrGne+NSHgl9Si+2S4AAACtob8v4su/HtHfG9FT48TxnlTp+C/9WkRfb7L1AQDQmQTjALSMi+cjMu+ISGo19VREDL4z4gPvSahBAAAAEnH7uYhHPxNxU19UPXO8t6d03KOfKbUDAACVEIwD0DJSqYjJkWTbnLiU/L7lAAAA1O+e2yIe/61SuJ2K42+S3n7N7edKx91zW+NrBACgcwjGAWgpD3wo4v23Vj9jYL/SXnMRn/hwMnUBAACQvNvPRTz+mxG/+88i3veO0nOpKC2T3tdT+u92YJ55Z+l1j/+mmeIAAFSvr9kFAMBu23vNffTzEcVixFYNm47baw4AAKB99PdFfPIXI371IxHf/G7EU9+JuPpSxOtvRJy+KeLCuyPufG9pmywrggEAUCvBOAAtZ3uvufu/GLG+GbG5VfmxvW/OKLDXHAAAQHtJpSIuni99AABA0iylDkBLstccAAAAAACQFDPGAWhZ23vNPfL1iLlsRP7lUvjd11taZj2VitjYjChGaa+5iUulPcr7Xd0AAAAAAIBdRAcAtJbV1Yhr13Ye9kfEJ98W8av/NOKb107HU6/8aFy9fjpe3+iJ031bceHM63Hn238YHzj7emmvuaf3tXf2bMR56/ABAAAAAEA3E4wD0DpWVyNuuy3ixo0Dn0pFxMU3P6py6lTEc88JxwEAAGgrxYh4+pafi6fefndcHbgjbvSejlObr8eFtWfizleeiIuv/vWx244BAPAWwTgArePatbKheF1u3Ci1KxgHAACgDayn+uKRC5dj7md+I/Jv++lIFbeib2sjiqlUpIrF2Ojpi2KqJzLf/9uY/NbvxQNXH47+4kazywYAaHk9zS4AAAAAAICIZwfuiNFffiI+9/O/H8/f/FMREVFM9cR6702x0dMf6703RTFVekv3+Zt/Kj73878fo7/8RDw7cEczywYAaAuCcQAAAACAJvvGT3w4Pvrxv4qrA3dEMdWzE4AfZvs1VwfuiI9+/K/iGz/x4ROqFACgPQnGAQAAAACa6NmBO+L+j30t3uj5kdjs6a/q2M2e/nij50fi/o99zcxxAIAjCMYBAAAAAJpkPdUXn/rIV2K9pz+2enpramOrpzfWe/rj0x95JNZTfQlXCADQGQTjAAAAAABN8siFy/HtMxernim+32ZPfzxz5mfjkQuXE6oMAKCzCMYBAAAAAJqgeMvZmPvAv0y0zfkP/EYUbzmbaJsAAJ3AujoAAAAAAE3wdJyP/M3JtVdM9cTKzT8d30xFXEyuWQCAjmDGOAAAAABAEzz1nYhUwm2m3mwXAIC9BOMAAAAAAE1w9aWIvt5k2+zrLbULAMBellIHaEHFYsTTq6U7vK++FHFjPeJUf8SFd0fc+d6Ii+cjUknfUg4AAACcqBvrpfcAklQsRrz+RrJttgrvlwAA9RCMA7SQ9Y2IR74eMZeNyL9cWv6sr7f0D79UKmJjM6IYEZl3REyORDzwoYh+f8kBAACgLZ3qTz7ITaUiTt+UbJvN5v0SACAJhgcAzbS6GnHtWkREPPvqqfjUlffGt189/eYnU1GMiPXNg4c9/3IxPvfHEf/hf3s9vnzpO3H7LTdKnzh7NuL8+RMpHQAAAKjPhXeXQt0kbWyW2u0Uz74Y8ak/iPj2C289d/j7JVF6v+QvIr786xG3nzuxMgGANiAYB2iW1dWI226LuHEjvvETH477P/a1WO/pj2LP8beKF6P0mquv9MdH//i98eif/VLc83d/EXHqVMRzzwnHAQAAoA3c+d5SyJuk4pvtdoJvPBdx/xdLIXgl52n7NVdfivjo5yMe/UzEPbc1skJakSX3ATiMYBygWa5di7hxI54duCPu/9jX4o2eH4mtnt6qmtjs6Y9i9MT9H/taPP6nH4zb154ptSsYBwAAgJZ38Xxp+e/nX04mIE9FROadER94TwKNNdmzL5ZC8Tc2IraqPDmbW6Vw9P4vRjz+W2aOdwtL7gNwnJ5mFwDQzdZTffGpj3wl1nv6qw7Ft2319MZ6T398+iOPxHrKaB4AAADaRSpVCuiSNHGp/WfDrj+/Gp/6n34Y6xvFqkPxbVvFiPWNYnz6f/phrD+/mmyBtJxnX4wY/XxpKf3nXy49t73k/sbW3lUHtpfcH/186TgAuodgHKCJHrlwOb595mJs9vTX1c5mT388c+Zn45ELlxOqDAAAADgJD3wo4v23RvTW+U5tb0/EHe+J+MSHk6mraVZX45Ff/nfx7WunYrNYX8K/WUzFM9dOxSO//O9KW9rRkb7xXGnp/KsvlcLv4+6l2H7N9pL733iu8TUC0BoE4wBNUixGzP3MbyTa5vwdn4li0puTAQAAAA3T3xfx5V+P6O+N6KkxB+5JlY7/0q+Vlo5uZ8VXrsXcbf/3RNuc/+lPR/GVa4m2SWvYveT+5lZ1x25ulY67/4tmjgN0C8E4QJM8fe105N/201FMJfOnuJjqiZX0bfHNa6cTaQ8AAAA4Gbefi3j0MxE39VU/c7y3p3Tco5/pjL20vV9CpdY3Ij71B6Vl0utacn8z4tN/WGoPgM4mGD9hhUIh8vl8s8uoSTNrb+fzBod56uUfi1SxyltZj5EqbsVTr/xoom2eqLNnI06dSrbNU6dK7QIAAEALu+e2iMd/qxRup6L0cZTt19x+rnTcPbc1vsaT4P0SKvXI1yO+/UL1M8X329yKeOa7pfYA6Gx9zS6g02Wz2Zibm4tcLlc22B0aGor77rsvJiYmIp1On3yBR2hm7e183qBSV9dORd/WRqz33pRYm31bG3H1ehvfAX3+fMRzz0VcS3B5s7NnS+0CAABAi7v9XMTjv1kK6OayEfmXS+F3X29pS7ZUKmJjs7Q/cuadEROXSnuU93fQu7zeL6ESxWLpdyRJ81cifvUjpd8zADpTqli0G20jLC4uxuXLl6NQKFR8zNTUVMzMzDSuqAo1s/aT6vvWW2+NF198Mc6dOxcvvPBClVVCMv7lF67Fo8+8LTZ6+hNrs2/zjbj/Z16L//GzZkgDAABAOysWI7753YinvhNx9aWI19+IOH1TxIV3R9z53ogPvKczAzzvl1CJv/mvESP/Nvl2r/yriIvmVwAtSrZVvw66l7A1FAqFuHz5ciwuLu48NzU1Fffdd19kMplIp9ORz+cjm83GzMzMntnQs7Ozkc1m48qVK02ZBd3M2tv5vEGtTvVtRSrhe5NSEXG6L9nlxgAAAICTl0qVArpuC+m8X3KI1VUr7O3y1HdK39ckf1JSb7bbbb9zAN3EjPGEDQ4O7oS2mUwmlpeXjwxrJycnY35+fs9zQ0NDsby83Mgyy2pm7Sfdt7tqaAX/yyOr8f/832+NYqonsTZTxa34/3zku/GJX/nJxNoEAAAAOCneLyljdTXittsibtxIrs1Tp0rb2bVpOP7g/zfif/nzYqxvJbdsQn9PMf5vv5iK//f9iTUJkCjZVv2SG10Q4+PjO+FuOp0+NtyNiJibm4uxsbE9z+VyuZicnGxUmWU1s/Z2Pm9Qjzvf8feJ/iMvIqKY6ok73/7DRNsEAAAAOCneLynj2rVkQ/GIUntJzkA/YTfW/nsUNzYSbbO4sR6vX//vibYJQGsRjCdkdnZ2zzLgDz/8cMXLej/88MMHnpufn9+zXHgjNbP2dj5vUK+LZ1+PzPf/NlLFZJbyShW3YrDwXHzg7OuJtAcAAABw0rxfQiVObfww+SX3ixGnN9r4BgoAjiUYT0ChUIjp6emdx5lM5sBs5qOk0+mYmpo68PzuNhulmbW383mDJKRSEZPf+r1E25x45ouRSm4FKQAAAIAT5f0SKnFh4EZs9PQl2uZGT19cOOMGCoBOluyVo0s99NBDex7Xspz3gw8+GLOzs3ueW1xcjHw+H5lMpq76jtLM2pvV9+rqarz22msREfHaa6/F6upqnG/TvXQ6SbEY8fRqxFPfibj6UsSN9YhT/REX3h1x53sjLp6PjvwHzANXH47/cGEirg7cEZs9/TW307u1HrevfSs+cXU+In49uQIBaFurq6vxR3/0RzuPP/nJTxrzAAAdx5inM3m/hONYcr+M1dWyy+MXixFPXzsdT738Y3F17VTc2OiJU31bcWHgRtz5jr+Pi2dfL/++69mzbbsH/Y5DzknNOuGc0LZkW8kQjNepUCgcCGarmfW8LZ1Ox9DQUORyuT3PLy4ulp0VnYRm1t7MvldXV+MHP/hBRET84Ac/8MejydY3Ih75esRcNiL/ckQqIvp6SwO2VCpiYzOiGBGZd0RMjkQ88KGI/g76y9Vf3Igv//mvxEc//ldRjJ7Y6umtuo2erc3o31qPL/35A9FX3GxAlQC0o9XV1fid3/mdnccjIyPGPABAxzHm6UzeL+E420vuP3/zTyUSkKeKW5H5/n9p3yX3V1cjbrttz17066m+eOTC5Zj7md+I/Nt+OlLFrejb2ohiKhWpYjE2evqimOqJzPf/Nia/9XvxwNWHo7+4a9/2U6cinnuufYPgMuekbu1+Tmhrsq1kWEq9Ttlsds/jdDpd8wzvkZGRA88tLS3V1FYlmll7O5+3qqyuRuRyyX2srjb7K6rfrnPy7NK3Y/S3fxif++NiPP9yaU+gYkSsb0ZsbJX+u71T0PMvF+Nzf1yM0d/+YTy79O2OOie3rz0Tj/7ZL8VNW/8QvVvrVR3bu7UeN239Qzz6Z78Ut68906AKAQAAAE6W90s4iiX397l2bU8A/OzAHTH6y0/E537+9+P5m38qIkoz4td7b4qNnv5Y771p54aC52/+qfjcz/9+jP7yE/HswB1vtXnjRrKzrU/avnOSiHY/J4AZ4/V67LHH9jy+6667am5rdHT0wCzq/QFykppZezuft4odcUdaMSKevuXn4qm33x1XB+6IG72n49Tm63Fh7Zm485Un4uKrfx1lx2DtfkfarnPyjZ/4cNz/sa/Fek9/FHuOH3EW3zwjV1/pj4/+8Xvj0T/7pbjn7/6i/c/Jm+75u7+Ix//0g/HpjzwSz5z52YiII+92TRW3IiLi9rVvxZf+/AH/yAMAAAA6jvdLjlfz+4wdwJL75e1537WC2fTbr7k6cEd89ON/9db7rh2sm39vLLlfhnPSVQTjddofwA4NDdXc1mHhcC6Xq6vdwzSz9nY+bxUrc0da3cvXbN+R1q5/VN88J88O3BH3f+xr8UbPj1S9FNZmT38Uoyfu/9jX4vE//WDpHzjtfE52uX3tmXj8Tz5Y/mckSsvMv/Uz8l9i4pkvHvwZAQAAAOgg3i8pr+73GTuAJfcPSvx91w7T9b83ltw/yDnpOoLxOuRyuSgUCnueGxwcrLm9dDpd9vl8Pp94wNvM2tv5vNXj2YE74lMf+Up8+8zFnee2l6/Zb3v5mv9wYSK+/Oe/0lGDkPVUX3zqI1+J9Z7+mgarERFbPb2xHv3x6Y88Eo//yQej9vtBW09/cSM++eyX41ef/XJ885Y746mzpbsWX+/70Ti98cPSXYvXnogPvPpU5961CAAAALCL90v28j7jW7aX3L//Y1+L9eivauZ479Z69G+td8yS+953PZrfmyi75H7d56RDJvNtc046n2C8Dk8++eSB586cOVNXm0NDQ5HL5fY8l8/n62qznGbW3s7nrVaWr3nLIxcux7fPXKzoPBxls6c/njnzs/HIhcvxyYRqO3Fnz5buHiuz3H4qIi6++lRcfPWp6to8darULi3pC1/4Qrz22mtx8803x2c/+9lmlwMA0BDGPAA0Ss3vl3QQ7zMe1Kwl91ttzON918P5vTnIOTnIOekOgvE6LC8vH3guk8nU1Wa5gPiJJ56oq81ymll7O5+3Wli+5i3FYsTcz/xGom3O3/GZ+NXi37fn3cDnz5eWVCmzf0nN7F/S0r7whS/Eiy++GOfOnWuJfzABADSCMQ8ANIb3GQ/XjCX3W2nM433Xw/m9Ocg5Ocg56R6C8TqUm5F82LLelSoXEO9fdjwJzay9nc9btSxfs9fT105H/m0/nVh7xVRPrKRvi29eezYuHv/y1nT+vCAbAAAAgCN5n/F43bzkvvddy/N7c5BzcpBz0l0E43UoF/DWuyR4uYD4+vXrdbVZTjNrb+fzVi3L1+z11Ms/FqniVt3nY7dUcSueeuVH23qABgAAAMCbjth6rmYdsPWc9xkr141L7nvftTy/Nwc5Jwc5J91FMF6HRuxhfcsttxx47qRmjNer0trb+bxVw/I1B11dOxV9Wxux3ntTYm32bW3E1eunE2sPAAAAgCay9dwB3mfkON53PcjvzUHOyUHOSfcRjCes3iXB6z2+mX3Xc3w7n7fDWL7moBsbPVFMJXs5KEbE6xvJ3QkJAAAAQJPZem4P7zNyHO+7HuT35iDn5CDnpPsIxmt0krORk14SvJm1t+J5e/rpp6tq9/z583G+goG55WsOOtW3FaliMdE2UxFxum8r0TYBAAAAoFV4n5HjeN/1IL83BzknBzXznKyursbq6mrF7VabZVFeqlhM+K9llygUCjEwMHDg+XpP5+LiYoyPj+95Lp1Ox9raWl3t7tbM2lvhvP3lX/5lfOhDH6q5rx//8R+Pm2+++djXvfbft+Lv15O/o+7H+rfi5n/Unnfq/fCHm/H9f+hNvN23/chm/OiPJt8uJO173/tebG1tRU9PT7zrXe9qdjlAh3vjjTfilVde2Xn89re/PW66Kbll9QAOY8wDnCRjHrqB9xnLWF+PePnl5Nt9xzsi+vsremkrjXm873qQ35uDnJODmnlOXnvttfjBD35Qcx9f//rX4xd+4RdqPr5bmTFeo6RncR/lzJkzibbXzNpb4bydP38+UqlUzWH8D37wg7r+WNXrBxHxg+83rfuWtPbDiATvHYGG29raihdffLHZZQBdZvcbxgAnwZgHaAZjHqic9xnLqCFs7+Qxj/ddD/J7c5BzclCjz0kqlapoZWMOEozX6CSXBE9aM2tvhfN2/vz5OH36dLz++us1heOVzhgHAAAAAACA/WqdMZ5KpeL06dOC8RoJxmuUTqfLPl8oFA79XNJ9Jd3eSdTeKuft7//+76vev2FbpXuMAwAAAAAAwH4yquYQjNco6eXNT7KvZtbeSufNHw8AAAAAAABOmoyqOZLfUb7LneQe2klrZu3tfN4AAAAAAACA1iYYr9FRS4LXo1xAnMlk6mpzv0prLxQKkc/nK263ktpP8rydPXu2rjZrVe1565S+AaBdtfP107gDAKhUO1+7jXkAgEq187W728Y8233WmxFWQzCesEbMfB4eHk68zXKy2WyMj4/H4OBgpFKpGBgY2Pn/VCoVw8PDMTs7W9UPaKW113venn322QPPPfroo3XVXqlGnLd26BsA2lU7Xz+NO96yuLgYg4ODMTk5eSL9AUC7abVrdzW6acxTKBRicXExxsfHY3h4eE9f232Pj4/H/Px8277JDwCNZMzTPn0vLi7G5ORkDAwM7Olz+/H2uGdxcTGxPg8oUrNMJlOMiD0fCwsLdbU5MzNzoM2lpaWEKn5Ludqr+Ziamqq59iTP28LCQjGdTtddu74BoPO18/XTuOMtc3Nze+oZGRlpWF8A0I5a7dpdjW4a86ytrRUnJiaqfk9uZGSkuLy8nMjXDADtzJinffqupc90Ol2cmZlJ5GveTTBeh5GRkQPfqHq/SeUGxCsrKwlV/JZytW//cC8vLxfX1taKxWKxuLKyUpybmysbZg8NDe28rprakzhva2trxbGxsSN/af7Tf/pPFddeb9/1nLd26RsA2lU7Xz+NO96qZWZmpuw/ogTjAFDSStfudqq9GX3Pzc1V9cZwI96gBoB2ZcxTW+3N6vuwPLLSj0wmk+j3SzBeh3JB8MTERF1tlgt7G6Fc7f/8n//zqo8ZGhqquvYkztvuX8pMJlP8+Mc/fmTfx9VeT9/H/UJ2St8A0K7a+frZ7eOO5eXlY2dSCcYBoKQVrt216qYxz9TUVF1vDhsHAdDtjHnaY8yztrZW9+rV1dRbKcF4Hcrd3VnvgHRoaOhEBrj7+6m0r3Lh93aoXWnt9Z633TWk0+ni2tpaRX0fVXs9fVd7XDv2DQDtqp2vn9067lhbWyt7d3ImkzFjHAAOYczTHmOectsQ7v5Ip9OHjnkO+/AeDwDdxJinPcY8hx27ffzS0tLOitNra2vFpaWlY1eJHhsbq+prPoxgvA5LS0tlB7D12D/wbcT6+YcNwiupfW1treyxKysrFddez3nbX/v23uSV9H1U7fX0XYl27hsA2lU7Xz+7cdyxsLBQdnmtkZGR4tLSUrFYLH+3smAcgG5nzNM+Y57D3lw+7LilpaWK9iHfHisBQCcz5mmfMU+xWFveedxe5MvLyxXXfhjBeJ3KfWPqWd+/Ed/k4/qotvZySz7943/8j6uqvZa+99eeyWQO/ZoO67tc7ZXcZXJY39Vox74BoF218/WzG8cdKysrZY/Z/w+tcm0LxgHoZsY87TXm2b3iYTqdrvgN7ZWVlSOXIrVtHgCdzpinvcY8u/vNZDJVZZ1ra2uHhuNJzPIXjNep3KyWau622G3/TOp6Z5+Xc9w+RpXUfly4XknttZy3/bVv311SzXmr9e6Ww/quRjv2DQDtqp2vn9067tgex01NTR16w6RgHAD2MuZprzHP7jd5a5kMc1Q47j0eADqZMU97jXkWFhbqOr+7j9/9UUuwv19PUJfx8fEDzz322GM1tbWwsLDn8cTERFXH5/P5Iz9fKBRidnb2yNdUUns6nY6hoaEjX3Nc7dWet3K1j42NRUR15+2w2hcXF2vquxrt1jcAtKt2vn5287hjeXk51tbWYmZmJtLpdNX9AkC3afa1ux7dOuYpFAo7/R333lo5S0tLh34um81W3R4AtANjnvYb82yPWcbGxiKTyVTd59jYWIyMjBx4/vr161W3tZ9gvE733nvvgedq/SX66le/uufxgw8+WNFx2Ww2BgYGYnBwMFKpVExOTh76ut1uvvnmA6+ptPZyP5C7HVd7tedtf+3pdHrnl6na81au9mr+YbG772q1U98A0K7a+frZzeOOWt4cBoBu1uxrdz26ccyze0JLpe/57ZfJZA6dEOI9HgA6lTFPSbuMeSIinnzyyYiIuO+++2rqLyLKZp3bNxnWQzBep3Q6XfYOi/n5+arayWaze76hExMTFc2UyeVyMTo6uufY+fn5imZkf/CDH6y59tHR0UM/V0nt1Z63/bXfddddEVHbeStX+1F31R7Wdy3aqW8AaFftfP007gAAKtXO1+5uHPNsB+OZTKauGwIPmxCTxBvFANCKjHlK2mXME1HKLiNqm6G+rVyIn8SkCsF4AmZmZg48Nz09XVUbu1+fTqfLtlnOQw89VPb5xcXFA0ur7/8hHRoaqrn2w36BfvzHf7zi2qvpu1zt+19f6Xk7rPbtX9RK+65FO/UNAO2qna+fxh0AQKXa+drdjWOe7ffpjluF8TiH1ZvE0qIA0IqMeUraacwzNDQUU1NTNfcXEWUnwdY64303wXgCMpnMgUC2UCiUnbVdzuzs7J4fnitXrlS8r+JR+4rvbjOXyx24c3RwcLDm2g+r77d/+7crrr3Svg+rvdbzdthryp3Lw/quVbv0DQDtqp2vn8YdAECl2vna3c1jnqGhoYrfL6y23zNnztTdLgC0mmZfu+vRrWOeTCYTy8vLFU+iPUy51XAOWzmnGoLxhExNTR24+2FxcfHYwe7s7OyeWc9zc3NV3bVx1NIHu9vZXs9/t+0Bc621v/vd7664zsNU0ne52r/+9a/Xdd7KvbbcL/BR561W7dA3ALSrdr5+GncAAJVq52t3t455JiYmYnl5ue4Z4xHla05iBhUAtBpjnr3aYcyTlP1fw9DQUCLjqL66W2DHzMxM3HLLLXsC28XFxRgYGIiJiYm4++67I5PJxPXr1yOXy8Xc3NzOD006nY6FhYWqv6kzMzPx1a9+9cCdE1NTU3sGxMvLyweO3f35Wmp/6aWXDrT5xBNPVFV/JX2XW4rhK1/5SkTUft7K/QEoV/tx560W7dA3ALSrdr5+GncAAJVq52u3MU/9yi2bXs8sMABoVe187Tbmqc/c3Nyexw8//HAi7QrGEzY1NRVjY2MxPj6+E+gWCoWYnZ099JixsbGYmZmp6YcynU7H8vJyTE5ORjabjUwmE9PT0zExMbHndeXu2ti/9EEtte9XbmmDSpz0eSt3TLnaKzlvndg3ALSrdr5+GncAAJVq52u3MU/9yrWfxAwqAGg17XztNuap3eLi4p5JszMzM3Xtkb6bYLwBttfPz+fzMTc3F7lcLvL5fOTz+Uin05HJZOLMmTMxOjoaExMTifwwLi0tHfmacr8Ehy27VGntL774Yvz7f//v9xxf7o7Var6Ow/re7zvf+U785E/+ZM19lTvn5Wqv9Lx1Wt8A0K7a+fpp3AEAVKqdr93GPPUpt7JiOp1O7M1iAGgl7XztNuapTaFQiMuXL+88npiYOLAlcz0E4w2UyWTq3lw+KdWu819J7eVmcydxd8j+vlOp1IHXvO1tb6urj1tuueXAc5XeVVOvdugbANpVO18/jTsAgEq187XbmKc+jz322IHnWuX9RwBIWjtfu415anP58uWddqemphIf5wjGu1i9M9XrPb6ZfddzfLf2DQDtqp2vn8YdAECl2vnabcxTufn5+T2PM5nMgS0VAaCTtdu1O8m+O3nMk8/n92y3PDc315AxjmC8C5zkzJykl01oZu3d2jcAtKt2vn4adwAAlWrna7cxT30WFxcPfB1zc3MN6QsAmq2dr93GPIfLZrN79ivP5XLx2GOPxeLi4s5zY2NjcddddyVS436CcWpW734EzdTM2ru1bwBoV+18/TTuAAAq1c7X7m4Z80xPT+95PDExESMjIyfWPwB0AmOe5vWdzWZjdHT02NctLi7uBOVjY2Px4IMPxtDQUN39R0T0JNIKLe0kZ+Yk/UvZzNq7tW8AaFftfP007gAAKtXO125jntrNzs7u2S80k8mYLQ5AR2vna7cxT3lLS0tV97G4uBjDw8MxOjqayN7pgvEucJLLJiStmbV3a98A0K7a+fpp3AEAVKqdr93GPLXJ5/N7Zoun0+ma3lgGgHbSztduY57ytvcPn5iYiKWlpVhZWYlisRjFYjFWVlZibm7u0NVwstlsDA8P77RRK8F4F0in02Wfb8Qvx2F9Jd3eSdTerX0DQLtq5+uncQcAUKl2vnYb89RmfHx8z+MrV67s2ZsTADpRO1+7jXnKm5mZiWKxuBOA7x7PZDKZncB8aWmpbNuFQiEuXbpU19ciGO8CJ7lkZdJ9NbP2bu0bANpVO18/jTsAgEq187XbmKd609PTe2ZGLSwsJLbHJgC0sna9djeivWr6auXzVukYZmRkJJaXl8t+rlAoxOXLl6vqdzfBeBc7yX0GktbM2ru1bwBoV+18/TTuAAAq1c7XbmOe8hYXF2N2dnbn8dzcXIyNjTWxIgBovla+dh/HmKdymUwm5ubmyn5ucXGx5lnjgvEu0KhlE8r9EiW9jFMza+/WvgGgXbXz9dO4AwCoVDtfu415KpfL5fYsoT4zMxMTExN1twsA7aLdrt27GfMkY2Ji4tCv56tf/WpNbQrGu1gj7g4ZHh5OvM1ymll7t/YNAO2qna+fxh0AQKXa+dptzLNXPp+PS5cu7TyempqKqampessCgI7QitfuShnzVO+wGwMPW2r9OILxLlHuro167w4pd3wj7g5pZu3d2jcAtKt2vn4adwAAlWrna7cxz/HtjY6O7rQ7MTERMzMzNbcHAO2sHa7dhzHmScbo6GjZ5/P5fE3tCca7RLkfzlp/aLatrKxU1E+9mll7t/YNAO2qna+fxh0AQKXa+dptzHO0S5cu7dQ0NjZ26N6aANAN2uHafRhjnmQc1sdhS6wfRzDeJcr94JT7Ia7GSe0n0Mzau7VvAGhX7Xz9NO4AACrVztduY57DjY6ORi6Xi4hSKL6wsFBXbQDQ7lr92n0UY55knDlzpqrnjyMY7xLl1vmv9+6Q/cePjIzU1d5hmll7t/YNAO2qna+fxh0AQKXa+dptzFPe6OhoZLPZnTaE4gDQ2tfu4xjzNFat+5sLxrtEubs2nnzyybra3P9LcNg6//VqZu3d2jcAtKt2vn4adwAAlWrna7cxz0Hj4+M7ofjQ0FAsLS3VVRMAdIpWvXZXolvHPPUG8PuVm6keEXHvvffW1J5gvEuUu3OjUChEoVCoqb1yxzbq7pBm1t6tfQNAu2rn66dxBwBQqXa+dhvz7DU5ORmLi4sRUQrFl5eXa6oFADpRK167K9WNY56BgYGaZ3IfplzQPjIyYo9xjlfuh3T7btRq7b+zJJ1Ox9DQUE1tVaKZtXdr3wDQrtr5+mncAQBUqp2v3cY8JdPT0zE/Px8RpZldV65cqakOAOhkrXTtrla3jXlGRkaiUCjs3PSXhHIr6czMzNTcnmC8i4yPjx947rHHHquprf37HE1MTFR1fLVLKTSz9m7tGwDaVStdP415KusbAKheK127jXkq63u32dnZmJ2djYhSKL68vFzzzCcA6GStcu2OMOY5ru/77rsvIiIeeuihmvopZ3/IPjY2VtfNDKlisVistyjaQ6FQiIGBgQPP1/IjMDAwsGfZhLW1tYoG79lsNsbHx3eOnZiYiLm5uWOPa2bt3do3ALSrVrh+GvM0ZtwxPT298wbytpGREftwAtCVWuHabcxT23mbn5+PycnJiCjNuFpeXi67FygA0BrXbmOeyvre3efS0lLdy9Rns9k9e5mn0+l4/vnn63qPyYzxLpJOp2NsbOzA89tLNlUqm83u+QWYmJio6Icwl8vF6OjonmPn5+fL3rWyXzNr79a+AaBdNfv6aczTuHFHub2wrl+/nkjbANBumn3tNuap7bwtLi4eGYpv7+FZKBQin8/vfORyucjlcpHNZiObzcbi4mIsLi7G/Px8zM/Px+zsbExPT8f09HRVXwcAtLpmX7uNeSrve/cS67tvJKjV9phpu+1EVtgp0lVWVlaKEbHnI51OV9XG0NDQnmPX1tYqOm5sbOxA39sfKysrLV17t/YNAO3KmKczxx3lzm0mk0msfQBoN8Y87TXmWVhYOPScJfkBAJ3GmKd9xjxTU1M7rx8aGqqqr912n/d0Ol3Rua6EGeNdJpPJHNiUvlAoVHRnS0Rp/6NcLrfz+MqVKxXfnXHU3gu72zxMM2vv1r4BoF0Z83TeuKNQKBzYVyoidmZQAUA3MuZpnzHP9hKsAED1jHnaZ8wzODi48/+5XC4GBwdr2pt9+z2gTCaT7LYzicTrtJ3dd2xsf4yNjR15zMzMzJ7Xz83NVdXnxMREXXfVNLP2bu8bANqVMU/7jztWVlaKCwsLxUwmc+h5TafTxbm5ueLy8rKVcQDoSsY8rT3mWV5ePvRcNeIDADqVMU9rj3mKxcPHPWNjY8Xl5eVDj1tbWyvOzc0V0+n0zjETExNVfZ2VSBWLNeyyTkfY3ntot3Q6HRMTE3H33XdHJpOJ69evRy6Xi7m5uZ07OtLpdCwsLMTIyEhV/RUKhXjf+953YE+BqampA3estFrt+gaA9mXMU5tm9T0wMFD3HlS7611bW0ukLQBodcY8tTmJvpMc31TC270AdDJjntqcZN+pVOrQz6XT6bjrrrt2ZoBfv379wGqAQ0ND8fDDD+/sV56oxKN22srKysqe/QGO+xgbG6trHf+VlZXiyMhIMaK0H2Q9M4lOunZ9A0D7MuZpn74r7avSDwDoJsY8rdl3PWOZdDpdTKfTxUwms/P/uz/KHWMFHQA6nTFPa/c9MzNTVT+7+1taWkrkaz2MGeNERGmPhLm5ucjlcpHP5yOfz0c6nY5MJhNnzpyJ0dHRmJiYaMm9qZtZe7f2DQDtqp2vn8YdAECl2vnabcwDAFSqna/d3TLmyWazsbCwEPl8fmd2eKFQiEwms/MxPDwc995774l8nwTjAAAAAAAAAHS0nmYXAAAAAAAAAACNJBgHAAAAAAAAoKMJxgEAAAAAAADoaIJxAAAAAAAAADqaYBwAAAAAAACAjiYYBwAAAAAAAKCjCcYBAAAAAAAA6GiCcQAAAAAAAAA6mmAcAAAAAAAAgI4mGAcAAAAAAACgownGAQAAAAAAAOhognEAAAAAAAAAOppgHAAAAAAAAICOJhgHAAAAAAAAoKMJxgEAAAAAAADoaIJxAAAAAAAAADqaYBwAAAAAAACAjiYYBwAAAAAAAKCjCcYBAAAAAAAA6GiCcQAAAAAAAAA6mmAcAAAAoIPkcrmYnJyM4eHhSKVSMTw8HJOTk1EoFJpdGgAAQNOkisVisdlFAAAAAFC/6enpmJ2dPfTzCwsLMTY2doIVAQAAtAbBOAAAAEAH2B2Kj4yMxPj4eGQymcjlcjE3Nxf5fD4iIpaWlmJkZKSZpQIAAJw4wTgAAABAm8vlcjE8PBwREVNTUzEzM3PgNaOjo5HNZiOdTsfa2tpJlwgAANBU9hgHAAAAaHOPPfZYRERkMpmyoXhExNzcXEREFAqFyGazJ1YbAABAKxCMAwAAALS5XC4XERFDQ0OHviaTyUQ6nd7zegAAgG4hGAcAAABoc9evX4+IiDNnzhz5uu3Pv/rqqw2vCQAAoJUIxgEAAAASVigUIp/P73w02sjISEREPPnkk0e+bruWu+++u+E1AQAAtBLBOAAAAOySy+VicHAwCoVCs0uhjY2Pj8fg4ODOR6ONjo5GROnn97D9w6enp3f+fztIT8ri4mIMDw/7vQEAAFqWYBwAAADelM1mY3h4OPL5fDz00EPNLoc2lc/n94TTU1NTDe9zZGQkxsbGIqIUks/OzsZ73vOeSKVS8U/+yT+J8fHxmJ2djYiIubm5nb3GkzI9PR25XE44DgAAtKxUsVgsNrsIAAAAaLbFxcUYHx+PiIhMJhMrKytNroh2NTk5GfPz8zuP19bWEg+iyykUCnHp0qXI5XKHvmZiYiLm5uYS73s7FI8o/f4sLy+fyNcMAABQKTPGAQAA6Hq7Q/F0Oh1LS0tNroh2VSgU9oTiY2NjJxYQp9PpWF5ejpmZmejr69vzubNnz8bS0lJDQvGIiKGhoZ228/m8meMAAEDLEYwDAADQ1bLZ7E4oHhGxsLAQmUymiRXRzvYvwf/ggw+eeA0TExOxsbGx57mbb7458X3Fy/U7MTEREcJxAACg9QjGAQAA6Fq5XC5GR0d3Hk9NTTU8PKSz7Z4tPjQ0FENDQ02tYdv+fc8bZW5ubudrzufzcenSpYb3CQAAUAnBOAAAAF1pez/mbUNDQzEzM9PEiqhVPp9vdgkRUQqkd8+QbsZs8Yg4dLn0k/r5XlhY2Pn/XC63Z0UGAACAZhGMAwAA0JUuXbq0J8TcHebRHmZnZ2NgYCCGh4ebXUpE7A2e0+l0jI2NnXgN2Wz20BsFjvpckjKZTExNTe08XlxcLDuLHQAA4CQJxgEAAOg68/Pzkcvldh5PTU3ZV7xN5HK5mJycjIGBgZieno5CoRBnzpxpdlkHQudmzRY/blb4YbPJG1HH7t+pyclJ+40DAABNlSoWi8VmFwEAAAAnpVAoxMDAwJ7n1tbWIp1ON6cgqpJKpQ48NzIyEktLS02o5i2jo6N79vBuxs9UPp+PwcHBiCjN2i43OzydTsfa2tqJ1DM/Px+Tk5M7j1vh+wQAAHQvM8YBAADoKpcvX97zeGpqSijeRsp9r5r9/cvn83tC8YmJiabUtHu2+MzMTNml3AuFwoktaz4xMbFn1ng2m43FxcUT6RsAAGA/wTgAAABdI5fLHQjmmrXkNbUpt2x6s5fB3798+fT09InXsDvw3t7ffPds7d2OW249SfvPxf4bUwAAAE6KYBwAAICu8dBDD+15PDIy0vTZxtTvlltuaVrf+2dgj4yMNCWo313D9s0eh9WSz+cjl8udSF333nvvnseFQsGscQAAoCkE4wAAAHSFcoHcYTNqaV2ttpT6/mXJmzFbPGLvTR8TExM7/39YPftvEmmUdDodIyMjTekbAABgN8E4AAAAXaFcGFduD2baT7nl1U/K7p+rTCZzIAQ+CYuLi1EoFCKi9DO9+0aB3SH5Ycc02v4bUHK53J492QEAAE6CYBwAAIDE5fP5mJ2djdHR0RgYGIhUKhUDAwMxODgYk5OTJ7aM8277Z/Y2I8Bstu0ltLPZbORyucjn8w3v87jwdbumk6glafvD5VaYLb69jPpuh4XjJzVzu9zv2tzc3In0DQAAsE0wDgAAQGJyuVyMjo7G4OBgTE9PRzab3QkOC4VC5PP5mJ+fj+Hh4RgfHz+xunbXsW1oaCiRtrf3mB4dHY3h4eEja5icnNw5P9s3C2yfi0bM4C0UCjE7OxvDw8ORSqVicHAwhoeHd2rdrmN0dDTRfZ8XFxdjfHw8UqlUXL58uexrpqend26W2K5lYGCgrQLy3cFyOp0+NIBupFwut3OjydDQUNmf68MC+/03izRKOp0+sNe5fcYBAICT1tfsAgAAAGh/hUIhLl++vBN2jY2Nxd133x3pdDoKhUIsLS0dWDp5cXExhoeHY3l5ueH1lZudOjo6WnN7+Xw+stlsLCws7Pm69od/EaVzc+nSpbKz5AuFwk6wuX3uJiYmYmZmpq59swuFQjz00EMxOztb0euz2Wxks9kYGhqKK1euVNV3oVCIJ598MnK5XDzxxBPHBp75fD5GR0fLBuC13hjQjD3GdwfSEYfPym6042aLR7y1xPv+38FCoRCLi4snsqXA0NDQge/5SfUNAAAQEZEqFovFZhcBAABA+8rn8zE8PByFQiHGxsbi4YcfLhtUbs8i3m9qaipmZmYaWuPAwMCB0HVtba3iQDWfz8fMzMxOAHyYTCYTKysre47bPjfVWlhYqCk0nJ+fj+np6ZpD5v1fQ739jI2NxcLCQkSUgtj3ve99Rx5z1PflsD7HxsYik8nsPH/9+vUoFApx/fr1na9pu4akbM/yr6TuRikUCjEwMBARpZsD1tbWDn3tYb9/Q0NDJ3Jzyvz8/IG9xnf/bAAAADSaGeMAAADULJvN7sy8HhkZOTLkGhsbi+Xl5QPLjc/OzsaDDz7YsFAxn88fCFLT6XRV/WWz2aqXnc7lcnHp0qWaA+rx8fGqbhrI5/MxPj6+Z1ntmZmZuOuuu3a+1t2zu+fm5srO2s7n8zE9PX1sv5WE5/tVcpPA/u/L9uz3+fn5Q489bpb6XXfdVUWVx9ueab1tbGysKbPWd88WP27G+naN+8/h9sz3pLYWOEy578H+GewAAACNZI9xAAAAarI7FI+IimZ+Dg0NxcjIyIHnG7nXcbnwrVwNR7n33ntjaWkplpaWYmFhIaampo7tczsEzmQyMTU1FUtLS7GyshJra2uxsrISS0tLMTU1VXb59W2zs7MVL4c+Nze3E4pnMplYXl6OkZGRPYFtOp2OkZGRmJqaipWVlUPD70r6nJmZibW1tSgWi1EsFmNpaenI1x+2fPpRZmdnY2BgIGZnZ+vaf31wcLDmY8vZHUhHHL6EeaPt/r2ppIbDXlNuq4GklQveC4VCXd9XAACAalhKHQAAgKrtXxJ7Zmbm2LB42/5APaIUVB8XrNZq/5LXEcks316u3UwmEzMzMzE+Ph7pdDpmZmYq2nv6uGXJl5aWjg3zp6endwLtapZhn52djenp6QPP17KU+/Dw8IGl5sfGxuLMmTMxPz+/c07uvffeSKfTkcvl4qGHHto5j/uXA5+dnY2lpaVIp9Nx5syZSKfTZUP77T3tD7O91HpSUqnUzv838mf3KLuXJq90SfLdS6/vdxJLwQ8ODh64OaLWLQMAAACqJRgHAACgaqOjozszsY/b27ic3cFirW1UqlxYOzc3V1FgfZRyeyZvS6fTsby8XFUYm8/nD51VXcm+39vBeKV7hO9WLrCcmJioeibx5OTkobP/h4aG4sqVK2XD1+3aK9nvutx+8ZXcOJCU/d/3k+x7t93fs+Xl5YqXQi93Q0dEdTe31Gr3342T7BcAACDCUuoAAABUaXZ2dk+4VUvAXG4f6UY5LGiu15kzZ8o+X0sovl3TYTOP8/n8scvN33LLLRERZWd/H6fcMU8++WTV7Rw14/iwUDyiFI6OjIwkOqu7UXavNJDJZJoSimez2Z2f60wmU9X+4Ictp75/efhGKPf9rWWvegAAgFoIxgEAAKjK/gDtsFnTRzmpAPSwPYwPC7WTMDMzU/PXt70UeznHzd6empqKtbW1mm5UKBfuVrsf+FFmZmaOXaZ7e//2VrY7kI6o7SaEJOz+Gam2hqGhoUP3+y43kzxJ5X4GarkBAwAAoBaCcQAAACo2Ozu7J2jOZDI1hcCNDKZ3u379etnnG7mXcr1LtE9NTZWtL5fLHTuzvtavq9z3MMlZ/PWek1ax/6aFZnxd+Xx+zzYGtdRw2M0s1S6dX63tVQ12a+RqEQAAALsJxgEAAKhIoVA4MDu11mWk9wfWjZpBftKhW1KB+7333lv2+UbOrm3UzQLpdLqhNyKclFwut2cLgWbti707nK81mJ+YmCj7Pdk/Iz5p5fo87OYVAACApAnGAQAAqEi5PYhHR0dramt/YH3Se0s3asZ6Uu0edl6TCvpzuVzMz8/H5ORkjI6OxsDAQNm2k+jvrrvuqruNVrD/5/+wvbobbfde87VsY7DtsFD9sKX8AQAA2l1fswsAAACgPewO5LaV26u4EvtniTZqRnG7zkY97LzW8vUUCoX46le/GsvLyw2fEVxOJ8wW37//9tjYWFO+rtnZ2T2PBwcHE+9jfn6+4Uuq72YpdQAA4KQIxgEAADhWNps9EGCl0+maZ3qf1Izxw2ZwX79+vaUD28POR6XnqVAoxPz8fDz22GORy+UOfd3Q0FDcddddMTw8HNPT00LKQ7TKbPGTCqzn5+cbsn96uZ+vVv49BAAAOotgHAAAgGMtLCwceK7WJbLLzVi+7777amrrOIeFbu0aAFcSjE9PTx+YWbxtbGwsRkdHY2Rk5EBbMzMzbXteGm33aglDQ0M1r5RQj8XFxZ3fnXQ6nUg4/+qrr5b9WZmZmWlIMP7qq68eeK5R2xoAAADsJxgHAADgWF/96lcPPFfrLO/9M5jT6XTDgsajZoy3o6POeS6Xi/Hx8QM3HmQymZiZmYmxsbFGl9eR5ufn99ww0KzZ4rtnrT/44IMxNTWVSLu7A/dt+Xw+stlsjIyMJNLHNjPGAQCAZuppdgEAAAC0tnLLqEfUHmg98cQTex4nHb7t1q4zxsvVd1Swnc/n49KlSwcCzomJiVhZWRGK12FmZmbn/9PpdFPOZS6X23NDSZKzuaenp8s+v/vrTkq5G1LMGAcAAE6KYBwAAIAjlVtGPSLilltuqam9bDa753GjllE/SqvPGC+33Pzk5OShrx8dHT0Qpo+MjJzYntSdKpvN7vletMLe4hMTE4nOsr733nvLPr//a0+CGeMAAEAzCcYBAAA40pNPPln2+aSWUm/0DNxyy7S3+ozx/TcPpNPpQ2fWl1sKO+LwGxqo3P5Z043Yd/s4hUJhzx7nR90gUYujZsEnfWNFuRtSav07AgAAUC3BOAAAAEfaH2Rvq2Wm5+Li4p7HSe2TfJS77rrrwHOvvvpqw/utx9LS0p7HRwWy5cLLsbExM3HrtL3P9rakZ2pXancoPjQ0VPZGj3odNhN+d99JKHdDyujoaKJ9AAAAHEYwDgAAwKEOC8Ujapt1vT/EPYmlqYeHhw88l/QS0UkqFAp7Atl0On3keSo3o//uu+9uSG3dZP9s8cP24m60hx56aOf/k54tvm1oaKjszO39s9XrVe73rtyNKwAAAI0gGAcAAOBQ+5f03q3acHl/4Ds1NXUiM3DLBW9HBf7NtjsIjSgFtEedp3I3KNSyPHWr77t+lKSXxt8fCI+MjDRlye/FxcU9X1sjl3I/LPjff4NArcr9vUin01Y2AAAAToxgHAAAgEM98cQTh35uZWWlqrZ2B43HzYJOUrmlp/P5fEvuM57L5WJ2dnbncSaTqSkMPer7Vs7o6GhLno9KJR3q758l3QqzxQ/bBzwp9957b9nn9y8pX6tyN6OMjIzU3S4AAEClBOMAAAAc6qiZ1eWW8D5MoVDYE/ItLCyc6EzRcgFcNfVXqp4QsVAoxPj4+M7jdDp9YK/xcsqdx2pqGB8fP/T1SQTOJxG4J93H7p/VTCbTlAA3l8vt+f277777GtpfOp0+NHxPYtZ4uZ9lS/4DAAAnSTAOAADAoY5aLn1/cHeU6enpnfByamrqxIPG3YHztkYtpz46Olr1vsyFQiEuXbq0c76Hhobi+eefr2j57sOWij+uhlwuF4ODg5HNZmN5eTmRGxVOIgQvd072711fj/3Llzdrtvj+fk/id+awPcyz2Wzdvy/lbkRp5NLwAAAA+wnGAQAAKKuSPcQrCQ0XFxd3QtqJiYnE9iyuRrlloiuZjV2rycnJGB0dregcZrPZeN/73rcTPM7NzVUVVJcL/bdr2L0s+7Z8Ph/j4+MxPDwcmUwmnn/++RgaGiobalcbdJf7epOemV8uGN/+mnbXm8vldr7OauyeLZ5Op5sS3s7Pzx+YxX8SKyyUu8li22E/Z5XaH6wPDQ3ZXxwAADhRgnEAAADK2h9yjo2NHQiystnskftTT09P7wRqMzMzic7srUY6nT6w13gjllLfLZvNxuDgYAwPD8fs7GwsLi7uzLLPZrMxOzsbg4ODO+dvZGQk1tbWqg5iJyYmyu6jHlE6/4ODgzE+Ph7j4+MxODgYg4ODsbi4GDMzM7G0tHRkOLk7JD5KoVAoG+Zuf25ycjKxfd1HR0fLPr+4uBgDAwORSqUilUrF8PBwLC4uxpkzZypue/8qCA8++GDd9VYjn8/H9PR02Znbo6Ojkc1mGzIrv1AoRC6Xi8uXLx9Z2+joaE0zx8sdc9jsdAAAgEZJFYvFYrOLAAAAoPXMz8/vCa+WlpYO7IO9LZ1Ox7333rszO3dlZSUWFxcjn89HOp2OhYWFpuzTvNvi4uKB2ldWViparrzS9mqRTqfj4YcfPnR/50rkcrmKZ0an0+m4cuXKnjC9UCjEwMDAscft/j5OTk7GV7/61ZqC2nQ6HXfddVfNs/YHBwcrmo0/NDQUy8vLFbc7Pj4ei4uLO4/X1tYaPqu5UCjE+973vqrPY7nvYzVmZ2fjoYceqjloT6fTsba2VnFf+1eXOIlzCwAAsJsZ4wAAAJS1P1A8c+ZMjI2NxcLCwoHXbs8Ynpyc3FnC+/r16zEzMxNra2tND8UjSjPe94fgSc9gT6fTVX2tY2Nj8fzzz9cVike8FQAfF/KPjIzsLJ2+2/Xr18u+Pp1O73zsD1ArmQG++/jtj4jSz0slwfZhFhYWjv1aM5lMXLlypeI28/n8nlB8YmLixILbo87jUeewHq+++mpFbZTru9r+9/+elVt9AgAAoNHMGAcAAKCs7aWbt+2e4bkdhD/22GM7AWk6nY5MJhN33XVXjI+Pt0QYvt/+WfCZTCZWVlZqaqvcjPHt9gqFQjz00EORy+XiySef3AkRd5+jycnJmmf7HmV+fj4WFhb29JvJZGJ6erop+2U30vz8fMzNze0J6TOZTAwNDcXDDz9cVfg6PT29Z0/2elYT4C35fD4GBwf3POfcAgAAzSAYBwAAoKzh4eE9ewN3yj8fBwYG9sx2rTWkOyoYp/2kUqmd/x8ZGal5mXf22r+M+mGrTgAAADSapdQBAAAoq56lrlvZgw8+uOfxzMxMkyqhVczPz+95vH8/bGr30EMP7Xns9w0AAGgWwTgAAABl7Z5V3Un7AU9NTe2ZIT4/P1/3fs20t91hbSaTacltANrR4uLint+tiYkJS6gDAABNIxgHAADggE6dLb5tbm5uz+P9s1rpHouLi3t+3s0WT87uc5lOp80WBwAAmkowDgAAwAH7g/EzZ840qZLGGBkZibGxsZ3Hs7OzZo13qd03RaTT6ZiYmGhiNZ1jfn5+z9+Rhx9+uKNWngAAANqPYBwAAIADuiEkXlhY2LOs8/j4eBOroRlyuVzkcrmdx0LxZBQKhT2zxScmJvbciAIAANAMfc0uAAAAgNbT6Uupb1tYWIjh4eGIiMhms7G4uCjA6zK7l9W/9957m1hJ57h8+fLOzTVDQ0MHti4AAABoBsE4AAAAB6ysrOx53KlLIA8NDcXS0lKMjo5GRCnQGxkZ6divl72GhoZiaGio2WV0lO0bTCJKfzeuXLnS5IoAAABKLKUOAADAAdevX292CSdmZGQkFhYWIqK0BLQl1aE2u39/0ul0LC8vu8kEAABoGYJxAAAADuiWpdS3jY2NxczMTESUZrzu3h8ZqMylS5eiUCjszBTPZDLNLgkAAGCHYBwAAIADtvcH7iZTU1M74fjs7Gxks9mq2+immfaw2+TkZORyuZ1Q3BL1AABAqxGMAwAAcMD+GePdEpRPTU3F3NxcRHTP1wxJuH79+s7y6UJxAACgFfU1uwAAAABaS7cHwhMTEzEyMnLsMtDlZod3+7mjey0sLEQ+n7d8OgAA0LLMGAcAAGCPcoFvty0RXkm4t7y8XPZ54TjdSigOAAC0MjPGAQAA2GP/MuqUFAqFuH79ehQKhXjyySdjfn6+7OvGx8djeno6MplMnDlzJtLp9MkWCgAAABwgGAcAAGCP3cF4Op2Ou+66q+v3DJ6eno7Z2dmKXpvNZiObze55rlgsNqIsAAAAoEKCcQAAAPaYmJiIiBCI73LLLbfsLBO9PQP8zJkzh75+e+l5y6oDAABAa0gV3bYOAAAAAAAAQAfraXYBAAAAAAAAANBIgnEAAAAAAAAAOppgHAAAAAAAAICOJhgHAAAAAAAAoKMJxgEAAAAAAADoaIJxAAAAAAAAADqaYBwAAAAAAACAjiYYBwAAAAAAAKCjCcYBAAAAAAAA6Gj/f6tTL5a9UD7XAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "fig = plt.figure(figsize=(20,10))\n", - "\n", - "ax = []\n", - "n = 0\n", - "l_tot = 1\n", - "c_tot = 1\n", - "\n", - "x_boundaries = 0.0, 0.003\n", - "x_ticks = [0, 0.001, 0.002, 0.003]\n", - "y_boundaries = 0, 0.2\n", - "y_ticks = [0, 0.05, 0.1, 0.15, 0.2]\n", - "\n", - "n += 1\n", - "ax.append(plt.subplot(l_tot, c_tot, n))\n", - "\n", - "for path, legend, color, symbol in zip(paths, legends, [myred, myblue], [\"s\", \"o\"]):\n", - " data = path + \"density.dat\"\n", - " file = open(data, \"r\")\n", - " steps, dens = np.loadtxt(file).T\n", - "\n", - " proba, density = np.histogram(dens[10:], bins=25, range=(x_boundaries))\n", - " density = (density[1:]+density[:-1])/2\n", - " proba = proba/np.sum(proba)\n", - "\n", - " ax[-1].plot(density, proba, symbol, color=color, markersize=15, label=legend)\n", - "\n", - "plt.xlim(x_boundaries)\n", - "plt.xticks(x_ticks)\n", - "plt.ylim(y_boundaries)\n", - "plt.yticks(y_ticks)\n", - "\n", - "complete_panel(ax[-1], r'$\\rho$ (part/\\AA)', r'$p$ ($\\rho$)', legend=True)\n", - "\n", - "fig.tight_layout()\n", - "plt.savefig('density_300K_2kcalmol.png', bbox_inches = 'tight', pad_inches = 0.062)\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [], - "source": [ - "paths = [\"lammps_25part_300K_NPT/\", \"python_25part_300K_NPT/\"]\n", - "legends = [\"LAMMPS\", \"Python\"]" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAB8UAAAPeCAYAAACV+su2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAADMuklEQVR4nOz9XWyk53kneP+ruyXIWERdTTkJ7G73qIs7Y3sG8crF1p4kDmbSRWdPZ0RKxgIJMImbjLMHAbwx6VYOMnOQtMmd+EUONnaVnAHezYtB1ORqz8VSgl0nR2qWPQ4ysXbNktJWWxhbZpc6WFjQV70HDGl+FNn8qA+y+PsBhFRP1XM91/OIot3687rvQrvdbgcAAAAAAAAAhtCZQTcAAAAAAAAAAL0iFAcAAAAAAABgaAnFAQAAAAAAABhaQnEAAAAAAAAAhpZQHAAAAAAAAIChJRQHAAAAAAAAYGgJxQEAAAAAAAAYWkJxAAAAAAAAAIaWUBwAAAAAAACAoSUU77NWq5VmsznoNk4czw0AAAAAAAA4DKF4j9Xr9UxOTmZ0dDSFQiEXLlzY+PtCoZCxsbHMz8+n1WoNutUka+Hz4uJiJicnMzY2tqXX9d4nJydTq9V6GlKftOcGAAAAAAAAHE+FdrvdHnQTw2hxcTHXr18/UGg7MzOTubm53jW1h1arldnZ2dRqtQOdV6lUMjc3l3K53JU+TtpzAwAAAAAAAI43k+Jd1mq1Mjk5mcnJyY1gd2ZmJsvLy7l3717a7XZWVlZSrVZTKpW2nDs/P5+xsbG+Tz/XarVcuHDhwIF4sjbRPTY2ltnZ2SP1cBKfGwAAAAAAAHD8mRTvstHR0Y1lxUulUpaXl1MsFnf9/PT09I4wulwuZ3l5uZdtbpidnc38/HxXalUqlSwtLR3q3JP23AAAAAAAAICTwaR4F01OTm4Eu8Vi8YHBbpJUq9VMTExsOdZoNDI9Pd2rNjfMz8/vGYgXi8WUSqUH3sO6er1+qL5P2nMDAAAAAAAATg6heJfMz89ncXFx4/Vzzz237zD5ueee23GsVqttBMW98vLLL+84NjU1lZWVlbTb7dy7dy8rKysby5cvLS1lampqz5q1Wi31en3fPZzE5wYAAAAAAACcHJZP74JWq5ULFy5svC6VSllZWTlQjU7LmE9MTGRhYaErPXYyNjaWRqOR5KcT2tv36+6k2WxmfHx81/B5v8uYn9TnBgAAAAAAAJwcJsW74ObNm1teH2YJ7xs3buw4tri42NOp5821X3rppX0F4slPw+vdPt9oNPbV90l9bgAAAAAAAMDJIRQ/olar1XFS+aCKxWLK5fKO45uXFu+2VquVZK3fTtd+kKWlpV3fe9AS6if5uQEAAAAAAAAnh1D8iLaHv8Vicd8T19tVKpUdx/YKno9i8yR1p2nr/SiVSrvuMf6gvk/qcwMAAAAAAABOFqH4ET3//PNbXl+9evXQtcbHx3cce9DE9WGth+KlUulQU+LrdlvyfH0KfTcn9bkBAAAAAAAAJ4tQ/Ii2h69HCZh3C4Ybjcaha+5mPRTvNGV9ELvd7+rq6p7nndTnBgAAAAAAAJwsQvEjaDQaOyaiR0dHD12vWCx2PL55qfNuKpfLmZycPHKdTn2PjIzs+vmT/twAAAAAAACAk0MofgS3b9/ecWyvMHg/Ok1M9yLcnZqayvLy8pEnxZPO97zX/uAn+bkBAAAAAAAAJ4tQ/AiWl5d3HNsrDN6PTuHwyy+/fKSavdZpqfS9Jr89NwAAAAAAAKBfhOJH0GkSebelvPerUzi8fanx46ZTf3tNoHtuAAAAAAAAQL8IxY+gU7h71GXAO4XDnSaxj4tGo7HjWLFY7Lic+TrPDQAAAAAAAOgXofgR9GLP6scee2zHseM88fz888/vODY3N7fnOZ4bAAAAAAAA0C9C8S476jLgRz2/32q12pbXpVIpU1NTB65z2p4bAAAAAAAA0B/nBt3ASdXPKeTjugz44uLijudQrVb3POc4Pbc7d+7kzp07B657+fLlXL58+bBtAQAAAAAAcILJmE4eofgxc9S9tftpdnZ2y+upqalUKpWB9HLQ5/bf/Df/TX7yk5+k3W4f+Fo/8zM/k0cfffTA5wEAAAAAAHDy3b9/P//wD/9w4PMKhUI+9KEP5f/9f//fHnTFXoTih9TP6e3jGJTPz89v2Ru8VCo9cEo8OR7P7c6dO4cOxJPkH/7hHw71gw4AAAAAAIDTq91u5yc/+Unu3LljYrzPhOKH1M9lwI+bZrO5ZUq8WCxmaWlpX+ceh+d2586dQwfiiUlx4GR744038sEHH+TMmTP5yEc+Muh2AHrunXfeyY9+9KON1z/7sz+bhx9+eIAdAfSH/98HnFZ+/gGnkZ99/XfYSfFkLRgXivefUPyQisVix+OtVmvX97p9rUGZnJzc8vqll15KqVTa17nH8bn9r//r/5pPfepT+65rvwfgJLt06VLu3r2bj3zkI3n99dcH3Q5Az/3VX/1VPvOZz2y8fuGFF/JLv/RLA+wIoD/8/z7gtPLzDziN/Ozrv4PuKf6d73wn/9P/9D/1sCMeRCh+SP1c0vw4LZ8+OzubRqOx8XphYSHlcnnf5x/H5/apT33KfxgFAAAAAABgXwxQnjxnBt3AsOnnntn9tri4mPn5+Y3X1Wo1ExMTXak9zM8NAAAAAAAAGByh+CHttQz4UXQKh/e7NHkvNRqNLcumz83NZWpq6sB1TttzAwAAAAAAAAZLKN5lvZh4Hhsb63rNg2g2m7l27drG65mZmczMzHT1GsP43AAAAAAAAIDBE4ofQadJ5KNOPHc6f5ATz61WK+Pj4xt9TU1NZW5u7kg1T8NzAwAAAAAAAI6Hc4Nu4CQrlUppNptbjm1/fVArKysdrzMo165d27iniYmJVKvVI9c8Dc8N4Lj64he/mPv37+fRRx8ddCsAAPSQ/98HnFZ+/gGnkZ998GBC8SPoFLp2CmcP4jjtjT0+Pp5Go5FkLRBfWFjoSt1hf24Ax9kXv/jFQbcAAEAf+P99wGnl5x9wGvnZBw9m+fQj6LRn9VEnnrefX6lUjlTvsMbHx1Ov1zd66FYgngz3cwMAAAAAAACOF6H4EXSaRL59+/aRam4Pd8fHx49U7zAmJyc3AvFyuZylpaWu1h/W5wYAAAAAAAAcP0LxI+g0jdxqtdJqtQ5Vr9O5/Z54np6ezuLiYpK1QHx5ebnr1xjG5wYAAAAAAAAcT0LxI+oUvq5PWR/U9mnpYrGYcrl8qFqHMTs7m1qtlmRtmvull17q2bWG6bkBAAAAAAAAx5dQ/IgmJyd3HHv++ecPVWv7vt1TU1MHOv8o+3LPz89nfn4+yVogvry8nGKxeOh6DzLI53b58uX8zM/8TJLkZ37mZ3L58uVDXRcAgOPv8uXL+f3f//2NL//fDwAAAOg32dTgFdrtdnvQTZxkrVYrFy5c2HH8MI/1woULW5YBv3fv3r6C6Xq9nsnJyY1zp6amUq1W933dWq2W6enpJGtT1svLyx33/e6mQT+3S5cu5e7du7l48WJef/31A18TAAAAAAAA9ks2NVjnBt3ASVcsFjMxMbGxD/e6Wq12oEnver2+JdidmpraVyDeaDQyPj6+49qrq6s7Jqg7WVxc3DMQ39zT6urqjuPrxzq9/vGPf5wkmZub23HdQT83AAAAAAAA4HQwKd4FzWYzo6OjW44Vi8Xcu3dv3zXGxsbSaDQ2zn311Vf3Fe5OTk7uCJbXrays7Dnxvbi42HEZ827b7VtskM/Nb+MAAAAAAADQL7KpwbKneBeUSqUd09CtVmvfgfP8/PxGsJskL7300r6nnffaR3xzze3Wl1wfpEE+NwAAAAAAAOB0EIp3yczMTGZmZrYc288k9vz8fGZnZzdeV6vVlMvlfV/36tWru763W51OS64PyqCeGwAAAAAAAHA6WD69y7aHtcnast5TU1N58sknUyqVsrq6mkajkWq1ujHpXSwWs7CwkEqlcqDrtVqtXLlyZcu+2sla2NxpL+8kuXDhwo7P99J+vsX6/dwsUQEAAAAAAEC/yKYGSyjeA81mM5OTk3suX77ZxMRE5ubm9tz/+0HXm56eTr1eT6lUyuzsbKampnb9fKFQONR1kmwsTz4yMpLV1dUd73cK2+/du7evZc37+dz84AEAAAAAAKBfZFODJRTvoWazmWq1mkajkWazmWazmWKxmFKplJGRkYyPj2dqaso+2Nv047n5wQMAAAAAAEC/yKYGSyjOqeQHDwAAAAAAAP0imxqsM4NuAAAAAAAAAAB6RSgOAAAAAAAAwNASigMAAAAAAAAwtITiAAAAAAAAAAwtoTgAAAAAAAAAQ0soDgAAAAAAAMDQEooDAAAAAAAAMLSE4gAAAAAAAAAMLaE4AAAAAAAAAENLKA4AAAAAAADA0BKKAwAAAAAAADC0hOIAAAAAAAAADC2hOAAAAAAAAABDSygOAAAAAAAAwNASigMAAAAAAAAwtITiAAAAAAAAAAwtoTgAAAAAAAAAQ0soDgAAAAAAAMDQEooDAAAAAAAAMLSE4gAAAAAAAAAMLaE4AAAAAAAAAENLKA4AAAAAAHCC1Wq1FAqFjI2NDboV2FWj0cj8/HzGx8czOjqaCxcupFAopFAo5MKFCxkfH8/09HQWFxfTarUG3S5DptBut9uDbgL67dKlS7l7924uXryY119/fdDtAAAAAADQJ2NjY2k0GikWi0mSkZGRB56zurqaJGm1WqlWq5mamupliwc2OjqaZrOZJFlZWUmpVOpa7VarlQsXLuz6vDY/m6mpqVSr1a5dez8e9M9zdXU1rVYrpVIpKysrQ3c/STI+Pp56vZ4kG+ete9D39/r9JtkSRBeLxZRKpVy9ejVjY2OH/p5vtVqp1Wq5efPmgYPucrmc6enpPP300zvu6ySSTQ2WUJxTyQ8eAAAAAIDTaXZ2diNAbDab+wrqSqVSisViRkZGMjs7m0ql0uMu969er2d8fHzjdbeD3FarlcnJyY0wdj183023Q/m9NBqNB07Hr/+zu3r1aqrV6tDdT7L2Pd1oNNJsNh94P0cxNTWVubm5fQfUi4uLuX79+pZ/x8rlciqVSkZHRzMyMpJms5kf//jHaTQaG/9edrKwsJCJiYkj3sFgyaYGSyjOqeQHDwAAAAAAyVoQee3atY7heKVSydLSUv+bOoDJycksLi5uOXbv3r2eTtZ2uua6fk5Xb56Q3m5mZiZzc3P7qjNs97O4uJjJycmO701MTOTJJ59MuVzOyMjIlu+TZrOZRqORpaWlPQPqpaWlB/5iyPT0dGq12sbrcrmc5557LuVyeddzWq1Wbt26lbm5uR3h/n6uedzJpgZLKM6p5AcPAAAAAADrtgd465aXl/cM8QZtfSnw7ebm5jIzM9Oz6zabzYyOju76fq9D+eTBU9UHib+G7X6SzkF/sVjMvXv39nV+q9XK9evXd/1lgb1C6u3/Ph3m+3F7jX78M+g12dRgnRl0AwAAAAAAAIO0Wxh5nAPxJB2D/CQ9n2x+0HLiN2/e7On1H3SNg/5zG7b7SbJlSf3DKBaLWVhY2HU6fXJysuPqCvPz81u+L2dmZg71CxrVanXLP5eTHogzeEJxAAAAAADgVBsZGRl0C4eyW5DabDb3XP66G/YKKefn5/e1V/thNZvNXSeYk8P98xy2++nW9/TMzEzHvbxbrdaOX8potVqZnZ3deF0qlfa95Hsn09PTG3XgqITiAAAAAAAAJ8zi4uJGUNspNDxKGHkQu00x93K6enPw2u0J4mG7n27Y7Xvp+eef3/L6+vXrW16vh9qHtf59fRyfCSePUBwAAAAAADjVOoVuxz2IWw9pS6VSx+XS6/V6ms1mz66/PolcKpUyNTW14/3dlnY/qlartTFVvdu1D2PY7qeb37+lUqnjLws0Go0tr7dPu3eaMD/odZOTu5IDx4tQHAAAAAAATqM7d5JGo3tfd+4M+o5OjUajsRFIzs7OplKpDHRavNN1Wq1W5ufnu36tzVPVvbq/Ybufbrh69eqe73da/v2oy55bNp1uEooDAAAAAMBpc+dO8vGPJ2Nj3fv6+McF432yPiVeLBY3Jos3h6vrejXdvF2xWOw4FdztJcc372NdKpWOPIm8m2G7n2540OR5L1YlKBaLabfbWVpa6nptTh+hOAAAAAAAnDZvvpm8/XZ3a7799lpdemrzctubl9rebdntfgXju01Xd/P6m0PpXk9VD9v99MLmSe6VlZUd76/veQ/HgVAcAAAAAADghNgcpE5PT295r1Mw3q+wtVQqpVKp7DjeaYL9MDYvX96Pqephu5+j6hRwb+55dXV1x/v1er2XLcGBCMUBAAAAAABOiPVJ5U77iHcKbJvNZt/CyV5OV2+uMei90k/q/RxFp++hZ555ZuPvR0ZGdrzf7eXm4SiE4gAAAAAAACdArVbbmNjtFIDvNt3cr9C1XC6nXC735PrrAWs/p6qH7X4Oq9ls7tgzvFKpbHk2o6OjO85rNBpdm6yHoxKKAwAAAAAAnADrYexu4Xeyc0n1ZG3Kd3uo2SudAuNms7mxD/phzM/P7/nLAL00bPdzGJ2+p6rV6pbXu30/zs/PZ2xsLI1Goye9wX4JxQEAAAAAAI65zcH2XkHqxMREisXijuPbQ8xe6bSse3K08Hd9qrpYLHbcN72Xhu1+DqpWq+1YOn1hYWHHM9ltqj5ZmxgfGxvL6OhoZmdns7i42Ldf0oB1QnEAAAAAAIBjbvPE8oOC1Bs3buw41o19sPerm3ubb14yvtN99cOw3c9+zc/P75gSX1hY2HW59+eee27Pes1mM/Pz85mcnMzo6GgKhUJGR0czOTkpLKfnzg26AQAAAGCI3LmTvPlm9+p9+MPJ5cvdqwcAcAJtDmD3M1k8NTW1I8httVqp1Wp9mUxev/56+LtudnY2y8vLB6p1kF8G6JVhu591zWaz4xT84uJibt68uWXJ81KplIWFhV2nwZO1afGFhYVMTk4eqIftQXixWEylUskzzzxz7Pdb5+QQigMAAADdcedO8vGPJ2+/3b2ajzySvPKKYBwAONU2B6n7Wba7WCxmYmJix77Xc3NzfQtib9y4saPXRqORer2+6/7T222eHJ6Zmem4LHy/DNv9JMn4+HhWV1czMjKSYrGYVqu1I6AulUqZnZ3d9/fNxMREVlZWMjk5eeh9xFutVhYXF7O4uJhisZiFhYV9P2PYjeXTAQAAgO54883uBuLJWr1uTp4DAJww6xPeye77W3fSaWnuZrN56KDyoHYLfQ+yF/fmzw56qfFhu58kmZ6ezsjIyMb3xerqakqlUiqVSubm5rK8vJyVlZUD/yJFqVTK8vJylpeXMzU1te/v2U5arVbGx8ePtIc7JEJxAAAAAACAY2vzXuDb93feS7lc7rjU9c2bN7vS1350ClMbjca+gvl6vb4xtTw1NTXwqer1PrY7yfczMzOTlZWVtNvttNvt3Lt3LysrK1laWsrMzMyeS6XvR7lcTrVazcrKSu7du5eFhYXMzc1lYmLiwLXn5+e3/LsAByUUBwAAAAAAOKbWQ+z1JdEPolOIvri4uGNv7F7ZbRp6P1O/mz9zXKaEh+1++mn9+3dmZiYLCwtZXl5Ou93OyspKFhYW9jVRPj093bfvXYaPUBwAAAAAAOAY2hxgH2a57d0mkvs1LV4sFjtOV9fr9T2nqze/PzExcaTlt7tp2O7nOCiVSpmYmNiYKF9aWtrz+dy6dauP3TFMhOIAAAAAAADH0ObwenZ2NoVC4cBfnSZr+7kM9W5T0XsF83Nzcx3//jgYtvs5biqVSlZWVnZdFWFpaanPHTEshOIAAAAAAADHzH73qj6MVquVxcXFntTebn0SeLvFxcWNPbY3azQaqdfrSdYC0uM2VT1s93NcLSwsdHxWlk/nsM4NugEAAAAAAAC22jx5vFtAeJBa20PwmzdvHniP8sOam5vrGMLPzs5mYWFhR1+bzzuOhu1+jqu5ublMTk5uOba6ujqgbjjphOIAAAAAAADHyOZJ7nK5fOTw+saNGztC3PVJ9HK5fKTa+1EqlVKpVDYmptetT1evB/7NZnPLffejt8MYtvs5rjp935u057Asnw4AAAAAAHCMbJ4uvnHjxpHrlcvljmHiXvtgd9tue3Fvnp7e/JnjPlU9bPdzXBWLxS2vheIcllAcAAAAAACghxqNRubn5zvuOd1JrVZLshYIdmuJ804h7uLiYt/2aK5UKh0npWu1Wlqt1pap6vVJ7ONs2O6nG+bn5ze+d3vlySef7Gl9hpdQHAAAAAAATpsPfzh55JHu1nzkkbW67FCtVjM7O7uvUHw9VE2SqamprvXw9NNP73q9ftlt6v3mzZtbJqlPylT1sN3PUd28eXPXCfrD2v5LG936JRFOH3uKAwAAAADAaXP5cvLKK8mbb3av5oc/vFaXHdb3nt7P0s+bA9Tp6emu9bA+db59b/GbN29mZmama9fZy8TEREql0o5fDpifn9/4+1KpdGKCz2G7n27o5soDjUZjy+vT9BzpPqE4AAAAAACcRpcvC7H7YH0p7SQZGRnZ87P1en3js7vtA34UN27c2BGKt1qtLC4uHjhwXF1dPVQPs7Oze4b93Z403q9hu59O4XS/lspvNptd+d6tVqtbXp+WiXt6w/LpAAAAAADAqdbLsHB9SjxZm9beS6+mxNftFrTfvHnz0DUP+uympqZ2fQ7FYrGrS8YfxrDdTz+tP7vtE96H0Wg0tiztPzc31/VfEuF0EYoDAAAAAACn2n72+j6s559/PsmDl05vNptbAvTd9gA/qk5he6PR2HLt/TjKLxLsthf3YQLkTn0cZup72O7nsJPv3XDU6fhWq5Vr165tvK5UKn1b4p/hJRQHAAAAAABOtZWVlZ7UXV+aPHlwKL45rC4Wiw+cKj+s3ZZJP8hk+uZfIrh9+/aBe5iZmel4f7uFy/vtZd1BJ5WH7X6SZHl5ed/1u2FzmN9sNjM6OnqovhuNRsbGxjbqVSqVLC0tdalLTjOhOAAAAAAAcGo1m80tyzSva7VamZyczPz8fGq1WhYXFzt+1Wq11Gq1zM/Pb+wvPT4+ntHR0Vy4cGGj3l6h+PT09JZJ7VardeDJ7f3aLahsNpv7DsY3TwK3Wq3Mz88fuI/tU9QTExMH/kWAxcXFXZ/TQXoatvtpNBq5detWx/d6tcf59sn0ZrOZsbGxTE5O7tjHvpP177+xsbGN4H5mZkYgTtcU2u12e9BNQL9dunQpd+/ezcWLF/P6668Puh0AAIDh0GgkY2Pdr7u8nJTL3a8LAJxqrVYrN2/ePFQAehhzc3MbS0CvB+6rq6sPnKYtlUoplUqZnp7edcp7L9PT02k2m/u6VrI2pV4qlVKpVDI3N7el11arteek8XqvxWIxCwsLe16n1Wpt+aWBpaWlVCqVPc9ZD073ey/rPRWLxYyMjKRarWZkZGSo7qdUKmV2djaNRiOrq6tpNpv7Wgp+c53Z2dkH9vog9Xo94+Pje36mUqlsXPexxx7Lj3/84zSbzTQajS3/HEqlUhYWFlIesj8DyKYG69ygGwAAAAAAAOi3W7du9S0QT7Il4FtdXd11Inj7dHGz2Uyz2Uy5XD5UKH7r1q09Q9Lt12u1WjsC2r2m1jefv97rfiaki8VipqamUqvVNkL4B9nvBP3m668Hxevnj4yMDNX9JGv/fPYbqq/X2lxncnJyX+fupVKpZHl5OdVqddfvuQfda6VS6UpAD52YFOdU8ts4AAAAPXDnTvLxjydvv929mo88krzySnL5cvdqAgBkLVBcXV3NyMhIV/bv3lxvs17tDT4M1veerlarO5YfP4mG7X6OotFopF6v5+WXX96YYl8Pytcn1EulUsrlcsbHx3P16tWh/3dFNjVYQnFOJT94AAAAeuTOneTNN7tX78MfFogDAAAnnmxqsCyfDgAAAHTP5ctCbAAAAI6VM4NuAAAAAAAAAAB6RSgOAAAAAAAAwNASigMAAAAAAAAwtITiAAAAAAAAAAwtoTgAAAAAAAAAQ0soDgAAAAAAAMDQEooDAAAAAAAAMLSE4gAAAAAAAAAMLaE4AAAAAAAAAENLKA4AAAAAAADA0BKKAwAAAAAAADC0hOIAAAAAAAAADC2hOAAAAAAAAABD69ygG4BBeuONN3Lp0qWO733xi1/MF7/4xT53BAAAAAAAwEn01a9+NV/96lc7vvfGG2/0uRs2E4pzqn3wwQe5e/dux/fu37/f524AAAAAAAA4qe7fv79r7sRgCcU51c6cOZOPfOQjHd979NFH+9wNAAAAAAAAJ9Wjjz6aixcvdnzvjTfeyAcffNDnjlhXaLfb7UE3Af126dKl3L17NxcvXszrr78+6HYAAAAAAAAYYrKpwToz6AYAAAAAAAAAoFeE4gAAAAAAAAAMLaE4AAAAAAAAAENLKA4AAAAAAADA0BKKAwAAAAAAADC0hOIAAAAAAAAADC2hOAAAAAAAAABDSygOAAAAAAAAwNASigMAAAAAAAAwtITiAAAAAAAAAAwtoTgAAAAAAAAAQ0soDgAAAAAAQNe0Wq1BtwCwhVAcAAAAAACAI2m1WqnVahkfH8+FCxcyPz8/6JYANpwbdAMAAAAAAACcHM1mM41GIy+//HKazWbq9brpcOBYE4oDAAAAAACnxvj4eOr1epKkWCxueW9kZGTPc1dXVzf+fnMIXCwWUyqVcvXq1YyNjWVqaqpr/R5Hc3NzqdVqg24DYN+E4gAAAAAAwKlRLpeTrE07N5vNLe8ddtq51Wql0Wik0WgkSaanpzM1NZW5ubkdwfswmJ2dzeTkZJK1e7958+bGvQMcR0JxAAAAAADg1Jibm9vyenFxcSPg3W5iYiJPPvlkyuVyRkZGtgTc60uILy0tbUyeb1ar1VKr1bK0tJRKpdLVexi0UqmUUqm08bpYLGZ8fHyAHQHsTSgOAAAAAACcWhMTE5mYmMji4uKW48ViMQsLC7ueVyqVUqlUMjMzk1arlevXr++okawt1z6MwfhmmwNygOPozKAbAAAAAAAAGKSjTjmvB+jbp9DXTU5OHnpp9n5qNBoZHx/P/Pz8oFsB6CqhOAAAAAAAcKqNjIx0pc7MzEwmJiZ2HG+1WqnVal25Ri8sLi5mfHw8Y2Njqdfr+fGPfzzolgC6SigOAAAAAADQJbtNiz///PN97mR/JicnMzk5uWVf9Mcee2yAHQF0n1AcAAAAAAA41YrFYtdqlUqllMvlHccbjUbXrtFNnabk7REODJtzg24AAAAAAAA4Ptrt5Dt3km+/lnz3B8nb7yaPPJR84qPJE48nn7qcFAqD7vJ4u3r16rENwbfr9AsBQnFg2AjFAQAAAACAvPte8mffTKr1pPnDpJDk3Nm1kLxQSN57P2knKf1cMl1Jfu0zyUNSho66OXk+CCe9f4Dt/M8VAAAAAACccn93N/nCN5L/8vpPj7WTvPv+zs+++sPky/8p+d/+r+Rrn08+ebFvbZ5ox3X62v7hwGlgT3EAAAAAADjF/vqV5LN/sLZUejtrX3tZ/8x3f7B23l+/0vseT5pWq7Xj2MTERP8bOaRO+4wDnGQmxQEAAAAA4JT6u7vJ5/44eee95IMHpeHbvP/B2tLqn/vj5MXfMzG+Wb1e33HsmWeeSbIWmN++fTvJT8Pn7cuVr4fqq6urSdamzDtNmjebzTSbzT3rrNeoVCqHu5kuarVamZ2dTb1eT7PZTLLWc6lUSqVSyTPPPJNyudy16zWbzSwuLmZpaSnNZjOrq6tptVob1yyVSnnmmWdSqVSOtGR8o9FItVrNrVu3cuPGjczMzGx5v9/3DewkFAcAAAAAgFPo3ffWlkx/9/2DB+LrPmivnf/bf5q8+Kw9xpOfBtWbVSqVjdCzXq9ncnLyQDXn5uZ2BK3rtaanp/dV4969e/sOfnuxp3itVuvYa6vVSqPRSKPRyPz8fCqVShYWFo7UQ71ez+zsbBqNxsaxYrGYkZGRtFqtLddcXFxMkkxNTWVubm5f1200Grl9+3aWl5dz69atjisDrOvnfQO78z9PAAAAAABwCv3ZN9f2ED9kHr7h/Q+Sv/3+Wr3f+Fddae1E6xSAVqvVjb9fDz+XlpZSq9V2rTM1NZXx8fEUi8VcvXq142eefvrplEqlNJvNLCws7JhQL5fLmZ6eTqlU6hi2NhqNPP/88zuOz8/PJ0l+/OMfb5k2b7VamZyczNTU1K59dzI9Pb3nvW5Wr9dz5cqVLC8vH2of9vHx8Y3nUCwWMzc3l6effnrL/a9Pdm/uqVarpVarpVqt7np/s7OzG89mP/p538DehOIAAAAAAHDKtNtJdecK30dSeyn5t/8yKRS6W/ckqdVqO4LphYWFLSFnsVjMxMREJiYmMj4+3nFqfGpqakuQvptisbixLPrU1FTGxsY2pqPL5XKWl5c7nlev1zM3N9dxmfdkLfzdzUGn3DeH1JVKJaVSKWNjY1leXs7t27e3THOva7VaGR8fz8rKyr6v02w2Mz4+vjGlX6lUsrS01PGz5XI51Wo109PTuXbt2pZJ7+np6SwvL3d8/o899tjG8+60IsAg7hvYH6E4AAAAAACcMt+5kzR/2L167SQr/zX5m+8nn7rcvbonyfz8/I4weWFhIRMTE7ueMzExkUqlsiOcXp/MPqjN4e7CwkLHz2wOaw9jv1PMKysrGyH9xMRE5ubmOp7baDQyOTm5I2Be3w98r+e3bj1MXq9RLpd3DcQ3W//FgdHR0S3Ha7VaRkdHdyxZPzMzs+VYp0nwft43sH+Fdrt91JVR4MS5dOlS7t69m4sXL+b1118fdDsAAAAAAH31//0/ky/9/46+dPpmhST/4deSX//lLhbtk3q9nvHx8S3HisVi7t27t/G62Wx2DDcXFxdz8+bNLZO/pVIpCwsLG/uIH/Xa+9FsNjfC3ZmZmczNzXX83Poe2uvXqVarW44lydLSUkZGRjqe3+meNl97uwf9YsC60dHRjnux7yfc3h70Ly8v7+vZr+v0zyBZew7rk+EHOS/pz31zssimBsukOAAAAAAAnDLf/UFy7mzy7vvdq3nu7FrdYTU+Pp7V1dWMjIykWCym1WrtCDNLpVJmZ2cPtOf2+tLam2u1Wq3U6/U9A9ntNi/3fePGjV0/tz2o7TRRfpDr7mW/wXCSzM3N7ViafT8T7YuLi1s+Vy6XDxSIJ2v322lif3p6es+lzHebmu/HfQMHc2bQDQAAAAAAAP319rtr+4p3U7ud/OSd7tY8TqanpzMyMpJms5lGo5HV1dWUSqVUKpXMzc1leXk5KysrBwrEN9febj97im+2voz31NRUisXigXvotkqlcqAlwCcmJjqGzHvt253s3P/8mWee2fc1N+s0Wb++lPlB9Ou+gYMRigMAAAAAwCnzyENJodDdmoVC8qGHu1vzOJmZmcnKykra7Xba7Xbu3buXlZWVLC0tZWZm5sDTyZt1CtIXFxe37BG+l82f3R4SD8phnkenCfW9nkG9Xu+49PhhlMvljuH0QX85oR/3DRycUBwAAAAAAE6ZT3w0ea+LS6cna/U+8dHu1jwtisVix2D81q1b+zr/5s2bSXafOh6Exx577MDndNqXfHV1ddfPd1r6/Sj332li/6BLmffjvoGDE4oDAAAAAMAp88TjSZdXT0/7H+tyOIddQn19Ofdk773ET4KDBtqdAuujLB2/25T5+vPtlePyiwwwzITiAAAAAABwynzqclL6uaRbK6gXkoz+fPILH+tSwVOoXC7vWHq70Wg8cG/p9b2wO50/7LY/m6Pupb7b8zO1DSefUBwAAAAAAE6ZQiGZPtzWy7uautb9fcpPm06T3g+aFq/VarueO8x6ted2p2D9Qb+YABx/QnEAAAAAADiFfu0zyT+/lJw9YlJw9kzyLz6W/Povd6ev02xiYmJHKLseeney/l6xWMzExEQvWzt2OgXV3QjKR0ZG9nUMOFmE4gAAAAAAcAo9dC752ueTh84mZw454X2msHb+n/xmcu5sd/s7raampra8brVaWVxc7PjZ9Sny7edweJ0mxY+6LDsweEJxAAAAAAA4pT55Mfnz30kePnfwifGzZ9bO+/PfWatDd0xPT+841mkJ9UajkUajkeT0LZ2eJKVSqePx9WfSj2sBJ4dQHAAAAAAATrFf/Hjy4u+tBduFrH3tZf0zn7y4dt4vfrz3PZ4mpVIplcrWDd/r9fqOpcHXg/JOS66fBrvd8+3bt49Ud/tzLhaLQnEYAkJxAAAAAAA45T55MXnx2eQr/2Ny5efWjhWytjT6uTNrf10Py0s/v/a5F581Id4rs7OzO45t3lu81WptvD6NU+LryuXyjmPLy8tHqrm6urrl9fZfUABOpnODbgAAAAAAABi8h84lv/Gvkn/7L5O/+X7y7deS7/4g+ck7yYceTj7x0eSJx5Nf+FhSOOQe5OxPpVJJqVRKs9ncOHbz5s3MzMwkSW7dupVkLRTuFAyfFpVKZcdy6bdu3eq43Px+tFqtHZPizzzzzGHbA44Rk+IAAAAAAMCGQiH51OXk1385+cPPJf+fX1/766//8trxYQzEtwehux3rp+17i7darczPzydJ5ubmkvRuSnzQ975fnQLrVquVer1+qHrbzyuXy5mYmDhULeB4EYoDAAAAAAAcM1NTUzuO3bx5M/V6Pc1mM8VisWeB7fYlxA/jxz/+cRc62Tug321SvtPy8/uxfcJ8/ZcPDqIf9w0cnFAcAAAAAAA41boRAndbp9C71WplfHw8SfemxIvF4o5jm5dtP+46BdeNRmPLHuz70Wg0tkyKT01N2U8chohQHAAAAAAAONWWl5c7Hh90OLxX8N1pkvwwRkdHdxzrFDQ3m81dlyXv9Jy6Nen8oF9YqFQqG3utbzY9Pb1jv/G9XL9+fUvN/exLPsj7Bg5GKA4AAAAAAJxajUYjt27d6vjeYZfh7pZyuZxSqbTj+NTUVMcJ78PoVL9er2d0dDSzs7OZnZ3N+Ph4RkdHd+xzvm5hYWHHsVu3bnUlIO5Ue7u5ubmOU93Xrl3L4uLiA8+fnJzcCNAnJiaytLR06N76ed/A/hXa7XZ70E1Av126dCl3797NxYsX8/rrrw+6HQAAAAAA+mR2djaNRiOrq6tpNpv7CjBLpVKKxWJGRkYyOzvb12W1a7XajjB6ZWWlY5h9WGNjYw+cqi4Wi1leXk6pVMr8/HyWlpb29QxLpdLG83tQ0Lu4uJjJycmO75XL5YyMjGRycnLXKfnp6emOy6ZPTExkenp6xz+3xcXFzM7Obkx8V6vVPSfwj+t9czLIpgbr3KAbAAAAAAAA6Jd6vb7vZbXXp7HXQ9Aku4aXvfL0009vCcUrlUpXA/Ekee6553Lt2rU9Q96XXnpp47ovv/zyrkupJ1v3Kd/87A5jvVaz2Uyj0djz3qvVaiYnJzd+8WHd4uLixsT4+vmbe5qZmcmNGzceOH1/XO8beDCT4pxKfhsHAAAAAICTYnJyciPUXVpa6tmk+uzsbOr1+sYUdLFYTKlU2nV58uOs0Wjk+eef33I/yU+n/iuVSsbHx0/cfXFyyaYGy6Q4AAAAAADAMfbkk09mcXExpVKppyHu3Nxcz2r3W7lcTrlcHnQbwDFxZtANAAAAAAAAsLvnn38+ydokNwAHJxQHAAAAAAA4ptb3lE6SqampAXcDcDIJxQEAAAAAAI6parWaRCAOcBRCcQAAAAAAgGOqVqslsXQ6wFEIxQEAAAAAAI6hWq2WVquVSqWSUqk06HYATiyhOAAAAAAAwDE0NzeXxJQ4wFEJxQEAAAAAAI6Z+fn5NJvNlEqlVCqVQbcDcKIJxQEAAAAAAI6RZrO5MR2+Pi0OwOEJxQEAAAAAAAag0WjsONZqtTI+Pp4kKZVKmZiY6HdbAENHKA4AAAAAANBntVotY2NjmZ6eTqPRSKvVyuLiYq5cuZJms5kkqVarA+4SYDicG3QDAAAAAAAAp8164F2r1VKr1Xa8PzU1ZS9xgC4xKQ4AAAAAANBHrVar49Lp6yqViilxgC4SigMAAAAAAPTRrVu3dn1vbm4uS0tLfewGYPhZPh0AAAAAAKCPpqamMjIykqWlpayurmZkZCRjY2N5+umnUywWB90ewNARigMAAAAAAPTZxMREJiYmBt0GwKlg+XQAAAAAAAAAhpZQHAAAAAAAAIChJRQHAAAAAAAAYGgJxQEAAAAAAAAYWkJxAAAAAAAAAIaWUBwAAAAAAACAoSUU77NWq5VmsznoNo6NVqt1ImoCAAAAAAAAJ9O5QTcw7Or1eqrVahqNRscwvFwu55lnnsnU1FSKxWL/GzygxcXFzM7OplKppFqtHqlWq9XKhQsXthxbfwYjIyMdj28PvFdXVzsev3fv3ol4ngAAAAAAAEBvCcV7ZHFxMdevX3/g1HKj0Uij0cjs7GxmZmYyNzfXnwYPqFarZXZ2duN+ejXtvl7ftDcAAAAAAADQDZZP77JWq5XJyclMTk5uBLszMzNZXl7OvXv30m63s7Kykmq1mlKptOXc+fn5jI2NHZtAuNVqZX5+PhcuXMj09HTX++rlJLcpcQAAAAAAACAxKd51Y2NjG1PUpVIpy8vLOwLaUqmUqampTE1NZXp6OrVabeO9RqORa9euZXl5uZ9tb9FoNFKtVrf0BQAAAAAAAHASmRTvosnJyY1AvFgsdgzEt6tWq5mYmNhyrNFoZHp6uldtdtRqtVKr1TI6OpqxsbGNQLxUKp3IqevjMm0PAAAAAAAADJZJ8S6Zn5/P4uLixuvnnntu32Hyc889t+Xc5Kd7eG9fYr3bFhcXU61WU6/XtxyvVCqZnZ1NpVLZMc3eC+u/RJBsDbRXV1d3HNt8fK96AAAAg9RuJ9+5k3z7teS7P0jefjd55KHkEx9Nnng8+dTlpFAYdJcAAAAw/ITiXdBqtTI7O7vxulQq7Zj+3kuxWMzMzEzm5+e3HJ+dnc3CwkLX+tyu2WxmcnJyy7GJiYnMzc1tCeP7ETCPjIz0/BcAAAAA+uHd95I/+2ZSrSfNHyaFJOfOroXkhULy3vtJO0np55LpSvJrn0ke8qdzAAAA6BnLp3fBzZs3t7w+zNLnN27c2HFscXFxYzn2XlgPoddD+Xv37mVhYWEg4bTJbgAAYBj83d1k/A+SL/+n5NUfrh1rJ3n3/eS9D9b+2v7Hz776w7XPjf/B2nkAAABAbwjFj6jVau2Y8D7IlPi6YrGYcrm84/j2ZdW7bXl5Offu3cvc3NxAg+mRkZGBXRsAAKAb/vqV5LN/sLZUejs/Db93s/6Z7/5g7by/fqX3PQIAAMBpJBQ/ou17cReLxUNPWlcqlR3HlpaWDlVrvzoF8QAAABzM391NPvfHyTvvJe9/cLBz3/9g7bzP/bGJcQAAAOgFofgRPf/881teX7169dC1xsfHdxzbHroPK8unAwAAJ9W77yVf+Mba0ugfPGg8fBcftNfO/+0/XasHAAAAdI9Q/Ii2h9ZHmbzeLVBvNBqHrnlSWD4dAAA4qf7sm8l/ef3gE+Lbvf9B8rffX6sHAAAAdI9Q/AgajUZardaWY6Ojo4eut9u0dLPZPHRNAAAAeqfdTqpdXuCr9tJaXQAAAKA7hOJHcPv27R3Hjjrx3GnS/DSE4pZPBwAATqLv3EmaP0y6lWG3k6z81+Rvvt+lggAAAIBQ/CiWl5d3HCuVSkeq2SlUf/nll49U8yR47LHHBt0CAADAgX37taTQ5ZqFf6wLAAAAdIdQ/Ag6TXAfdeK5U6i+fYn2YfGg+6rVapmcnMzo6GguXLiQQqGQCxcuZGxsLNPT01lcXOxPowAAALv47g+Sc2e7W/Pc2bW6AAAAQHecG3QDJ1mnUPyoy6d3CtVXV1ePVPMkWL/vVquV2dnZ1Gq1jp9rtVppNBppNBobn5mbm8vMzEy/WgUAANjw9rvd3/+73U5+8k53awIAAMBpZlL8CHqx13enZcSHdVJ8u9nZ2Vy4cGHXQHyv80ZHR0/F3usAAMDx8shDSaHL66cXCsmHHu5uTQAAADjNTIp32VGXTz/q+SfJ5gn46enpI9VqNpsZHR3N0tJSKpXKUVsDAADYl098NHnv/e7WfO/9tboAAABAdwjFD6mf09unYfn0zUqlUiYmJjI6OpqRkZGsrq6m1WplaWkp9Xp9z3MnJyezvLzccW92AACAbnvi8aTLq6en/Y91AQAAgO4Qih8zR92T/CTZ/osFpVIpCwsLKZfLHT8/MzOzrz3H14Px/XjnnXfyV3/1Vwfq+/Lly7l8+fKBzgEAAIbTpy4npZ9LXv1hd8LxQpLSzye/8LEuFAMAAKAn7ty5kzt37hzonHfeeadH3bAfQvFD6uf09rAG5Zuf4cTERBYWFh54TrFYTLVazfT0dMbGxjp+ptFopF6v72sZ9R/96Ef5zGc+s/+mk/z+7/9+/t2/+3cHOgcAABhOhUIyXUm+/J+6V3PqWvf3KQcAAKB7/uN//I/59//+3w+6DQ7gzKAbOKn6uXz6sJuZmdlXIL5ZuVzecxp8bm7uqG0BAADsy699Jvnnl5KzR/wT9tkzyb/4WPLrv9ydvgAAAIA1QvFDKhaLHY/3Iizf7VonXaVSSbvdPnSAXS6Xdz33QXuPAwAAdMtD55KvfT556Gxy5pAT3mcKa+f/yW8m5852tz8AAAA47Syffkj9XNJ8WJdP74aZmZncvHmz4y8j7GcJ9Z/92Z/NCy+8cKBr2k8cAADY7pMXkz//neRzf5y8+37y/gf7P/fsmbVA/M9/Z60OAAAAx9tv/MZv7Gsb383+zb/5N/nRj37Uo454EKF4l62urg7tZPdxNTU1lfn5+R3Hm83mA899+OGH80u/9Eu9aAsAADhlfvHjyYu/l/z2nyZ/+/21Y+09Pr8+VP7Ji2sT4gJxAACAk+Hy5csHHqJ8+OGHe9QN+2H59EPq1fLpq6urO46VSqUj1Rx2zzzzTMfj9n0HAAD67ZMXkxefTb7yPyZXfm7tWCFrk+Dn/nEifD0ML/382udefFYgDgAAAL1kUrzLOoXaRzU2Ntb1msOkXC4PugUAAIAND51LfuNfJf/2XyZ/8/3k268l3/1B8pN3kg89nHzio8kTjye/8LGkcMg9yAEAAID9E4ofQalU2rFE91Gnkzudb1L8wTr9s7CMPQAAMEiFQvKpy2tfAAAAwOBYPv0IOoXV+9nHei8rKyv7ug5bdQrAPTcAAAAAAABAKH4EnULXTqH2QdhTvHuuXr066BYAAAAAAACAAROKH0Gnvb6POim+/fxKpXKkeqfF9mXny+Wy5dMBAAAAAAAAofhRdJrgvn379pFqbg/Fx8fHj1TvtNg+Yf/MM88MqBMAAAAAAADgOBGKH0GnKe5Wq7Vjanm/Op07bJPizWYz9Xq9qzU7PbepqamuXgMAAAAAAAA4mYTiR9QptD5s6Lt9yrxYLKZcLh+q1nHUarUyOjqaycnJrtbd/rxnZmYsnQ4AAAAAAAAkEYofWaeA9/nnnz9UrYWFhS2vDzrtfNT9zHutWCymUqmk1Wplfn6+a3Vv3ry58felUilzc3Ndqw0AAAAAAACcbELxI3r66ad3HFtcXDxUrVu3bm15fePGjX2dV6/Xc+HChYyOjqZQKGR6evpQ1++H2dnZjb8edpn5zRqNRhqNxsbrarV65JoAAAAAAADA8BCKH1GxWMzExMSO47Va7UB16vX6lpB4ampqX0uANxqNjI+Pbzm3Vqt1dYnyTuH16urqoWpVKpWN+1oPyA+r1Wptuc9qtTp0e7ADAAAAAAAARyMU74JOy3UfNPDd/PlisbjvJcA3Lx2+2eLiYteWU+8UgB9lynt9WfharbZlyvsgWq1Wrl27tnGP1Wr1wMvNAwAAAAAAAMNPKN4Fnfax3j7FvJf5+fkt4fBLL720rynxZO99xA8bOG/WarU6LgffbDYPXX/z8u7Xrl1LvV4/0Pn1ej1jY2Mb1xeIAwAAAAAAALsRinfJzMxMZmZmthxbXFx8YDA+Pz+/ZUq8Wq2mXC7v+7pXr17d9b2D1Nmu2WxmcXExY2Nju37m2rVrG9PeB5kcL5VKKZVKSdZC9/Hx8YyNjaVWq+0a8jebzdRqtYyNjWV8fDzNZjOlUikrKysCcQAAAAAAAGBXhXa73R50E8Nke8idrC2HPjU1lSeffDKlUimrq6tpNBqpVqsbIXCxWMzCwsKB98RutVq5cuXKjlB6ZmZm30uwJ8mFCxeOtCT6ZsViMffu3dvzM7Ozs5mfn9/1/fXQPNk5DV8sFnPjxo0dv4RwEJcuXcrdu3dz8eLFvP7664euAwAAAAAAAA8imxosoXgPNJvNTE5O7nt58YmJiczNzW0Jgg96venp6dTr9ZRKpczOzh54erpQKBzq2rt50LfV5p73qxth+Do/eAAAAAAAAOgX2dRgCcV7qNlsplqtptFopNlsptlsplgsplQqZWRkJOPj45mamtr3/uHDqNVqpVar5eWXX06z2Uyr1dp4TiMjIymVShkfH0+lUjnScvDb+cEDAAAAAABAv8imBksozqnkBw8AAAAAAAD9IpsarDODbgAAAAAAAAAAekUoDgAAAAAAAMDQEooDAAAAAAAAMLSE4gAAAAAAAAAMLaE4AAAAAAAAAENLKA4AAAAAAADA0BKKAwAAAAAAADC0hOIAAAAAAAAADC2hOAAAAAAAAABDSygOAAAAAAAAwNASigMAAAAAAAAwtITiAAAAAAAAAAwtoTgAAAAAAAAAQ0soDgAAAAAAAMDQEooDAAAAAAAAMLSE4gAAAAAAAAAMLaE4AAAAAAAAAENLKA4AAAAAAADA0BKKAwAAAAAAADC0hOIAAAAAAAAADC2hOAAAAAAAAABDSygOAAAAAAAAwNASigMAAAAAAAAwtITiAAAAAAAAAAwtoTgAAAAAAAAAQ0soDgAAAAAAAMDQEooDAAAAAAAAMLSE4gAAAAAAAAAMLaE4AAAAAAAAAENLKA4AAAAAAADA0BKKAwAAAAAAADC0hOIAAAAAAAAADC2hOAAAAAAAAABDSygOAAAAAAAAwNASigMAAAAAAAAwtITiAAAAAAAAAAwtoTgAAAAAAAAAQ0soDgAAAAAAAMDQEooDAAAAAAAAMLSE4gAAAAAAAAAMLaE4AAAAAAAAAENLKA4AAAAAAADA0BKKAwAAAAAAADC0hOIAAAAAAAAADC2hOAAAAAAAAABD69ygGwAAAAAYWnfuJG++2b16H/5wcvly9+oBAACcAkJxAAAAgF64cyf5+MeTt9/uXs1HHkleeUUwDgAAcACWTwcAAADohTff7G4gnqzV6+bkOQAAwCkgFAcAAAAAAABgaAnFAQAAAAAAABhaQnEAAAAAAAAAhpZQHAAAAAAAAIChJRQHAAAAAAAAYGgJxQEAAAAAAAAYWkJxAAAAAAAAAIaWUBwAAAAAAACAoXVu0A0AAAAwHNrt5Dt3km+/lnz3B8nb7yaPPJR84qPJE48nn7qcFAqD7hIAAAA4bYTiAAAAHMm77yV/9s2kWk+aP0wKSc6dXQvJC4XkvfeTdpLSzyXTleTXPpM85E+jAAAAQJ/4zxAAAAAc2t/dTb7wjeS/vP7TY+0k776/87Ov/jD58n9K/rf/K/na55NPXuxbmwAAAMApZk9xAAAADuWvX0k++wdrS6W3s/a1l/XPfPcHa+f99Su97xEAAABAKA4AAMCB/d3d5HN/nLzzXvL+Bwc79/0P1s773B+v1QEAAADoJaE4AAAAB/Lue2tLpr/7fvLBg8bDd/FBe+383/7TtXoAAAAAvSIUBwAA4ED+7Jtre4gfdEJ8u/c/SP72+2v1AAAAAHpFKA4AAMC+tdtJtd7dmrWX1uoCAAAA9IJQHAAAgH37zp2k+cOkWxl2O8nKf03+5vtdKggAAACwjVAcAACAffv2a0mhyzUL/1gXAAAAoBeE4gAAAOzbd3+QnDvb3Zrnzq7VhaHz4Q8njzzS3ZqPPLJWFwAAgH07N+gGAAAAODnefrf7+3+328lP3uluTTgWLl9OXnklefPN7tX88IfX6gIAALBvQnEAAAD27ZGHkkKX108vFJIPPdzdmnBsXL4sxAYAABgwy6cDAACwb5/4aPLe+92t+d77a3UBAAAAekEoDgAAwL498XjS5dXT0/7HugAAAAC9IBQHAABg3z51OSn9XNKtFdQLSUZ/PvmFj3WpIAAAAMA2QnEAAAD2rVBIpivdrTl1rfv7lAMAAACsE4oDAABwIL/2meSfX0rOHvFPlGfPJP/iY8mv/3J3+gIAAADoRCgOAADAgTx0Lvna55OHziZnDjnhfaawdv6f/GZy7mx3+wMAAADYTCgOAADAgX3yYvLnv5M8fO7gE+Nnz6yd9+e/s1YHAAAAoJfODboBGKQ33ngjly5d6vjeF7/4xXzxi1/sc0cAAHBy/OLHkxd/L/ntP03+9vtrx9p7fH59qPyTF9cmxAXiAAAADJOvfvWr+epXv9rxvTfeeKPP3bCZUJxT7YMPPsjdu3c7vnf//v0+dwMAACfPJy8mLz6b/Nk3k2o9af5wLfw+dzZpt5NCIXnv/bWwvPTzydS1tT3JH/KnUQAAAIbM/fv3d82dGCz/GYJT7cyZM/nIRz7S8b1HH320z90AAMDJ9NC55Df+VfJv/2XyN99Pvv1a8t0fJD95J/nQw8knPpo88XjyCx9bC8kBAABgGD366KO5eLHzsmhvvPFGPvjggz53xLpCu93ea3U7GEqXLl3K3bt3c/Hixbz++uuDbgcAAAAAAIAhJpsarDODbgAAAAAAAAAAekUoDgAAAAAAAMDQEooDAAAAAAAAMLSE4gAAAAAAAAAMLaE4AAAAAAAAAENLKA4AAAAAAADA0BKKAwAAAAAAADC0hOIAAAAAAAAADC2hOAAAAAAAAABDSygOAAAAAAAAwNASigMAAAAAAAAwtITiAAAAAAAAAAwtoTgAAAAAAAAAQ0soDgAAAAAAAMDQEooDAAAAAAAAMLSE4gAAAAAAAAAMLaE4AAAAAAAAAENLKA4AAAAAAADA0BKKAwAAAAAAADC0hOIAAAAAAAAADC2hOAAAAAAAAABDSygOAAAAAAAAwNASigMAAAAAAAAwtITiAAAAAAAAAAwtoTgAAAAAAAAAQ+vcoBsAAAAAeqfdTr5zJ/n2a8l3f5C8/W7yyEPJJz6aPPF48qnLSaEw6C4BAACgd4TiAAAAMITefS/5s28m1XrS/GFSSHLu7FpIXigk772ftJOUfi6ZriS/9pnkIf+VAAAAgCHkj7sAAAAwZP7ubvKFbyT/5fWfHmsneff9nZ999YfJl/9T8r/9X8nXPp988mLf2gQAAIC+sKc4AAAADJG/fiX57B+sLZXeztrXXtY/890frJ3316/0vkcAAADoJ6E4AAAADIm/u5t87o+Td95L3v/gYOe+/8HaeZ/747U6AAAAMCyE4gAAADAE3n1vbcn0d99PPnjQePguPmivnf/bf7pWDwAAAIaBUBwAAACGwJ99c20P8YNOiG/3/gfJ335/rR4AAAAMA6E4AAAAnHDtdlKtd7dm7aW1ugAAAHDSCcUBAADghPvOnaT5w6RbGXY7ycp/Tf7m+10qCAAAAAMkFAcAAIAT7tuvJYUu1yz8Y10AAAA46YTiAAAAcMJ99wfJubPdrXnu7FpdAAAAOOmE4gAAAHDCvf1u9/f/breTn7zT3ZoAAAAwCEJxAAAAOOEeeSgpdHn99EIh+dDD3a0JAAAAgyAUBwAAgBPuEx9N3nu/uzXfe3+tLgAAAJx0QnEAAAA44Z54POny6ulp/2NdAAAAOOnODeKi9+/fT71eT7PZzMrKSm7fvp1Wq5XV1dUkSavVSrFYzMjIyJa/lkqljI+P5+rVq3n00UcH0ToAAAAcO5+6nJR+Lnn1h90JxwtJSj+f/MLHulAMAAAABqxvofgLL7yQ559/PvV6Pa1Wa8t77fbOP7Lfu3cv9+7dS5IUNm2MNj8/nyQpFoupVCp58sknMzU1JSQHAADg1CoUkulK8uX/1L2aU9e6v085AAAADEKh3SmR7pK/+Iu/SLVazeLi4sax3S5X2OVP2nu1t/mccrmc3/qt38rk5KSAnAe6dOlS7t69m4sXL+b1118fdDsAAABH9u57yfgfJN/9QfL+B4evc/ZM8smLydLvJefOdq8/AACA00w2NVg92VP8hRdeyJNPPpnx8fEsLi6m3W5vfBUKhY5fu9nt84VCYUvd5eXlTE1N5cKFC/nc5z6X1157rRe3BgAAAMfSQ+eSr30+eehscuaQE95nCmvn/8lvCsQBAAAYHl0NxV944YU89thjmZyczPLycscgfLPNofZ+vzbbXnf9MwsLCxkdHRWOAwAAcKp88mLy57+TPHxubeL7IM6eWTvvz39nrQ4AAAAMi64sn37//v1MTk6mXq9vBNedAvDNSqXSxlexWMxjjz2WYrG48X6r1cqPf/zjtFqtrK6ubvlrs9nceSObrre9h+np6XzlK1+xrDobLFEBAAAMs7+7m/z2nyZ/+/2113v9wX/9T9P/4mNrE+ICcQAAgO6TTQ3WkUPx5557Lr/1W7+VJBtT4et/v65UKqVcLmd8fDxXr17Npz/96aNcMkny6quvptFoZGlpKbdv306j0dh4b3tAXigUUiwW841vfCP/+l//6yNfm5PPDx4AAGDYvfte8mffTKr1pPnDtfD73Nmk3U4KheS999fC8tGfT6auJb/2mbUl2AEAAOg+2dRgHSkUf+aZZzb2DN8ehlcqlUxPT6dSqeT8+fPd6fYBvvWtb6Ver6darW5Mk2/uq1AoZHp6On/yJ3/Sl344vvzgAQAATot2O/mb7yfffi357g+Sn7yTfOjh5BMfTZ54PPmFj62F5AAAAPSObGqwDhWK379/P9euXUuj0dgIm9vtdkqlUmZnZ/P000/3LQjfzauvvpqFhYV85StfSavV2uixUChkbGwsL730Un7mZ35moD0yOH7wAAAAAAAA0C+yqcE6c9AT3nrrrYyNjW1ZrvzKlSupVqv53ve+l+vXrw88EF/vaWZmJqurq7l161auXLmy8d7t27dz5cqV/P3f//0AOwQAAAAAAACg1w4Uir/11lu5evVqms1m2u122u12ZmdnN8Lw42piYiLf+9738vWvf30jsF9dXc3Y2Fj+83/+zwPuDgAAAAAAAIBe2Xcovj0QL5fLWVlZyc2bN3vZX1dNTU3l1VdfzVNPPZVkLRj/lV/5FcE4AAAAAAAAwJDaVyh+//79LYH49PT0xhLkJ8358+ezsLCQF198McViMffu3cu1a9cspQ4AAAAAAAAwhPYViv/Kr/xKVlZW0m63U61W87Wvfa3XffVcpVJJs9nMpz/96ayurqZcLue1114bdFsAAAAAAAAAdNG+QvEvf/nLKZVKWV5ePtZ7hx9UsVjcuKdr167l8ccfH3RLAAAAAAAAAHRRod1utwfdBPTbpUuXcvfu3Vy8eDGvv/76oNsBAAAAAABgiMmmBmtfk+IAAAAAAAAAcBIJxQEAAAAAAAAYWkJxAAAAAAAAAIaWUBwAAAAAAACAoXWu3xe8f/9+arValpaWcvv27bRarY33SqVSSqVSisViSqVSnnnmmTzxxBP9bhEAAAAAAACAIdHXUPzGjRuZn5/feN1ut7e8v7KykmazufF6fn4+xWIxlUoln/vc5/Kv//W/7luvAAAAAAAAAJx8fVs+/cknn8z8/Hza7fbGV6FQ2PG1+f12u5179+5lcXExExMTOXv2bJ599tncv3+/X20DAAAAAAAAcIL1JRR/5plnsry8vCMIX/egoHzzZ+bm5nLhwgXhOAAAAAAAAAAP1PNQ/Fvf+lYWFhY6Btztdjvnz59PuVxOpVJJuVzOlStXcv78+R0T49vPn5ubS6lUyl/+5V/2+hYAAAAAAAAAOKF6vqd4tVrd8rrdbqdSqWR2djbXrl3b89xXX301jUYjL7/8cur1ehqNxpb3V1dXN2r94R/+Ydd7BwAAAAAAAOBk63koXq/XN/YKLxQKWV5ezqc//el9nXvlypVcuXIlTz311MaxxcXF1Gq11Ov1JD+dGm+1WvmTP/mTntwDAAAAAAAAACdTz5dPX11d3QjEb926te9AfDcTExN58cUXc+/evXzlK19JsVhMu91OtVrNH/3RH3WpawAAAAAAAACGQc9D8VarlUKhkEqlsmXi+6jOnz+fmZmZvPrqq7l+/Xra7XZmZmbsMQ4AAAAAAADAhp6H4sViMUkyPj7ek/rnz59PtVrNrVu30m63Mzk52ZPrAAAAAAAAAHDy9DwUv3r1apKfhuO9MjExkS996UtZXV21jDoAAAAAAAAASfoQilcqlSRry6j32tzcXEqlUv7wD/+w59cCAAAAAAAA4PjreSg+OTmZdrud27dv9/pSSZKnnnoqrVbL3uIAAAAAAAAA9D4Uv3LlSq5du5aFhYX8wz/8Q68vl//2v/1v0263c+vWrZ5fCwAAAAAAAIDjreeheLK2rHm73c7169f7cbkk6dtkOgAAAAAAAADHV19C8XK5nKeeeioLCwv5H/6H/6GnE+PLy8tJkmaz2bNrAAAAAAAAAHAy9CUUT5JvfOMbefTRR7O0tJRisZg/+qM/6vo13nrrrY1l01utVtfrd0Or1RLYH4LnBgAAAAAAABxG30Lx8+fPZ3l5Oe12O0kyMzOTxx57LM8++2xee+21rlxjcnJyIwwvFotdqXlU9Xo9k5OTGR0dTaFQyIULFzb+vlAoZGxsLPPz88c2xN9ucXExo6OjmZ6e7ul1hu25AQAAAAAAAINRaK+n1H1Sr9fz2c9+NoVCIe12O4VCIUlSKpVSqVQyPj6ecrmcxx9/fN81v/3tb2d2djZLS0sbdcfGxvLyyy/36C4ebHFxMdevXz9QaDszM5O5ubneNXUEtVots7OzG/dTqVSytLTU9ev067ldunQpd+/ezcWLF/P6668fsEsAAAAAAADYP9nUYPU9FE/WgvGnn346rVZrI8ROshGQJ2uT3levXk2pVEqxWMxjjz228ffrS2mvrKzk9u3baTQaSbKlztzcXH73d3+337eWVquV69evZ3FxcePYzMxMnnnmmY3+m81m6vV65ubmdiwJXi6X89JLLx2LSfdWq5VarZabN2/uCKm7HYr3+7n5wQMAAAAAAEC/yKYGayCheLIWgk5OTuall17aCMO3t7I5JN/N5nM2T5/fu3cvjz76aHeb3ofR0dGNwLZUKmV5eXnPoHZ6ejq1Wm3LsXK5nOXl5V62uadGo5Fqtbqjr826HYr3+7n5wQMAAAAAAEC/yKYGq297im9XLBaztLSUr3zlKzl//vxGmL35q91uP/AryZbPJ8mtW7cGEohPTk5uBLvFYvGBwW6SVKvVTExMbDnWaDR6vmf3dutT4aOjoxkbG9sInNentHvpJD83AAAAAAAA4HgbWCi+bmZmJqurq/nKV76yJehOsiMk3+0rWZsYv3DhQhYXF/PUU0/1/T7m5+e3LP393HPP7TtMfu6553Ycq9VqO5YI74XFxcWMj4/nwoULmZ6e3rjm+iT4yspKnn766Z5d/6Q+NwAAAAAAAOBkGHgovm5mZib37t3Ll770pY3J8U4ru3eaFF+fMq9UKikWi/n2t7+d+/fv9633VquV2dnZjdelUmnHFPNeisViZmZmdhzfXLMXms1mJicnU6/XN45NTExkZWUlS0tLqVQqG/31wkl9bgAAAAAAAMDJcWxC8SQ5f/585ubmsrq6mqWlpUxNTW0JyDstsb6u3W5vTD2PjY3lwoULOXv2bM6ePZvHHnssjz32WP7pP/2nG19PPvnklq/14+ufffbZZ/fd982bN7e8PswS3jdu3NhxbHFxsadTz6VSKclPw+V79+5lYWFh43ivndTnBgAAAAAAAJwc5wbdwG6uXbuWa9eu5etf/3peeumlLCws5Pbt22k0Gls+1ykc3+7evXtb/rofy8vL+/pcq9XK/Pz8lmMHmXZeVywWUy6Xd9zf4uJix2noblleXk65XO5Z/d2c9OcGAAAAAAAAnAzHalJ8N+vh+O3bt/PBBx9keXk5c3NzmZiYyJUrV3Ysp75uv3uSd5o+v3379r5627z0eLIW0h520np9ufLNlpaWDlVrvwYRiCcn/7kBAAAAAAAAJ8OxnRTfy6c//el8+tOf3nLs1VdfTbPZTLPZzPLycprNZlZXV9NsNtNqtfast3nSfF2r1cq3v/3tPPHEE3ue+/zzz295ffXq1X3dQyfj4+M7pqe3h8fDwnMDAAAAAAAA+uFEhuKdXLlyJVeuXMm1a9dy/fr1He+vh+atVivNZjMrKytbQvPte1C32+3cvn37gaH49vD1KJPXuwXDjUZjYBPdveK5AQAAAAAAAP0wNKH4g6yH5nt56623NoLyZrOZz3/+83t+vtFo7JhCHx0dPXSPxWKx4/FmszlU4a7nBgAAAAAAAPTLidhTvF/Onz+/57T5dp32HR8ZGTlSD51C3O1T7Ced5wYAAAAAAAD0i1D8CJaXl3ccK5VKR6rZKRx++eWXj1TzuPHcAAAAAAAAgH7ZVyh+//793Lhxo9e9DMxf/MVf5IUXXjjweZ0mkXdbynu/OoXD25caP+k8NwAAAAAAAKBf9hWKl8vlzM/P55/9s3+Wv//7v+91T31148aNjI+PZ3JyMq+99tqBzu0U7h51GfBO4fDq6uqRah43nhsAAAAAAADQL/sKxW/dupV2u52VlZWUy+X85V/+Za/76rn79+/nV3/1VzM/P592u52vf/3refzxxw9Uoxd7Vj/22GM7jg3bxLPnBgAAAAAAAPTLvifFX3zxxbTb7bRarVQqlTz77LO97q1nXnjhhVy5ciX1ej3tdjvz8/O5fv16V2ofdRnwo55/UnluAAAAAAAAQC+c2+8HK5VKbt26laeffjqFQiFzc3Op1+tZWFjIP/kn/6SXPXbN/fv3Mzk5uRGGJ8n8/Hx+93d/98C1+jmFPEzLgB+35/bOO+/kr/7qrw5U9/Lly7l8+fJh2wIAAAAAAOAEu3PnTu7cuXOgc955550edcN+7DsUT5KJiYktwfjt27dTKpUyOzubL3/5y3n00Ud71eeR3L9/Pzdv3sz8/HySbATiCwsLeeqppwbZ2g5H3Vv7tDrsc/vRj36Uz3zmMwc65/d///fz7/7dvzvU9QAAAAAAADjZ/uN//I/59//+3w+6DQ5gX8unbzYxMbGxlHqhUEi73c7c3FwuXLiQZ599Nvfv3+9Fn4fy2muv5Qtf+EIuXLiwsXf4eiC+tLR0pEC8n9PbwxSUe24AAAAAAABAPx04FE/WllK/fft2Hn300RQKhSTZEo7/6q/+av6P/+P/6Gqj+/Xaa6/lxo0b+af/9J9mdHQ0tVptIwhPklKplOXl5Vy7du1I1+nnMuDDxHMDAAAAAAAA+ulAy6dvVi6X8+qrr+batWv51re+tTE1niT1ej31ej3JWoBeLpczPj6eq1evdnWJ9fv37+f27dtpNBpZWlrK7du3N0LX9V4KhcJGb5OTk3n++ee7cu1isdjxeKvV2vW9bl/rJDpuz+1nf/Zn88ILLxyorv3EAQAAAAAATq/f+I3fSKVSOdA5/+bf/Jv86Ec/6lFHPMihQ/FkLXRcXl5OrVbLb/3WbyXJlsnx5KcB+fp+3sViMZVKJaVSKaOjoymVShkZGdkIMNeXvF5dXU2r1drx1x//+MdpNptpNBppNptb+tk8Eb65j1KplGq1euTp8M36uTT3MC0Dftye28MPP5xf+qVf6kM3AAAAAAAADIPLly8feIjy4Ycf7lE37MeRQvF1U1NTefrpp3P9+vX87//7/55kZzi+7t69e1lcXDzyNbfX3XzN9feLxWJu3LiRL33pS0e+3n6trq4O1WR3v3huAAAAAAAAQC8cak/xTorFYhYWFrK8vJynnnoq7XY77XZ7Y/nyzV/r7x3la6+6V65cSbVazerqas8C8b2WAT+K1dXVHcdKpdKRah4nnhsAAAAAAADQT10Lxdd9+tOfzsLCQu7du5cvfelLOX/+/EZYva5ToH3Qr3Wbg/JyuZyFhYV873vfy/Xr17t9a/vSKZw9qrGxsa7XPG48NwAAAAAAAKAXuh6Krzt//nzm5uayurqaF198MRMTE1sC8u1B+X50mhivVCqpVqu5d+9ebt++naeeeqpHd7RTp0nko048dzp/2CaePTcAAAAAAACgX7qyp/iDVCqVVCqVJMmrr76aer2epaWlNJvNNJvNfQei5XI5V69ezdjYWK5evZpPf/rTPez6wUqlUprN5pZj218f1MrKSsfrDBPPDQAAAAAAAOiXvoTim125ciXXr1/fsrz5W2+9ldXV1Y1wfHV1NSMjIykWixkZGcn58+f73ea+dApdO4WzB3Ea9sb23AAAAAAAAIB+6Xso3sn58+ePbfC9l057Vh914nn7+esT9sPEcwMAAAAAAAD6pWd7ip8GnSaRb9++faSa28Pd8fHxI9U7jjw3AAAAAAAAoF+E4kfQaRq51Wrte4/0/Zw7jBPPnhsAAAAAAADQL0LxI+oUvtbr9UPV2j4tXSwWUy6XD1XruPPcAAAAAAAAgH4Qih/R5OTkjmPPP//8oWotLCxseT01NXWg84+6L3c/HafnBgAAAAAAAAwvofgRPf300zuOLS4uHqrWrVu3try+cePGvs6r1+u5cOFCRkdHUygUMj09fajr99NxeG4AAAAAAADA8BOKH1GxWMzExMSO47Va7UB16vX6ln2xp6amUiwWH3heo9HI+Pj4lnNrtVrHSezD6rTX9+rq6pFqDvq5AQAAAAAAAKdDod1utwfdxEnXbDYzOjq65VixWMy9e/f2XWNsbCyNRmPj3FdffXVf4e7k5OSuE9YrKysplUr77uEg1yiVSllZWTlS3UE+t0uXLuXu3bu5ePFiXn/99QP1DQAAAAAAAAchmxosk+JdUCqVMjc3t+VYq9Xa97T2/Pz8RrCbJC+99NK+p5332kd8c83DarVaHUP3ZrN55PqDfG4AAAAAAADA6SAU75KZmZnMzMxsOba4uPjAgHd+fj6zs7Mbr6vVasrl8r6ve/Xq1V3fO0id7ZrNZhYXFzM2NrbrZ65du5ZarZZGo9FxifX9GNRzAwAAAAAAAE4Hy6d32fawNllb1ntqaipPPvlkSqVSVldX02g0Uq1WNya9i8ViFhYWUqlUDnS9VquVK1eu7AilZ2Zmdkxh7+XChQuHDra3O+gS6En/n5slKgAAAAAAAOgX2dRgCcV7oNlsZnJyct/Li09MTGRubu7Q+383m81MT0+nXq+nVCpldnY2U1NTB6pRKBQOde3dHObbqp/PzQ8eAAAAAAAA+kU2NVhC8R5qNpupVqtpNBppNptpNpspFosplUoZGRnJ+Ph4pqam7IO9TT+emx88AAAAAAAA9ItsarCE4pxKfvAAAAAAAADQL7KpwToz6AYAAAAAAAAAoFeE4gAAAAAAAAAMLaE4AAAAAAAAAENLKA4AAAAAAADA0BKKAwAAAAAAADC0hOIAAAAAAAAADC2hOAAAAAAAAABD61y/LnT//v3UarUsLS1ldXU1zWYzIyMjKRaLKZVKGRkZydjYWCqVSh5//PF+tQUAAADD4c6d5M03u1fvwx9OLl/uXj0AAAAYkL6E4l/4whdSq9U2Xrfb7STJvXv3kiSNRmPL54vFYiqVSj772c/mN3/zN/vRIgAAAJxcd+4kH/948vbb3av5yCPJK68IxgEAADjxer58+m/91m+lWq2m3W5vfBUKhS1fm99rt9u5d+9eFhcXMzU1lbNnz+Zzn/tc/uIv/qLXrQIAAMDJ9Oab3Q3Ek7V63Zw8BwAAgAHpeSh+69atHSF4ki0heJI9P7OwsJDx8fH8s3/2z/KXf/mXvW4ZAAAAAAAAgCHRtz3F17Xb7ZRKpZTL5YyMjGR1dTWtVivNZjPNZnPLZ9fD8fXzvve976VSqWRsbCzPPfdc/rv/7r/rd/sAAAAAAAAAnCA9D8WvXr2aer2eZC3kXlhYyFNPPbXr5996663U6/U8//zzqdfrabVaG+cma+H47du3Uy6XU6vV7DkOAAAAAAAAwK56vnz65ORkkrVQu1Kp7BmIJ8n58+fz1FNP5datW1ldXc3Kykq+9KUv5fz581uWWm+325mamsqzzz7b61sAAAAAAAAA4ITqeSj+9NNPH+n8K1euZG5uLqurq7l161YqlUra7fZGMD43N5c/+qM/6lK3AAAAAAAAAAyTnofi58+fz/Xr1zeWPT+KiYmJvPjii/ne976XX/mVX0mytpz6zMxM/vIv/7Ib7QIAAAAAAAAwRHoeiidJtVrN+fPn02q1uhJel0qlLC0t5cUXX0ypVEq73c7k5GT+4R/+oQvdAgAAAAAAADAs+hKKJ8lzzz2Xdrud2dnZrtWsVCr53ve+ly996UtZXV3NtWvXulYbAAAAAAAAgJOvb6H4xMREvvSlL2V5ebnre4DPzc3lK1/5Sm7fvm1/cQAAAAAAAAA29C0UT9bC61/5lV/pyR7gMzMz+fSnP52ZmZncv3+/q7UBAAAAAAAAOJn6GoonydLSUp544olUKpX85//8n7ta+8aNG2m32/nyl7/c1boAAAAAAAAAnEx9D8WT5C/+4i/y+OOPp1wud3VifHx8PElSrVZNiwMAAAAAAAAwmFD8/PnzaTQaGxPjzz77bNfqrltYWOhKTQAAAAAAAABOroGE4slagL28vJzf/d3fzVe+8pX89//9f5+///u/71r9W7duda0WAAAAAAAAACdTz0PxF154IU8++WSefPLJ/Oqv/mq+8IUv5Bvf+EZee+21JMnc3FyWlpbyve99L6VSKb/927996KXP33rrrSRJu93O7du3u3ULAAAAAAAAAJxQ53p9gc9//vN566230m63UygUdrxfLpdz9erVzM3NZWFhIV//+tdTrVYzPT2dqampPPHEE/u+VrPZ7GLnAAAAAAAAAJx0PQ/Fr1y5km9961spFAppt9s73l9eXk6j0dhyrN1up1qtplqtplwu55lnnkmlUnlgQF6tVpMkhUIhV69e7do9AAAAAAAAAHAy9TwUv3HjRp5++ukk6TgpnmRLWL7+mfVj20PzcrmcUqmUJ598cmPK/NFHH81bb72VWq22cf709HRP7gcAAAAAAACAk6PQ7jS+3WWjo6Mbe4jvdbn9hOa7fa5UKmVlZWXj/ffff/+Q3XIaXLp0KXfv3s3Fixfz+uuvD7odAACAo7lzJ/n4x5O33+5ezUceSV55Jbl8uXs1AQAATinZ1GD1fFI8WVvW/LOf/WwKhULGx8fz9a9/PSMjI2k2m2k2m3n55ZfTbDbTaDQ67gveKQTfHpSvrKxsmTI/e/ZsSqVSSqVSyuVyRkdHc/Xq1ZRKpTz66KO9uVEAAAAYhMuX1wLsN9/sXs0Pf1ggDgAAwFDoy6R4srac+Te+8Y3Mzc3ld3/3d/f87KuvvppGo3GosHzd+m11+kyxWEypVMrVq1czNja28ffC8tPDb+MAAAAAAADQL7KpwepbKP7WW2/l8ccfz8/+7M/m//6//+9D1ThsWL7bLXYKzNenyr/yla/k8ccfP1SfHH9+8AAAAPRXu518507y7deS7/4gefvd5JGHkk98NHni8eRTl5M9fvcdAADgRJNNDVbfQvEkqdfr+exnP5v/5X/5X/I//8//c9fq9iIsr1ar+fznP9+1Hjle/OABAADoj3ffS/7sm0m1njR/mBSSnDu7FpIXCsl77yftJKWfS6Yrya99JnmoL5u9AQAA9I9sarD6GoonyezsbP7Df/gPaTab+Sf/5J/09Frf+ta3cvv27SwvL+f27dtpNBpb3t9tr/JCoZCpqal87Wtf62l/DI4fPAAAAL33d3eTL3wj+S//+Meuvf4DxPqf0P/5peRrn08+ebHX3QEAAPSPbGqw+h6KJ8no6GhGRkby8ssv9/vSefXVV1Ov17O8vJx6vb5jonw9KC+VSvl//p//p+/90R9+8AAAAPTWX7+SfO6Pk3ffT97/YP/nnT2TPHQ2+fPfSX7x473rDwAAoJ9kU4M1kFD81VdfTbPZzLVr1/p96R3eeuutjSnypaWl3L59O61WK4VCIffu3cujjz466BbpAT94AAAAeufv7iaf/YPknfeSDw7xXx3OFJKHzyUv/p6JcQAAYDjIpgZrIKH4cbe+R/lTTz016FboET94AAAAeuPd95LxP0i++4ODTYhvd/bMWiD+4rP2GAcAAE4+2dRgnRl0A8fRlStXBOIAAABwCH/2zbU9xI8SiCdr5//t99fqAQAAwFH4XWsAAAA4ijt3kjff7F69D384uXy5e/X6qN1OqvXu1qy9lPzbf5kUCt2tCwAAwOkhFAcAAIDDunMn+fjHk7ff7l7NRx5JXnnlRAbj37mTNH/YvXrtJCv/Nfmb7yefOnmPAwAAgGPC8ukAAABwWG++2d1APFmr183J8z769mtJtwe6C/9YFwAAAA5LKA4AAAB0xXd/kJw7292a586u1QUAAIDDEooDAAAAXfH2u2v7indTu5385J3u1gQAAOB0EYoDAAAAXfHIQ0mhy+unFwrJhx7ubk0AAABOF6E4AAAA0BWf+Gjy3vvdrfne+2t1AQAA4LCE4gAAAEBXPPF40uXV09P+x7oAAABwWEJxAAAAoCs+dTkp/VzSrRXUC0lGfz75hY91qSAAAACnklAcAAAA6IpCIZmudLfm1LXu71MOAADA6SIUBwAAALrm1z6T/PNLydkj/heHs2eSf/Gx5Nd/uTt9AQAAcHoJxQEAAICueehc8rXPJw+dTc4ccsL7TGHt/D/5zeTc2e72BwAAwOkjFAcAAAC66pMXkz//neThcwefGD97Zu28P/+dtToAAABwVEJxAAAAoOt+8ePJi7+3FmwXsva1l/XPfPLi2nm/+PHe9wgAAMDpcG7QDQAAAADD6ZMXkxefTf7sm0m1njR/uBZ8nzubtNtJoZC8937STlL6+WTq2tqe5A/5rxUAAAB0kT9mAgAAAD3z0LnkN/5V8m//ZfI330++/Vry3R8kP3kn+dDDySc+mjzxePILH1sLyQEAAKDbhOIAAABAzxUKyacur30BAABAP9lTHAAAAAAAAIChJRQHAAAAAAAAYGgJxQEAAAAAAAAYWkJxAAAAAAAAAIaWUBwAAAAO68MfTh55pLs1H3lkrS4AAADQFecG3QAAAACcWJcvJ6+8krz5ZvdqfvjDa3UBAACArhCKAwAAwFFcvizEBgAAgGPM8ukAAAAAAAAADC2hOAAAAAAAAABDSygOAAAAAAAAwNASigMAAAAAAAAwtITiAAAAAAAAAAwtoTgAAAAAAAAAQ0soDgAAAAAAAMDQEooDAAAAAAAAMLSE4gAAAAAAAAAMLaE4AAAAAAAAAENLKA4AAAAAAADA0BKKAwAAAAAAADC0hOIAAAAAAAAADC2hOAAAAAAAAABD69ygG4BBeuONN3Lp0qWO733xi1/MF7/4xT53BAAAAAAAwEn01a9+NV/96lc7vvfGG2/0uRs2E4pzqn3wwQe5e/dux/fu37/f524AAAAAAAA4qe7fv79r7sRgCcU51c6cOZOPfOQjHd979NFH+9wNAAAAAAAAJ9Wjjz6aixcvdnzvjTfeyAcffNDnjlhXaLfb7UE3Af126dKl3L17NxcvXszrr78+6HYAAAAAAAAYYrKpwToz6AYAAAAAAAAAoFeE4gAAAAAAAAAMLaE4AAAAAAAAAENLKA4AAAAAAADA0BKKAwAAAAAAADC0hOIAAAAAAAAADC2hOAAAAAAAAABDSygOAAAAAAAAwNASigMAAAAAAAAwtITiAAAAAADA/7+9/42N7LzvBN9fdbM1rczGKbZ65I1aIqziTiTFa4222B5crOPAQZPG7IvBZAakZATjAHbcJBIs4EUwl7SSASbBvUYP+cK4BhYxinLmRXQnsExisLtY7CzEErCI4r3AqFkryGNLvfeyJFB/vJFbzbI8HvWo/9R9USLFIqvI+nOq6lTx8wEIi6frPOdXTxXLp873PM8DACNLKA4AAAAAAADAyBKKAwAAAAAAADCyhOIAAAAAAAAAjCyhOAAAAAAAAAAjSygOAAAAAAAAwMgSigMAAAAAAAAwsoTiAAAAAAAAAIwsoTgAAAAAAAAAI0soDgAAAAAAAMDIEooDAAAAAAAAMLKE4gAAAAAAAACMLKE4AAAAAAAAACNLKA4AAAAAAADAyBKKAwAAAAAAADCyhOIAAAAAAAAAjCyhOAAAAAAAAAAjSygOAAAAAAAAwMgSigMAAAAAAAAwsoTiAAAAAAAAAIwsoTgAAAAAAAAAI0soDgAAAAAAAMDIGht0AQAAAAD9Uq1GvLId8fIbEa+9E3HzVsTZMxGPPhDxxKciHp+IyGQGXSUAAABJEooDAAAAI+/W7YhnX4woFCPK70ZkImLsdC0kz2Qibt+JqEZE7v6IhemIL38+4oyrJgAAACPB1zsAAABgpL36dsTvfzfix299vK0aEbfuHH7s6+9GfOMvI/7iryK+87WIxy70rUwAAAB6xJriAAAAwMj6wbWIL36zNlV6NWo/R9l9zGvv1Pb7wbXe1wgAAEBvCcUBAACAkfTq2xFf+nbEh7cj7txtb987d2v7fenbtXYAAAAYXkJxAAAAYOTcul2bMv3WnYi7xw0Pb+Jutbb/H/x5rT0AAACGk1AcAAAAGDnPvlhbQ7zdEeIH3bkb8aM3a+0BAAAwnITiAAAAwEipViMKxWTbXH2h1i4AAADDRygOAAAAjJRXtiPK70YklWFXI2LrbyJ++GZCDQIAANBXQnEAAABgpLz8RkQm4TYzH7ULAADA8BGKAwAAACPltXcixk4n2+bY6Vq7AAAADB+hOAAAADBSbt5Kfv3vajXigw+TbRMAAID+EIoDAAAAI+XsmYhMwvOnZzIR996TbJsAAAD0h1AcAAAAGCmPPhBx+06ybd6+U2sXAACA4SMUBwAAAEbKE5+KSHj29Kh+1C4AAADDRygOAAAAjJTHJyJy90ckNYN6JiImPxnxmYcSahAAAIC+Ght0AQAAAABJymQiFqYjvvGXybU5fynZdcqr1YhXtiNefiPitXcibt6qrYX+6AO1EemPTyS/LjoAAMBJJRQHAAAARs6XPx/xF39VC5zv3O28ndOnIh67EPG7v5lMXbduRzz7YkShGFF+tzYKfex0LSTPZGprl1ejNtJ9Ybr2PM64egMAANAV06cDAAAAI+fMWMR3vhZx5nTEqQ5HXJ/K1Pb/s9+rBdfdevXtiJlv1kawv/5ubVs1Im7dibh9t/a/u2uhv/5u7XEz36ztBwAAQOeE4gAAAMBIeuxCxPe+HnHPWG3EdztOn6rt972v19rp1g+uRXzxm7WR69X4OPxuZvcxr71T2+8H17qvAQAA4KQSigMAAAAj63OPRDz/x7VgOxO1n6PsPuaxC7X9PvdI9zW8+nbEl74d8eHt9qdyv3O3tt+Xvm3EOAAAQKeE4gAAAMBIe+xCxPN/FPEvfyfi4ftr2zJRmxp97FTtf3fD8twna497/o+SGSF+63bE73+3NjX63eOGhzdxt1rb/w/+vNYeAAAA7RkbdAEAAAAAvXZmLOKrvxXxlS9E/PDNiJffqE1N/sGHEffeE/HoAxFPfCriMw9FZDpcg7yRZ1+M+PFbx0+Xfpw7dyN+9Gatva/+ViKlAQAAnBhCcQAAAODEyGQiHp+o/fRatRpRKCbb5uoLtWA/yeAeAABg1Jk+HQAAAKAHXtmOKL/b/SjxXdWI2Pqb2kh3AAAAWicUBwAAAOiBl9/4eK3ypGQ+ahcAAIDWCcUBAAAAeuC1dyLGTifb5tjpWrsAAAC0TigOAAAA0AM3b9XWFU9StRrxwYfJtgkAADDqhOIAAAAAPXD2TEQm4fnTM5mIe+9Jtk0AAIBRJxQHAAAA6IFHH4i4fSfZNm/fqbULAABA64TiAAAAAD3wxKciEp49PaoftQsAAEDrhOIAAAAAPfD4RETu/oikZlDPRMTkJyM+81BCDQIAAJwQQnEAAACAHshkIhamk21z/lLy65QDAACMOqE4AAAAQI98+fMRv/5gxOkur8CcPhXx6Ycifvc3k6kLAADgJBGKAwAAAPTImbGI73wt4szpiFMdjvA+lant/2e/FzF2Otn6AAAATgKhOAAAAEAPPXYh4ntfj7hnrP0R46dP1fb73tdr7QAAANA+oTgAAABAj33ukYjn/7gWbGei9nOU3cc8dqG23+ce6X2NAAAAo2ps0AUAAAAAnASPXYh4/o8inn0xolCMKL9bC77HTkdUqxGZTMTtOxHViMh9MmL+Um1N8jOu3gAAAHTF1yoAAACAPjkzFvHV34r4yhcifvhmxMtvRLz2TsQHH0bce0/Eow9EPPGpiM88VAvJAQAA6J5QHAAAAKDPMpmIxydqPwAAAPSWNcUBAAAAAAAAGFlCcQAAAAAAAABGllAcAAAAAAAAgJElFAcAAAAAAABgZAnF+6xSqUS5XB50GR3pRe2VSiXR9nrVJgAAAAAAADCcxgZdwKgrFotRKBSiVCo1DJTz+Xw89dRTMT8/H9lstv8FHqHXtVcqlRgfH6/bttvOuXPnGm4/GHjfuHGj4fadnZ3U9ScAAAAAAADQf5lqtVoddBGjaH19PS5fvtzWqOXFxcVYXl7uXVEt6lftjULxpBwXij/44IPx9ttvx4ULF+Ktt97qSQ0AAAAAAAAQIZsaNNOnJ6xSqcTc3FzMzc3thcqLi4uxubkZOzs7Ua1WY2trKwqFQuRyubp9V1ZWYmpqamDTf/e79l6O5DZKHAAAAAAAAIgwUjxxk5OTe1ON53K52NzcPDKgXVhYiNXV1bpt+Xw+Njc3e1lmQ4OoPZPJdFTrcY57W7sbBwAAAAAAgH6RTQ2WkeIJmpub2wuVs9nssaFyREShUIjZ2dm6baVSKRYWFnpVZkPDXHsjgxptDwAAAAAAAKSLkeIJWVlZiaWlpb3f19bWDgXGzTRbW3tra+vQNOW9MMjad0eK7wbxu23uunHjxqFt+7c3Mz8/f+S/uxsHAAAAAACAfpFNDZZQPAEHg+FcLhdbW1tttbG0tBQrKyt122ZnZ2NtbS2RGpsZdO27oXgnx+2GDx4AAAAAAAD6RTY1WKZPT8CVK1fqfu9k+vCnn3760Lb19fW9Kc17JS21HzdVOwAAAAAAAEAnhOJdqlQqDUdJtyubzUY+nz+0fX19vePajpOm2s+dO9f2cQEAAAAAAACOIxTvUrFYrPs9m812vA749PT0oW0bGxsdtdWKYa4dAAAAAAAAoBVC8S4999xzdb9fvHix47ZmZmYObTsYXCcpTbWbPh0AAAAAAADoBaF4lw4Gv42mEW9Vs1C6VCp13OZR0lS76dMBAAAAAACAXhCKd6FUKkWlUqnbNjk52XF7zUZLl8vljttsZphrBwAAAAAAAGiVULwLV69ePbSt2xHPjUZr9yJYTlvtpk8HAAAAAAAAekEo3oXNzc1D23K5XFdtNgqmX3rppa7abCRttd93331dHRsAAAAAAACgEaF4FxqNgu52xHOjYPrgNOdJSEPtxz2v1dXVmJubi8nJyRgfH49MJhPj4+MxNTUVCwsLsb6+3lW9AAAAAAAAwOgbG3QBw6xRsNztFOSNgukbN2501WYjaat9d99KpRJLS0uxurra8HGVSiVKpVKUSqW9xywvL8fi4mJHNQMAAB3Y3o64fj259s6fj5iYSK49AAAAgH2E4l3oxVrfjaYR79dI8W51W/vS0lKsrKy0fdylpaUoFAqxsbHR9RTwAADAMba3Ix55JOLmzeTaPHs24to1wTgAAADQE0LxhHU7BXm3+w/y2O3uv38U+cLCQlfHLpfLMTk5GRsbGzE9Pd1VWwAAwBGuX082EI+otXf9ulAcAAAA6AmheId6MXq7maSnT0977blcLmZnZ2NycjLOnTsXN27ciEqlEhsbG1EsFo/cd25uLjY3N40YBwAAAAAAACJCKJ463a7rPUjt1n4wnM/lcrG2thb5fL7h4xcXF1tac3w3GG/Fhx9+GH/913/dVt0TExMxYQQLAAAAAADAibS9vR3b29tt7fPhhx/2qBpaIRTvUNKjt4+SdFCeltr31zE7Oxtra2vHtpfNZqNQKMTCwkJMTU01fEypVIpisdjSNOo//elP4/Of//yxj9vvX/yLfxF/8id/0tY+AAAAAAAAjIZ/9a/+Vfzpn/7poMugDacGXcCw6ucU5ElLW+2Li4stBeL75fP5I0eDLy8vd1sWAAAAAAAAMAKE4h3KZrMNt/cicG52rKTb63ft09PTUa1WOw6w8/l8032PW3scAAAAAAAAOBlMn96hfq79nfSxhrn2gxYXF+PKlSsNA/1WplD/O3/n78S/+Tf/pq1jWk8cAAAAAADg5PrqV7/a0jK++/2Tf/JP4qc//WmPKuI4QvGE3bhxI/GR3f0yrLXPz8/HysrKoe3lcvnYfe+55574jd/4jV6UBQAAAAAAwAiamJhoexDlPffc06NqaIXp0zvUqynIb9y4cWhbLpfrqs2Dhrn2Rp566qmG29O2djoAAAAAAADQf0LxhDUKhrs1NTWVeJuNDGvt+Xy+58cAAAAAAAAAhpNQvAuNRkF3Ozq50f69GG09zLU30ug4wzgVPAAAAAAAAJAsoXgXGgWxraxjfZStra2WjtOtYa69kUYBeL+ODQAAAAAAAKSXULwLjULXRsFwO/q1Lvcw196qixcvDuzYAAAAAAAAQDoIxbvQaL3sbkdbH9x/enq6q/aaGebaGzk4dXs+nzd9OgAAAAAAACAU70ajUdBXr17tqs2DwfLMzExX7TUzzLU3cnCU+lNPPdW3YwMAAAAAAADpJRTvQqOR0JVK5dCo5VY12rdXo60HVXu5XI5isdjRMdo59vz8fKLHAAAAAAAAAIaTULxLjYLfTkPfgyO1s9ls5PP5jtpqRb9rr1QqMTk5GXNzcx0do5mDNS8uLpo6HQAAAAAAAIgIoXjXGgW8zz33XEdtra2t1f3e7mjndtcE73ft2Ww2pqeno1KpxMrKSkfHaeTKlSt7/53L5WJ5eTmxtgEAAAAAAIDhlqlWq9VBFzHMKpVKjI+PH9reSbeOj4/XTQO+s7PT0ojnYrEYc3Nze/vOz89HoVA4dr9B1F4sFvfWGm/1+R2lVCrF1NTU3u8bGxstTTn/4IMPxttvvx0XLlyIt956q6saAADgRCmVIvadgydmczOihzNlAQAAwCDJpgZrbNAFDLtsNhuzs7Oxvr5et311dbWtkd7FYrEuVJ6fn28pMC6VSnsh8/5j37hx49Do7TTUPj09HdlsNiqVSiwtLbUU3jdTqVTqRrsXCoWercEOAAB85Pz5iLNnI27eTK7Ns2dr7bZrezvi+vXk6jh/PmJiIrn2AAAAgFQwUjwB5XI5Jicn67Zls9nY2dlpuY2pqakolUp7+77++ustheJzc3OHQu1dW1tbkcvljtx/ELUvLS3tTZ++ubnZ0brplUolLl26tHfcQqHQVpDvbhwAAOhCGsLo7e2IRx5JPpy/dk0wDgAAQOJkU4NlTfEENFrH+uAo5qOsrKzshbsRES+88ELL04oftY74/jabGUTtCwsLe/996dKlKBaLLR1rV7FYrAvi2w3EAQCALk1M1KY6T+qnkxD6+vVkA/GIWntJhv0AAABAKgjFE7K4uBiLi4t129bX148Nl1dWVmJpaWnv90Kh0NbI6YsXLzb9t1bb6XftuVxubwR7pVKJmZmZmJqaitXV1aYhf7lcjtXV1ZiamoqZmZkol8uRy+Via2tLIA4AAAAAAAA0Zfr0hB0MiiNqU4rPz8/HZz/72cjlcnHjxo0olUpRKBT2QuBsNhtra2ttr4ldqVTi4YcfrlvTO6IWdB8cAZ6m2vdPod7I/mnfDwbl2Ww2nn766UNBfjtMUQEAAEOuVIqYmkq+3c3N2uh1AAAASJBsarCE4j1QLpdjbm6upenLIyJmZ2djeXn52PW/jzrewsJCFIvFyOVysbS01PHo6X7Vvr/mViURhu/ywQMAAENOKA4AAMAQkU0NllC8h8rlchQKhSiVSlEul6NcLkc2m41cLhfnzp2LmZmZmJ+fb3n98H7qV+2VSiVWV1fjpZdeinK5HJVKZe9Y586di1wuFzMzMzE9Pd3WtPLH8cEDAABDTigOAADAEJFNDZZQnBPJBw8AAAw5oTgAAABDRDY1WKcGXQAAAAAAAAAA9IpQHAAAAAAAAICRNTboAgAAAGjR9nbE9evJtXf+fMTERHLtAQAAAKSQUBwAAGAYbG9HPPJIxM2bybV59mzEtWuCcQAAAGCkmT4dAABgGFy/nmwgHlFrL8mR5wAAAAApJBQHAAAAAAAAYGQJxQEAAAAAAAAYWUJxAAAAAAAAAEaWUBwAAAAAAACAkSUUBwAAAAAAAGBkCcUBAAAAAAAAGFlCcQAAAAAAAABGllAcAAAAAAAAgJElFAcAAGD4nD8fcfZssm2ePVtrFwAAABgpY4MuAAAAANo2MRFx7VrE9evJtXn+fK1dAAAAYKQIxQEAABhOExNCbAAAAOBYpk8HAAAAAAAAYGQJxQEAAAAAAAAYWUJxAAAAAAAAAEaWUBwAAAAAAACAkSUUBwAAAAAAAGBkCcUBAAAAAAAAGFlCcQAAAAAAAABG1tigCwAAAKAF589HnD0bcfPmoX+qRsQr9/1X8fLf+Wy8Nv7puHn63jh754N4dOdH8cRPX4rH3/s/ItOozbNna+0CAAAAjDChOAAAwDCYmIi4di3i+vW9TbfuRDz76vkovHJ/lH92NjJRjbFT1ahWIzKZiNt3M1GNTOR+5WYsPP5ufPmx63Hm9L42z5+vtQsAAAAwwoTiAAAAw2JiYi/EfvXtiN//bsSP3/r4n6uRiVt3M7u/7Hn9Z2fjGy9OxF+8PhHf+VrEYxf6WDMAAADAgFlTHAAAYMj84FrEF78Z8do7tey7eszjdx/z2ju1/X5wrfc1AgAAAKSFUBwAAGCIvPp2xJe+HfHh7Yg7d9vb987d2n5f+natHQAAAICTQCgOAAAwJG7drk2ZfutOxN3jhoc3cbda2/8P/rzWHgAAAMCoE4oDAAAMiWdfrK0h3u4I8YPu3I340Zu19gAAAABGnVAcAABgCFSrEYVism2uvlBrFwAAAGCUCcUBAACGwCvbEeV3I5LKsKsRsfU3ET98M6EGAQAAAFJKKA4AADAEXn4jIpNwm5mP2gUAAAAYZUJxAACAIfDaOxFjp5Ntc+x0rV0AAACAUSYUBwAAGAI3byW//ne1GvHBh8m2CQAAAJA2QnEAAIAhcPZMRCbh+dMzmYh770m2TQAAAIC0EYoDAAAMgUcfiLh9J9k2b9+ptQsAAAAwyoTiAAAAQ+CJT0UkPHt6VD9qFwAAAGCUCcUBAACGwOMTEbn7I5KaQT0TEZOfjPjMQwk1CAAAAJBSQnEAAIAhkMlELEwn2+b8peTXKQcAAABIG6E4AADAkPjy5yN+/cGI011+kzt9KuLTD0X87m8mUxcAAABAmgnFAQAAhsSZsYjvfC3izOmIUx2O8D6Vqe3/Z78XMXY62foAAAAA0kgoDgAAMEQeuxDxva9H3DPW/ojx06dq+33v67V2AAAAAE4CoTgAAMCQ+dwjEc//cS3YzkTt5yi7j3nsQm2/zz3S+xoBAAAA0mJs0AUAAADQvscuRDz/RxHPvhhRKEaU360F32OnI6rViEwm4vadiGpE5D4ZMX+ptib5Gd8CAQAAgBPG5RAAAIAhdWYs4qu/FfGVL0T88M2Il9+IeO2diA8+jLj3nohHH4h44lMRn3moFpIDAAAAnERCcQAAgCGXyUQ8PlH7AQAAAKCeNcUBAAAAAAAAGFlCcQAAAAAAAABGllAcAAAAAAAAgJElFAcAAAAAAABgZAnFAQAAAAAAABhZQnEAAAAAAAAARpZQHAAAAAAAAICRJRQHAAAAAAAAYGQJxQEAAAAAAAAYWUJxAAAAAAAAAEaWUBwAAAAAAACAkSUUBwAAAAAAAGBkCcUBAAAAAAAAGFlCcQAAAAAAAABGllAcAAAAAAAAgJElFAcAAAAAAABgZAnFAQAAAAAAABhZY4MuAAAAAIAe296OuH49ufbOn4+YmEiuPQAAgB4SigMAAACMsu3tiEceibh5M7k2z56NuHZNMA4AAAwF06cDAAAAjLLr15MNxCNq7SU58hwAAKCHhOIAAAAAAAAAjCyhOAAAAAAAAAAjSygOAAAAAAAAwMgSigMAAAAAAAAwssYGXQAAAMCwqlYjXtmOePmNiNfeibh5K+LsmYhHH4h44lMRj09EZDKDrhIg/Xye1tMfAACQLKE4AABAm27djnj2xYhCMaL8bkQmIsZO10KMTCbi9p2IakTk7o9YmI748ucjzvj2BXCIz9N6+gMAAHojU61Wq4MuAvrtwQcfjLfffjsuXLgQb7311qDLAQBgiLz6dsTvfzfixx+dRh71hWp3EN+vPxjxna9FPHah19UBNFAqRUxNJd/u5mZEPt/x7j5P6+kPAIDRJpsaLGuKAwAAtOgH1yK++M3aVLbVODqwiPj4Ma+9U9vvB9d6XyPAMPB5Wk9/AABAbwnFAQAAWvDq2xFf+nbEh7cj7txtb987d2v7fenbtXYATjKfp/X0BwAA9J5QnBPtJz/5STz44IMNf771rW8NujwAAFLi1u3alLa37kTc7XABqrvV2v5/8Oe19gBOIp+n9fQHAMBo+da3vtU0d/rJT34y6PJOtLFBFwCDdPfu3Xj77ca3Ur///vt9rgYAgLR69sXaGq8d5hV77tyN+NGbtfa++luJlAYwVHye1tMfAACj5f3332+aOzFYQnFOtFOnTsWv/uqvNvy3T3ziE32uBgCANKpWIwrFZNtcfSHiK1+IyGSSbRcgzXye1tMfAACj5xOf+ERcuHCh4b/95Cc/ibt321wvh8QIxTnRfvVXfzXeeuutQZcBAECKvbIdUX43ufaqEbH1NxE/fDPi8Ynk2gVIO5+n9fQHAMDo+cM//MP4wz/8w4b/9uCDDxpFPkDWFAcAADjCy29EJD3gLvNRuwAnic/TevoDAAD6RygOAABwhNfeiRg7nWybY6dr7QKcJD5P6+kPAADoH6E4AADAEW7eqq37mqRqNeKDD5NtEyDtfJ7W0x8AANA/QnEAAIAjnD0TkUl4fttMJuLee5JtEyDtfJ7W0x8AANA/QnEAAIAjPPpAxO07ybZ5+06tXYCTxOdpPf0BAAD9MzboAgAAgBTa3o64fj259s6fj5iYSK69PnriUxEJz24b1Y/aBeiL8+cjzp6NuHkzuTbPnq212wafp/X0BwAA9I9QHAAAqLe9HfHII8mHJ9euDWUw/vhERO7+iNffTSa8yERE7pMRn3kogcYAWjExUfsMHvDNTj5P6+kPAADoH6E4AABQ7/r1ZAPxiFp7168PZSieyUQsTEd84y+Ta3P+UvLryAIcaWJi4J/BPk/r6Q8AAOgfa4oDAAAc48ufj/j1ByNOd/kN6vSpiE8/FPG7v5lMXQDDxudpPf0BAAD9IRQHAAA4xpmxiO98LeLM6YhTHY7AO5Wp7f9nvxcxdjrZ+gCGhc/TevoDAAD6QygOAADQgscuRHzv6xH3jLU/ou/0qdp+3/t6rR2Ak8znaT39AQAAvScUBwAAaNHnHol4/o9rwUMmaj9H2X3MYxdq+33ukd7XCDAMfJ7W0x8AANBbY4MuAAAAYJg8diHi+T+KePbFiEIxovxuLZgYOx1RrUZkMhG370RUIyL3yYj5S7U1Y8/49gVQx+dpPf0BAAC947QZAACgTWfGIr76WxFf+ULED9+MePmNiNfeifjgw4h774l49IGIJz4V8ZmHaiEGAI35PK2nPwAAoDeE4gAAAB3KZCIen6j9ANA5n6f19AcAACRLKA4AAGmxvR1x/Xpy7Z0/HzHhajoAAAAAJ5tQHAAA0mB7O+KRRyJu3kyuzbNnI65dE4wDAAAAcKKdGnQBAABA1EaIJxmIR9TaS3LkOQAAAAAMIaE4AAAAAAAAACNLKA4AAAAAAADAyBKKAwAAAAAAADCyhOIAAAAAAAAAjCyhOAAAAAAAAAAja2zQBQAAAAAwGNVqxCvbES+/EfHaOxE3b0WcPRPx6AMRT3wq4vGJiExm0FX2j/4AAIDRJBQHAAAAOGFu3Y549sWIQjGi/G5EJiLGTtdC4Uwm4vadiGpE5O6PWJiO+PLnI86M8FUk/QEAAKPN6TsAAADACfLq2xG//92IH7/18bZqRNy6c/ixr78b8Y2/jPiLv4r4ztciHrvQtzL7Rn8AAMDos6Y4AABQ7/z5iLNnk23z7NlauwAM1A+uRXzxm7WpwatR+znK7mNee6e23w+u9b7GftIfAABwMhgpDgAA1JuYiLh2LeL69eTaPH++1i4AA/Pq2xFf+nbEh7cj7h6X/h5w525tKvEvfTvi+T8ejRHS+gMAAE4OoTgAAHDYxIQQG2CE3LpdmyL81p32A+Bdd6u1/f/gzyOe/6PhXlNbfwAAwMli+nQAAACAEffsi7U1s+/c7a6dO3cjfvRmrb1hpj8AAOBkEYoDAAAAjLBqNaJQTLbN1Rdq7Q4j/QEAACePUBwAAABghL2yHVF+NyKpzLYaEVt/E/HDNxNqsM/0BwAAnDxCcQAAAIAR9vIbEZmE28x81O4w0h8AAHDyCMUBAAAARthr70SMnU62zbHTtXaHkf4AAICTRygOAAAAMMJu3kp+vetqNeKDD5Nts1/0BwAAnDxjgy4AAACgqe3tiOvXk2vv/PmIiYnhrQOgA2fPRGQSni88k4m4955k2+wX/QEAACePUBwAANLg/PmIs2cjbt5Mrs2zZ2vtDqvt7YhHHkm+T65day+QTksdAB169IGI23eSbfP2nVq7w0h/AADAySMUBwCANJiYqIWkRiN/7Pr1ZIPoiFp716+31y9pqQOgQ098KiLh2cKj+lG7w0h/AADAySMUBwCAtJiYEJICkLjHJyJy90e8/m4yYXAmInKfjPjMQwk0NgD6AwAATp5Tgy4AAAAAgN7JZCIWppNtc/5S8uty94v+AACAk0coDgAAADDivvz5iF9/MOJ0l1eCTp+K+PRDEb/7m8nUNSj6AwAAThahOAAAAMCIOzMW8Z2vRZw5HXGqwxHNpzK1/f/s9yLGTidbX7/pDwAAOFmE4gAAAAAnwGMXIr739Yh7xtofIX36VG2/73291s4o0B8AAHByCMUBAAAATojPPRLx/B/XgtxM1H6OsvuYxy7U9vvcI72vsZ/0BwAAnAxjgy4AAAAAgP557ELE838U8eyLEYViRPndWtA7djqiWo3IZCJu34moRkTukxHzl2prcJ8Z0atI+gMAAEaf03cAAACAE+bMWMRXfyviK1+I+OGbES+/EfHaOxEffBhx7z0Rjz4Q8cSnIj7zUC0UHnX6AwAARptQHAAAAOCEymQiHp+o/aA/AABgVFlTHAAAAAAAAICRJRQHAAAAAAAAYGQJxQEAAAAAAAAYWUJxAAAAAAAAAEaWUBwAAAAAAACAkSUUBwAAAAAAAGBkCcUBAAAAAAAAGFlCcQAAAAAAAABG1tigCwAAAAAAYPhUqxGvbEe8/EbEa+9E3LwVcfZMxKMPRDzxqYjHJyIymUFXCQAgFAcAYJC2tyOuX0+uvfPnIyYmkmuPwTp/PuLs2YibN5Nr8+zZWrvDWAcAQErcuh3x7IsRhWJE+d2ITESMna6F5JlMxO07EdWIyN0fsTAd8eXPR5xxJRoAGCCnIgAADMb2dsQjjyQfNF67JhgfFRMTtddz0DdOpKUOAIAUePXtiN//bsSP3/p4WzUibt05/NjX3434xl9G/MVfRXznaxGPXehbmQAAdYTiAAAMxvXryQbiEbX2rl8XNo6SiYl0vJ5pqQMAYIB+cC3iS9+uBeDVFh6/+5jX3on44jcjvvf1iM890ssKAQAaOzXoAgAAAAAASLdX364F4h/ejrhzt71979yt7felb9faAQDoN6E4AAAAAABN3bpdmzL91p2Iu60MEW/gbrW2/x/8ea09AIB+EooDAAAAANDUsy/W1hBvd4T4QXfuRvzozVp7AAD9JBQHAAAAAKChajWiUEy2zdUXau0CAPSLUBwAAAAAgIZe2Y4ovxuRVIZdjYitv4n44ZsJNQgA0AKhOAAAAAAADb38RkQm4TYzH7ULANAvQnEAAAAAABp67Z2IsdPJtjl2utYuAEC/jA26AAAABmB7O+L69eTaO38+YmIiufYAAIBUuHkr+fW/q9WIDz5Mtk0AgKMIxQEATprt7YhHHom4eTO5Ns+ejbh2TTAOAAAj5uyZiEzC86dnMhH33pNsmwAARzF9OgDASXP9erKBeEStvSRHngMAAKnw6AMRt+8k2+btO7V2AQD6RSgOAAAAAEBDT3wqIuHZ06P6UbsAAP0iFAcAAAAAoKHHJyJy90ckNYN6JiImPxnxmYcSahAAoAXWFAcAAAAADqlWI17Zjnj5jYjX3om4eau2vvSjD9RG+T4+kfxa0+pIn0wmYmE64ht/mVyb85dGs6/SIi3v1bTUAQARQnEAAAAAYJ9btyOefTGiUIwov1sb2Tt2uhZwZTK19aCrURs9vDAd8eXPR5zpwVVGdaTHlz8f8Rd/VQs279ztvJ3TpyIeuxDxu7+ZXG18LC3v1bTUAQD7ZarVatJLwkDqPfjgg/H222/HhQsX4q233hp0OQDQX6VSxNRU8u1ubkbk88NXBwAAe159O+L3vxvx448ulxx14XB3gOevPxjxna/Vwk519KaONHj17YgvfjPiw9sRdzu4onwqE3HPWMTzfzx6fZMGaXmvpqUOgDSSTQ2WNcUBAAAAgPjBtVro+do7tSDruNxz9zGvvVPb7wfX1NGLOtLisQsR3/t6Ldg+3eZV5dOnavt97+uCz15Iy3s1LXUAQCNCcQAAAAA44V59O+JL366NAm53euw7d2v7fenbtXbUkVwdafO5Rz4e6Z2Jj0f6NrP7mMcu1Pb73CO9r/GkSct7NS11AEAzQvE+q1QqUS6XB11GRwZZ+zD3GwAAAECa3bpdm+741p3OpsWOqO13607EH/x5rT11dF9HWj12IeL5P4r4l78T8fD9tW2ZiDhzOmLsVO1/d8Py3Cdrj3v+j4wQ74W0vFfTUgcAHGVs0AWMumKxGIVCIUqlUsNQN5/Px1NPPRXz8/ORzWb7X+ARBln7MPcbAAdsb0dcv55ce+fPR0xMJNdev+mPj50/H3H2bMTNm8m1efZsrd12eV0AgBPs2Rdr6/92mGXtuXM34kdv1tr76m+po9s60uzMWO05feULET98M+LlN2pTYH/wYcS990Q8+kDEE5+K+MxDEZnjhpPTsbS8V9NSBwAcJVOtVrv9/yoaWF9fj8uXL0elUml5n8XFxVheXu5dUS0aZO39OvaDDz4Yb7/9dly4cCHeeuutNqsEoGXb2xGPPJJ86Hnt2nAGjmnpj1IpYmoquRp2bW5G5PPt7ZOGMDotrwsAwABUqxH/t38e8fq73QdaEbURwrlPRvx//h/thaHqgPak5b2aljoAhoFsarBMn56wSqUSc3NzMTc3txfsLi4uxubmZuzs7ES1Wo2tra0oFAqRy+Xq9l1ZWYmpqam2AuEkDbL2Ye43AI5w/XqyQWNErb0kQ9R+0h+HTUzUgvSkfjoJob0uAMAJ9sp2RDmhMCui1s7W39RGD6uj8zrgOGl5r6alDgA4jlA8YVNTU7G+vh4REblcLnZ2dmJ5eTny+fzeNN+5XC7m5+dja2sr5ufn6/YvlUpx6dKlfpcdEYOtfZj7DQAAAGBYvfzGx+s/JyXzUbvq6LwOOE5a3qtpqQMAjiMUT9Dc3Nze+tfZbDY2NzePXe+6UCjE7Oxs3bZSqRQLCwu9KrOhQdY+zP0GAAAAMMxeeydi7HSybY6drrWrjs7rgOOk5b2aljoA4DhC8YSsrKzsjXSOiHjmmWeODXb3P/ag1dXVvaC41wZZ+zD3GwAAAMCwu3mrtiZwkqrViA8+VEc3dcBx0vJeTUsdAHAcoXgCKpVKLC0t7f2ey+UOjWI+SjabjcXFxUPb97fZK4OsfZj7DQAAAGAUnD0TkUl47uNMJuLee9TRTR1wnLS8V9NSBwAcRyiegCtXrtT93skU3k8//fShbevr6z0f9TzI2gd17O3t7Xj//fcjIuL999+P7e3tto8LAMBw2N7ejj/5kz/Z+3HuBwD1Hn0g4vadZNu8fafWrjo6rwOOk5b3alrqAEg72dTgCcW7VKlUYmVlpW5bO6Odd2Wz2cjn84e2759aPGmDrH2Qx97e3o6f//znERHx85//3AcPAMAI297ejj/90z/d+3HuBwD1nvhURMIzH0f1o3bV0XkdcJy0vFfTUgdA2smmBk8o3qVisVj3ezabjVwu11Fb09PTh7ZtbGx01FYrBln7MPcbAAAAwKh4fCIid39EUrMfZyJi8pMRn3lIHd3UAcdJy3s1LXUAwHHGBl3AsHvuuefqfr948WLHbc3MzBwaPX0wPE7SIGsfin7b3o64fv3Q5mo14pXr98bL7/7teG3nbNy8fSrOjt2NR8dvxhP3/yIeP/9B43V0zp+PmJhQhzrUoY6TV0cT1Yh45b7/Kl7+O5+N18Y/HTdP3xtn73wQj+78KJ746Uvx+Hv/R2JfqiNCf+x3/nzE2bMRN28mV8fZs7V2E1KtRryyHfHyGxGvvRNx81ZtrbpHH6iNGHh8Ivl16xrWEX1+nzarIyX9kaZa0lIHAG1qck7WsYTPlU9iHZlMxMLUjfjGvx2PZGKtaszndyKTOaeOLurYk5bvMSl4rx5VR1r6o591pOW9mpY6IiIVr4s61KEOdXRVBz0lFO/SwfC10VTerWoWDJdKpa7abWaQtae+37a3Ix55pC4suJUZi2cfvRyF//K/i/Kv/Fpkqndj7O7tqGYykalW4/apsahmTkXuZ/9nLPz7/1d8+bVn4kz19sdtnj0bce1aex+E6lCHOtQx7HU00HUdndAf9SYmarXvO9m/dSfi2VfPR+GV+6P8s7ORiWqMnapGtVq7yHH7biaqkYncr9yMhcffjS8/dj3OnN7XZkIn+7duRzz7YkShGFF+t3ZJZex0fFzHnVpQnbs/YmE64sufjzjTgzPagbwujepISX+kqZZ268idlowDpEaDc7KuJXSufNLr+PI//XT8xT94MV4b/3TcOXWm48OfvnsrHtv59/G7//TzEa/9WB3d1PFRLan4HpOi92pa+2NQdaTivZqiOtLyuqhDHepQR1LXDUmW6dO7UCqVolKp1G2bnJzsuL1sNttwe7lc7rjNZgZZ+1D02/XrdR+Ar45/OmZ++6X4xn/938frn/gvIiKimjkVt07fE7dPnYlbp++Jaqb25/T6J/6L+MZ//d/HzG+/FK+Of/rjNm/ebP+OWnWoQx3qGPY6Dkikjk7oj8MmJiLy+Yh8Pl79ZD5m/pd8fOPFiXj9Z2drdUQmbt09Fberp+LW3VNR/eiO/9d/dja+8eJEzPwvtf1220jiJP/VtyNmvhnxjb+MeP3d+KiOWmB/+27tf3fXqnv93drjZr5Z2y9JA31d9teRkv5IUy2d1PF//5//XpxO+LUBoEMHzskSkcC5sjqux5kP/kN853/7p3Hm7q04dfdOR4c+dfdOnLl7K/7sf/tyjH3wC3V0W8dHtaTie0yK3qtp7I9B1pGK92qK6kjL66IOdahDHUlcNyR5QvEuXL169dC2c+c6nArpI41GNvciFB9k7cPWbz/4z38zvviP/l28Nv7pqGZO7X3YNbP7mNfGPx1f/Ef/Ln7wn/+mOtShDnWoQx3preNaxBe/WZt+uhofB4pN6/jo57V3avv94FoiZaSnDq9LamvptI7tyi9F9h/9uxhL6LUBGBbf+ta34k/+5E/iW9/61qBLYUg8tvOj+N7/+t/EPXf/U5y+e6utfU/fvRX33P1P8b3/9b+Jx3Z+pI4E69iVlvPUtEhLf6ShjrS8V9NSR0Q6Xhd1qKPfdXR67jeq/THsddAbQvEubG5uHtqWy+W6arNROPzSSy911WYjg6x9mPrt1fFPx5f+wb+ND0/9rban/rlz6kx8eOpvxZf+wb/teuSYOtShDnWoQx09qePtiC99O+LD2xF37ra37527tf2+9O3uRwOnpg6vS2pr6aaOu9VTEaf+VvzKP/i3RowDJ8q3vvWt+NM//VOhOG353P/1V/H8//j347Gdfx+Z6t3IVI/+P97dxzy28+/j+f/x78fn/q+/UkcP6kjLeWpapKU/0lJHRHreq2moIy2vizrU0e86Ojn3G+X+GOY66B2heBcajURuNpV3qxqFwwenGk/CIGsfln67lRmL3//C/ztunToTd0+dPn6HBu6eOh23Tp2JP/jCs3Er09mimupQhzrUoQ519KSO2xG//93adNN3jxty26yOam3/P/jzWntDXYfXJbW1JFFH5tTpiFNn4pe/8GzcvmuNcQA4ymM7P4rn/4e/H//yf/9v4+H3/38RUQuuztz5MMbufBhn7ny4F3Tlfvb/jX/5v/+38fz/8PcTGxGtjnppOU9Ni7T0R1rq2G/Q79U01JGW10Ud6lCHOob9/29HlVelC43C3W6nAW8UDt+4caOrNhsZZO3D0m/PPno5fnzu8WOnxzjOnVNn4kfn/l48++jl+Ko61KEOdahDHWmp48WIH791/BTUx9ZxN+JHb9ba++pvDXEdXpfU1pJUHZlTZ+L0ub8XG/9nOb5gNjMAONKZ6u346qvfia+8+p344X1PxMvnPxuvjX86Phj7pbj39n+MR3d+FE9cfyk+897L0cvbzdSRnvPUtEhLf6SljoNO+t9MWl4XdahDHeoY9v+/HVVC8S70Yq3v++6779C2fo0U71artQ9Dv1WrEYX/8r/rvKAGVj/99fhK9RdtneipQx3qUIc61NGzOoqJlhGrL0R85QsRmTYKSVUdXpdU1tKLOv7nVx+I/2e1/T4BgJMoExGPv/dyPP7ey+oYQB1pOU9Ni7T0R1rqOMpJ/JtJy+uiDnUMqo52nIT+GMY66D3Tpyes22nAu91/kMfuZv+09dsr1++N8q/8Wtd3Be2qZk7FVvaR+OH1e9WhDnWoQx3qGHwd2xHld7sfebtXR0Rs/U3ED99sb7/U1OF1SW0tSdeRyZyKd97/pY76BACg39JynpoWaemPtNRBvbS8LupQhzrU4XM9vYTiHerF6O1mkp4+fZC1p7HfXnnllfjrv/7rup//afO9vbVtkpKp3o2Xf/pLbe3z8rt/Wx3qUIc61KGO5Ot4IxK/UzXzUbtDWYfXJbW19KKOiGpHfQIA0G9pOU9Ni7T0R1rqoF5aXhd1qEMd6tit43/afK8ud3rllVcSPQbty1Sr1aQGXpwolUolxsfHD23vtjvX19djbm6ubls2m42dnZ2u2t1vkLWnod/++q//Oj7/+c8f2d7pe34lqmP/WVc1NfK3z9yNT/xnrd+L8v5/uBu/uJX8vSvqUIc61KGOE17HBxG/+E+R3PDbiIhMxN/+WxGfaOMm2NTU4XVJbS1pqQNgGP3kJz+Ju3fvxqlTp+JXf/VXB11Oza1bEe++m3y7998fceaMOtQxWnVEes5T09InaemPtNSRltclLXWk5XVRhzoGVccvfv43LZ/7nYT+SEMdmdv/Ie58+LOm//7iiy/Gb/zGbyR+XJqzpniHkh69fZRz584l2t4ga09Dv01MTEQmkzkyiL/z4c8ijviw6tTPI+LnyTfbNnXUU0c9ddRTRz111FNHvZ//olbLoKWmjvC6HJSWWtJSB0A/3L17N95+++1Bl9FbvQhjOqGOeuqol5Y6Ij3nqWnpk7T0R1rqSMvrkpY60vK6qKOeOurt/347yHO/NPVHGuo4SiaTiYmJiUGXceIIxTvUz2nAkzbI2tPQbxMTE3HvvffGBx980NEI9V/+5V+OT3ziEz2oDAAAAAAAgLR7//334+c/b/+W+0wmE/fee69QfACE4h3KZrMNt1cqlab/lvSxkm6vH7Wnpd9+8YtfxPb2dmxvb7fd7sTEhA8rAAAAAACAE0rGNHyE4h1Kekrzfh5rkLWnqd988AAAAAAAANAuGdPwSX7l+BOun2tmJ22QtQ9zvwEAAAAAAADpZaR4h46aBrwbjcLhXC7XcXuVSiVu3LhR18Yga2/n2I1q7+bY7Wjn2GlWLBYjojZqfrfvd0fQdzpd/e5rtdvn+3+fnp7uuFYAoDvDfP4yyNp7cexeLA2UdJvD/H4BAAAg3Yb5O6drFMm1mbbrI0LxhPVixPPU1FTLjy0Wi1EoFKJUKkW5XD707/l8Pp566qmG+w6y9hs3brRc+/z8fEtv+F70W6vHTtr6+noUCoW4evVq7OzstLRPsViMmZmZHlf2sWw223JtAED30n7+cpRB1t7rY1cqlRgfH6/bdvDmxIPbD94gevDmw107Ozsd98cwv18AAABIt2H+zukaRf32pK5RpPL6SJWO5XK5akTU/aytrXXV5vLy8qE2NzY2jt1vbW2tms1mD+3bzk+/am/Ub7/0S7/UVq2Li4sD67eDx+6Vra2t6vz8/KH6WrW5udnV+6Hdn1wu18PeAAB2pfn85TiDrL1fx97Z2enZ+dbOzk5qnzcAAAAnzzB/53SNorfXKNJ2faRarVatKd6FRtMXNLqTox1bW1stHWdXpVKJubm5mJub27tTYnFxMTY3N2NnZyeq1WpsbW1FoVA4drqFftXeaNt//I//MSJar31lZSWmpqb2nnM/++3gsXtlbm4uVldX646Ttjuo9ltaWhp0CQAw0obh/KWZQdbe72P38nytnbaH+f0CAABAug3zd07XKJJxXNtpuT5Sp6MonWq1Wq3Oz88fujthfn6+qzZnZ2cPtXmU/aOuc7ncsXdHNKq537U3quGXf/mXO6o9n8+3dexdSfTb7rF7oVAoNHyN2hmNvbW11bO7cLqpCwDoTNrPX44yyNoHcexenXOl/XkDAABwMgzzd07XKPp3jSIN10f2M1K8C43WrO52tPXB/aenp5s+dm5ubu/x2Ww2Njc3j707olAoxOzsbEvHblertTfqt6mpqY5qL5VKsbCwMJB+2z120iqVStNR12kdKV4oFAZdAgCMtLSfvxxlkLUPc7810urd4KP2vAEAAEiPYf7O6RpFcgY5u1ynx858lNTTgWKxGDMzM3Xbstls7OzsdNzm+Ph43Yu5vLwci4uLhx63srJSF5yura01DbsParS4fUTEJz7xifjZz37WftEfabX2y5cvx3e/+926ba3221G1v//++8ceuxf9trW1dezU9O1YWFiI1dXVhv+Wz+djc3OzpXYO1ru4uBgLCwtx7ty5rsP1qampKJVKEVG7AWFjY6Or9gCA5obh/KWZQdY+yGNnMpmI+PhL7m6bu27cuHFo2/7tzczPzx977GF+vwAAAJBuw/yd0zWK/l+jGOSxG+p4jDnVarXx0P9OF3hvtOj85ubmsY/rZOrqxcXFVNTeybGb1T6ofpudnW27nWY2NzfrpsA4eKzp6emW29r/fNvZ7zgbGxt1NW1tbSXWNgBQbxjOX5oZZO2D7rdujtuNQT9vAAAARtcwf+d0jWIwy+AO8tiNmD69S42m6S4Wix21dfXq1brfs9ls5PP5Q4+7cuVK3e+dTJPw9NNPN9z+r//1v267rYjOa9+v1X5rVnu7x06q39bX17ueen7X5cuXI6I2qvvixYuJtBnR2XNtZv/dTPPz80YNAUAPDcP5SzODrD0t/dbvpW/S8rwBAAAYPcP8ndM1isEuz5uWpYGF4l2am5s7tO25557rqK21tbW63xsN/69UKrGyslK3bXeKhXbf/BMTE4e2d7o2dKe179dqvzULvds9dqtTU7Ry7PX19bbbOmh1dTVKpVJks9lYXl7uur39juqvdhSLxb1p0yMi8ToBgI8Nw/lLM4OsPU39du7cubaP26k0PW8AAABGyzB/53SNoqaf1yjSdOz9hOJdevLJJw9t6/SP9/vf/37d743u/Dg4mjqbzUa5XI7x8fGYnJyMTCbT8l0mv/3bv31o2w9/+MPWC96nk9oPaqffGo3Qb+fY2Wy24xHOjY7d7ZralUpl73U7eINBp/avuZDUaO79o8QXFxdTc3cPAIyitJ+/HGWQtQ9zv3XjpD5vAAAAem+Yv3O6RsEuoXiXstlsw7s6VldX22qnWCzWLSQ/Pz/fMHA8OJr6137t12JmZqZu39XV1YYj2A/6h//wHzbc3q/a77///o6PPTMz03B7q8fuZmryRsfudMr8XbvTpk9PTx8Z+LcTQu++JkkF1/tHifdiNDsAUC/t5y9HGWTtaeq3ft5AmKbnDQAAwGgZ5u+crlHUmD5dKJ6IRuHg/hG1rdj/+KMCx4Nv8J/97GcNH9fKWgLN/vj+2T/7Z0fud1CntTcaqd5qvzWr/Xd+53daOnY304k3O/b+acXbUSwW90bJdzp9/VGSGiW+fwYCgTgA9F6az1+OM8ja09Rv/ZweLE3PGwAAgNEyzN85XaOoMX26UDwRuVzuUEhYqVRaGq0dEbGyslL3pn3hhRca3jVRKpXqRmRHRHzwwQdN2z3uD6HZnRk///nP+1L71NRUx/3WrPaf/vSnLR17cnLy2GO0e+x21nTfbzdsXl5eTizA3pXNZru682jX6urq3vPL5XIN120HAJKT9vOXowyy9mHut26c1OcNAABA7w3zd07XKNhPKJ6QxcXFWFxcrNu2vr5+bMC7srJSNzq6UCg0vVPk6tWrh7b92q/9WtO2W7njpNlj+lH7uXPnuuq3Rhr98Tc7djcaPc9OPnhWVlaiXC5HLpc71A/dyufzsbOzk8jo84OvMwDQW2k+fznOIGtPW7/1a3qwtD1vAAAARscwf+d0jeJjpk+PGBt0AaNkeXk57rvvvroAcX19PcbHx2N+fj4++9nPRi6Xixs3bkSpVIpCobD3Zs1ms7G2tnbketKbm5uHtv3zf/7P4+rVq4fuNllcXGxp1PFRf4C9rn23vm767aCXXnqprWN3qlG/NTr2Ucrl8t5zTnPQvLS0tPf+yufzR77OAEAy0nr+0opB1p62frvvvvu6Onar0va8AQAAGB3D/J3TNYqP9esaRdqOvZ9QPGGLi4sxOzsbc3Nze9OKVyqVpiObIyJmZ2dbmjq7URD80EMPxebmZiwsLESxWIxcLhdLS0stT2/d6Ji//Mu/HD//+c97Xvv+O0M66beHH344Xn/99bptB28OaOXYnWj0fBsd+yi706bPzs6mNmgul8t1r8EzzzwzwGoA4ORI6/lLKwZZexr67bg+XV1djY2NjSiVSnHjxo2oVCqRzWYjl8vFxYsXY2ZmJmZnZ9uqMQ3PGwAAgNE0zN85XaNo/m8RvblGkYZjNyMU74FcLhebm5tRLpejUChEqVSKcrkc5XJ57wU9d+5czMzMxPz8fMt/BI3+gM6dOxfZbDY2NjY6qrXRsf/u3/27sba21pfa92u3365cuXIoNL9x40ZHx25Xo+fd6NjNrK+vR7FYjIh0B837R+/Pzs62NCU/ANC9NJ6/tGqQtaet33b3rVQqsbS0FKurqw0fV6lUolQqRalU2nvM8vJyy8vrpO15AwAAMDqG+TunaxSH9+31NYq0HXs/oXgP5XK5WF5eTqy9Xqyn0GjKgkqlMtDaWz12s9q7OXarWj12M5cvX46I2rTpaVlL4aBisRjr6+t7vyf5fgAAjpbG85dWDbL2NPbb0tLSkbMfHbVfoVCIjY2NjmZl6la/3i8AAACk2zB/53SNol4/rlGk8di7hOJDrttAdZCB7CBrH+Sxd9fozufzLU9zPwi707tHtL5GPQDQO877huPY++/Q3n8+1YlyuRyTk5OxsbHR9nI7w/x+AQAAIN2G+TunaxSdafcaRVquj+wnFB8S/RyVkfQUFYOsPW39tn+N7jRPm76ysrJ3F1M2m42nn356wBUBwMmRtvOXdjjvay6Xy8Xs7GxMTk7GuXPn9tbL2tjY2FtWp5m5ubnY3Nwc+Drfpk8HAAA4WYb5O6drFM316hpF2o8tFD/hul2/YJAGWXunx56bm4uIiPn5+dSuz10ul+vWEn/66aeNFAKAEeC8rz/HPvjFN5fLxdraWtNzv8XFxZbW1Nr94tcvw/x+AQAAIN2G+TunaxStXaNI4/WRUx3tRd/1c1RG0n/Qg6w9Tf22vr4epVIpstlsqtfn3j+NRS6Xi8XFxQFWAwAnT5rOX9rlvK++jtnZ2dja2jr2ZshsNhuFQuHIL3WlUqnhHdNped4AAACMnmH+zukaRf+vUaTl2M0IxYdEP6daSNoga09Lv1Uqlbh8+XJERCwvL6d25PX6+nrdh0maw3sAGFVpOX/phPO+jy0uLsba2lpb++Tz+SO/+DU6N0vb8wYAAGB0DPN3TtcoPtavaxRpO/ZBQvEh0SxE7cUfVtKB7SBrT0u/LS0tRaVSiXw+H/Pz84kfOym7wX3Ex+s6AAD9lZbzlyTbO0nnfdPT01GtVjv+gpbP55vu2+hO6LQ8bwAAAEbPMH/ndI2i/9co0nLsZoTiQ6KfUxUmfaxB1p6GfiuVSnvrH7R7N0w/LSws1H0gFwqFwRUDACdYGs5f0tJeO8ca5n47aHFxsemX2oNf/EbpeQMAAJAuw/yd0zWKZLRzjSLtxxaKD7l+rkuQtEHW3s9j746+XlxcjFwu17fjtmN/cB9RuwNnenp6gBUBAAc57xu+Y3ej2exC5XK5pf2H9XkDAACQfsP8ndM1ivZ1e40iLccWig+JXk210OgPMOngdpC1D7rfVldXo1QqRTabTfX63PunTY+IeOaZZwZUCQAw6POXbpzk876kPfXUUw23H3w+o/a8AQAASI9h/s7pGkVyWr1GkfZjC8WHXC/uKpmamkq8zUYGWXs/jl2pVGJpaSkieh8yd/PBs7KyEqVSae/36enpyOfzCVQFACTJeV+9NJ339UK352PD+rwBAABIv2H+zukaRfsGmRkleWyh+BBpdLdHt3dhNNq/F3eVDLL2QR378uXLe4+bm5uLTCbT1s/+6cx3ra+vN3zs+Ph4rK+vd/Q8doP7XWke0Q4AJ4XzvuP3T9N5X680Ok6ju81H7XkDAACQHsP8ndM1iuS0eo0izccWig+RRi96t/P1b21ttXScbg2y9kEcu1QqdRRS99vBadONEgeAdHDeVy/N53291GoAPmrPGwAAgPQY5u+crlEkp9VrFGk+tlB8iDR6gRv9AbSjX+sPDLL2QRz74OjrNCoWi4eCe6PEASAdnPfVS/N5X79dvHjx0LaT8LwBAAAYjGH+zukaRW81ukaR5mMLxYdIo3UBur2r5OD+09PTXbXXzCBrH8Sx5+bmumq/HxYWFup+N0ocANLDed/R+6fpvK+XDk6Lls/nG94dPWrPGwAAgPQY5u+crlEkp9VrFGk+tlB8iDS62+Pq1atdtXnwD2hmZqar9poZZO2DOPb8/HxUq9Wufubn5w8dd3Z29tDjdnZ2Ymtrq60Pv6WlpUPPYRhGtwPASeG8r16az/t66eAd4E899VTDx43a8wYAACA9hvk7p2sUyWn1GkWaj52pVqvVJAqiPzKZzKFtOzs7Hd0RUalUYnx8vG7b5uZmz0YLD7L2Yey3hYWFWF1drds2Ozsba2trXbVbLpdjcnKybls+n4/Nzc2u2gUAkjWM5y+7Ttp5X7lcjnK5nOgd2o2OfdTzGOb3CwAAAOk2zN85XaPoXqvXKNJwfeQoRooPmUZvpGKx2FFbB+9IyWazPb3QNcjah7nfktZoaveDU6kDAIM3zOcvJ+m8r1KpxOTkZOLL5xyseXFx8cgvfMP8fgEAACDdhvk7p2sU3WvlGkVaro8cRSg+ZBq9mZ577rmO2jo44rjRdN1HaXftg0HWnqZ+G6TV1dUolUp127LZ7FA9BwA4KdJ0/uK8r/mxs9lsTE9PR6VSiZWVlY6O08iVK1f2/juXy8Xy8vKRj0/T+wUAAIDRkqbvnK5RND/2IK9RpOX6yFFMnz5kGk0TEBHRycs4Pj5etzh9q9MNFIvFmJub29t3fn4+CoXCsfsNsvY09Fu7kp4+vVKpxMMPP1xXe0TtrppuPkQAgN5Iw/mL877Wjl0sFvfW8Uri3LBUKsXU1NTe7xsbG8dOPZaG9wsAAACjKQ3fOV2jSP81ijRcHzmKkeJDJpvNxuzs7KHtB8PT4xSLxbo/nvn5+ZbenKVSKWZmZur2XV1dbWk6hEHWPuh+68SNGzcObTsYaLdjaWmp4f5PP/10x20CAL0z6PMX532tH3t6enrv35aWlto6zkGVSqWujwuFQktf+Ab9fgEAAGB0Dfo7p2sUw3GNIg3XR45UZehsbW1VI6LuJ5vNttVGPp+v23dnZ6el/WZnZw8de/dna2sr1bUP8tid2H+s3Z98Pt9RW5ubmw1fs9nZ2YSrBgCS5LxveM77FhcX9x6/ubnZ1rF27ezs1B23UCi0tf+wne8CAAAwPFyjcI2iFWm4PtKMkeJDqNGc+QfvmDjKyspK3brSL7zwQsujP45aq+HgWtWNDLL2QR67XZVKpWF/lkqlttfLiGi8bkVEbYp2ACC9nPcNz3nf/vOqS5cuRbFYbOlYu4rFYkxNTe0dt1AotL2u2jCd7wIAADBcXKNwjaIVabg+0lQi0ToDsf9ui92f40b+Li8v1z2+3bsr5ufnu7obZ5C1p+HYx9na2qqura1Vc7lc037OZrPVtbW1lvv7YO27P7lcrifPAQBInvO+4TjvO3gOl8/nq4VCoWl/bW1tVQuFQt3dz7lcrq3+bSTN57sAAAAMN9coXKNI87GPIhQfco0Cz2w2W11cXKyura1VNzc3qxsbG9Xl5eW6N2E2m61ubGy0fbydnZ1qNps9dMzFxcXU156WY+/a2tqqZrPZhv3Z7k+zuhpNy+FCJwAMJ+d9nennsRt9wd3/k8vl9n4a1bS8vNzVcx3U8wYAAOBkcY2iMyflGkWaro/sJxQfAVtbWw3Xn272Mzs729XdFVtbW9Xp6em9N2434Wq/a0/LsXeP3+qxd8Pzgz/7H7O2tnboGBsbG03bAQCGj/O+dB97f3+1c57Xqy97gz7fBQAAYHS5RpHuYw/yGkXaro/sylSr1WowEsrlchQKhb11p8vlcmSz2cjlcnHu3LmYmZmJ+fn5VK4LOMjah7nfAICTaZjPX07CeV+lUonV1dV46aWXolwuR6VS2TvWuXPnIpfLxczMTExPT0c+n0/myR1hmN8vAAAApNswf+d0jaK31yjSdn1EKA4AAAAAAADAyDo16AIAAAAAAAAAoFeE4gAAAAAAAACMLKE4AAAAAAAAACNLKA4AAAAAAADAyBKKAwAAAAAAADCyhOIAAAAAAAAAjCyhOAAAAAAAAAAjSygOAAAAAAAAwMgSigMAAAAAAAAwsoTiAAAAAAAAAIwsoTgAAAAAAAAAI0soDgAAAAAAAMDIEooDAAAAAAAAMLKE4gAAAAAAAACMLKE4AAAAAAAAACNLKA4AAAAAAADAyBKKAwAAAAAAADCyhOIAAAAAAAAAjCyhOAAAAAAAAAAjSygOAAAAAAAAwMgSigMAAAAMmVKpFAsLCzE1NRWZTCampqZiYWEhKpXKoEsDAABInUy1Wq0OuggAAAAAWrO0tBQrKytN/31tbS1mZ2f7WBEAAEC6CcUBAAAAhsT+QHx6ejrm5uYil8tFqVSKQqEQ5XI5IiI2NjZienp6kKUCAACkhlAcAAAAYAiUSqWYmpqKiIjFxcVYXl4+9JiZmZkoFouRzWZjZ2en3yUCAACkkjXFAQAAAIbAc889FxERuVyuYSAeEVEoFCIiolKpRLFY7FttAAAAaSYUBwAAABgCpVIpIiLy+XzTx+Ryuchms3WPBwAAOOmE4gAAAABD4MaNGxERce7cuSMft/vv7733Xs9rAgAAGAZCcQAAAIAOVCqVKJfLez+9Nj09HRERV69ePfJxu7V89rOf7XlNAAAAw0AoDgAAwIlTKpVicnIyKpXKoEthiM3NzcXk5OTeT6/NzMxERO3922y98KWlpb3/3g3Rk7K+vh5TU1P+bgAAgKEjFAcAAOBEKRaLMTU1FeVyOa5cuTLochhS5XK5LpheXFzs+TGnp6djdnY2ImoB+crKSjz00EORyWTiH//jfxxzc3OxsrISERGFQmFvbfGkLC0tRalUEowDAABDJ1OtVquDLgIAAAD6YX19Pebm5iIiIpfLxdbW1oArYlgtLCzE6urq3u87OzuJh9CNVCqVuHTpUpRKpaaPmZ+fj0KhkPixdwPxiNrfz+bmZl+eMwAAQLeMFAcAAOBE2B+IZ7PZ2NjYGHBFDKtKpVIXiM/OzvYtHM5ms7G5uRnLy8sxNjZW92/nz5+PjY2NngTiERH5fH6v7XK5bMQ4AAAwNITiAAAAjLxisbgXiEdErK2tRS6XG2BFDLOD0+4//fTTfa9hfn4+bt++XbftE5/4ROLriDc67vz8fEQIxgEAgOEhFAcAAGCklUqlmJmZ2ft9cXGx58Eho23/KPF8Ph/5fH6gNew6uM55rxQKhb3nXC6X49KlSz0/JgAAQDeE4gAAAIys3fWXd+Xz+VheXh5gRXSqXC4PuoSIqIXR+0dGD2KUeEQ0nSK9X+/vtbW1vf8ulUp1MzEAAACkjVAcAACAkXXp0qW6AHN/kMdwWFlZifHx8Ziamhp0KRFRHzpns9mYnZ3tew3FYrHpTQJH/VuScrlcLC4u7v2+vr7ecPQ6AABAGgjFAQAAGEmrq6tRKpX2fl9cXLSO+JAolUqxsLAQ4+PjsbS0FJVKJc6dOzfosg4FzoMaJX7caPBmo8h7Ucf+v6mFhQXriwMAAKmUqVar1UEXAQAAAEmqVCoxPj5et21nZyey2exgCqItmUzm0Lbp6enY2NgYQDUfm5mZqVuzexDvqXK5HJOTkxFRG63daFR4NpuNnZ2dvtSzuroaCwsLe7+n4XUCAAA4yEhxAAAARs7ly5frfl9cXBSID5FGr9WgX79yuVwXiM/Pzw+kpv2jxJeXlxtO316pVPo2lfn8/HzdaPFisRjr6+t9OTYAAECrhOIAAACMlFKpdCiUG9Q013Sm0VTpg576/uCU5UtLS32vYX/Yvbue+f5R2vsdN8V6kg72xcGbUgAAAAZNKA4AAMBIuXLlSt3v09PTAx9lTPfuu+++gR374Mjr6enpgYT0+2vYvdGjWS3lcjlKpVJf6nryySfrfq9UKkaLAwAAqSIUBwAAYGQ0CuOajaQlvdI2ffrBqcgHMUo8ov6Gj/n5+b3/blbPwRtEeiWbzcb09PRAjg0AANAKoTgAAAAjo1EQ12jNZYZPoynV+2X/+yqXyx0KgPthfX09KpVKRNTe0/tvEtgfkDfbp9cO3nxSKpXq1mAHAAAYJKE4AAAAHSmXy7GyshIzMzMxPj4emUwmxsfHY3JyMhYWFvo2dfN+B0f0DiK8HLTdabOLxWKUSqUol8s9P+ZxwetuTf2oJWkHg+U0jBLfnTp9v2bBeL9GbDf6WysUCn05NgAAwHGE4gAAALSlVCrFzMxMTE5OxtLSUhSLxb3QsFKpRLlcjtXV1Ziamoq5ubm+1bW/jl35fD6RtnfXlJ6ZmYmpqakja1hYWNjrn90bBXb7ohcjdyuVSqysrMTU1FRkMpmYnJyMqampvVp365iZmUl0nef19fWYm5uLTCYTly9fbviYpaWlvRsldmsZHx8fqnB8f6iczWabhs+9VCqV9m4yyefzDd/XzcL6gzeK9Eo2mz20trl1xQEAgLQYG3QBAAAADIdKpRKXL1/eC7pmZ2fjs5/9bGSz2ahUKrGxsXFouuT19fWYmpqKzc3NntfXaFTqzMxMx+2Vy+UoFouxtrZW97wOBn8Rtb65dOlSw9HxlUplL9Tc7bv5+flYXl7uap3sSqUSV65ciZWVlZYeXywWo1gsRj6fjxdeeKGtY1cqlbh69WqUSqV46aWXjg07y+VyzMzMNAy/O70pYBBriu8PoyOaj8buteNGiUd8PK37wb/BSqUS6+vrfVlGIJ/PH3rN+3VsAACAo2Sq1Wp10EUAAACQbuVyOaampqJSqcTs7Gw888wzDUPK3dHDBy0uLsby8nJPaxwfHz8UuO7s7LQcppbL5VheXt4Lf5vJ5XKxtbVVt99u37RrbW2to8BwdXU1lpaWOg6YDz6Hbo8zOzsba2trEVELYR9++OEj9znqdWl2zNnZ2cjlcnvbb9y4EZVKJW7cuLH3nHZrSMru6P5W6u6VSqUS4+PjEVG7MWBnZ6fpY5v9/eXz+b7cmLK6unpobfH97w0AAIBBMVIcAACAIxWLxb0R19PT00cGXLOzs7G5uXloivGVlZV4+umnexYolsvlQyFqNptt63jFYrHtqaZLpVJcunSp43B6bm6urRsGyuVyzM3N1U2lvby8HBcvXtx7rvtHdRcKhYajtcvlciwtLR173FaC84NauUHg4OuyO+p9dXW16b7HjU6/ePFiG1Ueb3eE9a7Z2dmBjFbfP0r8uJHquzUe7MPdEe9JLSfQTKPX4ODIdQAAgEGwpjgAAABN7Q/EI6KlEZ/5fD6mp6cPbe/l2saNgrdGNRzlySefjI2NjdjY2Ii1tbVYXFw89pi7AXAul4vFxcXY2NiIra2t2NnZia2trdjY2IjFxcWGU67vWllZaXkK9EKhsBeI53K52NzcjOnp6bqwNpvNxvT0dCwuLsbW1lbT4LuVYy4vL8fOzk5Uq9WoVquxsbFx5OObTZl+lJWVlRgfH4+VlZWu1lufnJzseN9G9ofREc2nLe+1/X83rdTQ7DGNlhdIWqPQvVKpdPW6AgAAJMH06QAAADR0cBrs5eXlY4PiXQfD9IhaSH1cqNqpg9NcRyQzZXujdnO5XCwvL8fc3Fxks9lYXl5uaa3p46Yi39jYODbIX1pa2guz25l6fWVlJZaWlg5t72T69qmpqUPTy8/Ozsa5c+didXV1r0+efPLJyGazUSqV4sqVK3v9eHAK8JWVldjY2IhsNhvnzp2LbDbbMLDfXcO+md3p1ZOSyWT2/ruX792j7J+OvNVpyPdPt35QP6Z/n5ycPHRjRKfLBAAAACRFKA4AAEBDMzMzeyOwj1vLuJH9oWKnbbSqUVBbKBRaCquP0miN5F3ZbDY2NzfbCmLL5XLT0dStrPO9G4q3uib4fo3Cyvn5+bZHEC8sLDQd9Z/P5+OFF15oGLzu1t7K+taN1odv5aaBpBx83ft57P32v2abm5stT3/e6GaOiPZubOnU/s+Nfh4XAADgKKZPBwAA4JCVlZW6YKuTcLnRutG90ixk7ta5c+cabu8kEN+tqdmI43K5fOwU8/fdd19ERMNR38dptM/Vq1fbbueokcbNAvGIWjA6PT2d6GjuXtk/w0AulxtIIF4sFvfe17lcrq31wJtNoX5wSvheaPT6drI2PQAAQJKE4gAAABxyMDxrNlr6KP0KP5utWdws0E7C8vJyx89vd/r1Ro4btb24uBg7Ozsd3aTQKNhtd/3voywvLx87Nffueu1ptj+MjujsBoQk7H+PtFtDPp9vur53oxHkSWr0Hujk5gsAAIAkCcUBAACos7KyUhcy53K5jgLgXobS+924caPh9l6undzttOyLi4sN6yuVSseOqO/0eTV6DZMcvd9tn6TFwRsWBvG8yuVy3dIFndTQ7EaWdqfLb9fubAb79XKWCAAAgFYIxQEAANhTqVQOjUrtdOrog2F1r0aO9ztwSypsf/LJJxtu7+Wo2l7dKJDNZnt6E0K/lEqlumUDBrUO9v5gvtNQfn5+vuFrcnAkfNIaHbPZjSsAAAD9IhQHAABgT6M1h2dmZjpq62BY3e+1pHs1Uj2pdpv1a1Ihf6lUitXV1VhYWIiZmZkYHx9v2HYSx7t48WLXbaTBwfd/s7W5e23/2vKdLF2wq1mg3mz6fgAAgFE1NugCAAAASI/9YdyuRmsTt+Lg6NBejSQe1lGozfq1k+dTqVTi+9//fmxubvZ8JHAjozBK/OB627OzswN5XisrK3W/T05OJn6M1dXVnk+jvp/p0wEAgEETigMAABARtWmVD4ZX2Wy24xHe/Rop3mzk9o0bN1Id1jbrj1b7qVKpxOrqajz33HNRKpWaPi6fz8fFixdjamoqlpaWBJRNpGWUeL/C6tXV1Z6sl97o/ZXmv0MAAOBkEIoDAAAQERFra2uHtnU6LXajkcpPPfVUR20dp1ngNqzhbyuh+NLS0qERxbtmZ2djZmYmpqenD7W1vLw8tP3Sa/tnScjn8x3PkNCN9fX1vb+dbDabSDD/3nvvNXyvLC8v9yQUf++99w5t69VSBgAAAK0SigMAABAREd///vcPbet0dPfBkcvZbLZnIeNRI8WH0VF9XiqVYm5u7tBNB7lcLpaXl2N2drbX5Y2k1dXVupsFBjVKfP9o9aeffjoWFxcTaXd/2L6rXC5HsViM6enpRI6xy0hxAAAgjU4NugAAAAAGr9HU6RGdh1kvvfRS3e9JB2/7DetI8Ub1HRVql8vluHTp0qFwc35+Pra2tgTiXVheXt7772w2O5C+LJVKdTeTJDmKe2lpqeH2/c87KY1uRjFSHAAAGDShOAAAAA2nTo+IuO+++zpqr1gs1v3eq6nTj5L2keKNpphfWFho+viZmZlDQfr09HTf1qAeVcVise61SMNa4vPz84mOrn7yyScbbj/43JNgpDgAAJBGQnEAAADi6tWrDbcnNX16r0feNpqaPe0jxQ/eOJDNZpuOqG80/XVE85sZaN3B0dK9WGf7OJVKpW5N86NujujEUaPfk76potHNKJ1+jgAAACRFKA4AAMChEHtXJyM819fX635Pal3ko1y8ePHQtvfee6/nx+3GxsZG3e9HhbGNgsvZ2VkjcLu0u672rqRHaLdqfyCez+cb3uTRrWYj4PcfOwmNbkaZmZlJ9BgAAADtEooDAACccM0C8YjORlsfDHD7MR311NTUoW1JTwudpEqlUhfGZrPZI/up0Uj+z372sz2p7SQ5OEq82drbvXblypW9/056lPiufD7fcMT2wVHq3Wr0d9fophUAAIB+EooDAACccAen8d6v3WD5YNi7uLjYl5G3jUK3o8L+QdsfgkbUwtmj+qnRzQmdTEmd9nXWj5L0dPgHw+Dp6emBTPO9vr5e99x6OX17s9D/4M0BnWr0eZHNZs1oAAAADJxQHAAA4IR76aWXmv7b1tZWW23tDxmPG/2cpEbTTZfL5VSuK14qlWJlZWXv91wu11EQetTr1sjMzEwq+6NVSQf6B0dHp2GUeLN1v5Py5JNPNtx+cBr5TjW6EWV6errrdgEAALolFAcAADjhjhpR3Wja7mYqlUpdwLe2ttbXEaKNwrd26m9VNwFipVKJubm5vd+z2eyhtcUbadSP7dQwNzfX9PFJhM39CNuTPsb+92oulxtIeFsqler+/p566qmeHi+bzTYN3pMYLd7ovWyafwAAIA2E4gAAACfcUVOkHwztjrK0tLQXXC4uLvY9ZNwfNu/q1RTqMzMzba/DXKlU4tKlS3v9nc/n4/XXX29pyu5m08MfV0OpVIrJyckoFouxubmZyE0K/QjAG/XJwbXqu3FwyvJBjRI/eNx+/M00W7O8WCx2/ffS6CaUXk4HDwAA0CqhOAAAwAnWyprhrQSG6+vrewHt/Px8YmsUt6PR1NCtjMLu1MLCQszMzLTUh8ViMR5++OG90LFQKLQVUjcK/Hdr2D8V+65yuRxzc3MxNTUVuVwuXn/99cjn8w0D7XZD7kbPN+kR+Y1C8d3ntL/eUqm09zzbsX+UeDabHUhwu7q6emj0fj9mVmh0g8WuZu+zVh0M1fP5vPXEAQCAVBCKAwAAnGAHA87Z2dlDIVaxWDxyPeqlpaW9MG15eTnREb3tyGazh9YW78X06fsVi8WYnJyMqampWFlZifX19b3R9cViMVZWVmJycnKv/6anp2NnZ6ftEHZ+fr7huukRtf6fnJyMubm5mJubi8nJyZicnIz19fVYXl6OjY2NI4PJ/QHxUSqVSsMgd/ffFhYWElvHfWZmpuH29fX1GB8fj0wmE5lMJqampmJ9fT3OnTvXctsHZz/o17r3u8rlciwtLTUcsT0zMxPFYrEno/ErlUqUSqW4fPnykbXNzMx0NGK80T7NRqUDAAD0W6ZarVYHXQQAAACDsbq6WhdcbWxsHFr3elc2m40nn3xyb1Tu1tZWrK+vR7lcjmw2G2trawNZl3m/9fX1Q7VvbW21NEV5q+11IpvNxjPPPNN0PedWlEqllkdEZ7PZeOGFF+qC9EqlEuPj48fut/91XFhYiO9///sdhbTZbDYuXrzY8Wj9ycnJlkbh5/P52NzcbLndubm5WF9f3/t9Z2en56OZK5VKPPzww233Y6PXsR0rKytx5cqVjkP2bDYbOzs7LR/r4KwS/ehbAACAVhgpDgAAcIIdDBPPnTsXs7Ozsba2duixuyOFFxYW9qbtvnHjRiwvL8fOzs7AA/GI2kj3gwF40iPXs9lsW891dnY2Xn/99a4C8YiPw9/jAv7p6em96dL3u3HjRsPHZ7PZvZ+D4WkrI7/377/7E1F7v7QSajeztrZ27HPN5XLxwgsvtNxmuVyuC8Tn5+f7Ftoe1Y9H9WE33nvvvZbaaHTsdo9/8O+s0awTAAAAg2KkOAAAwAm2O13zrv0jO3dD8Oeee24vHM1ms5HL5eLixYsxNzeXiiD8oIOj33O5XGxtbXXUVqOR4rvtVSqVuHLlSpRKpbh69epegLi/jxYWFjoe5XuU1dXVWFtbqztuLpeLpaWlgayP3Uurq6tRKBTqAvpcLhf5fD6eeeaZtoLXpaWlujXYu5lFgI+Vy+WYnJys26ZvAQCANBGKAwAAnGBTU1N1awGPylfE8fHxulGunQZ0R4XiDJ9MJrP339PT0x1P7U69g1OnN5ttAgAAYFBMnw4AAHCCdTO9dZo9/fTTdb8vLy8PqBLSYnV1te73g+tf07krV67U/e7vDQAASBuhOAAAwAm2fzT1KK3/u7i4WDcyfHV1tev1mRlu+4PaXC6Xyqn/h9H6+nrd39b8/Lxp0wEAgNQRigMAAJxQozpKfFehUKj7/eBoVk6O9fX1uve7UeLJ2d+X2WzWKHEAACCVhOIAAAAn1MFQ/Ny5cwOqpDemp6djdnZ27/eVlRWjxU+o/TdEZLPZmJ+fH2A1o2N1dbXuc+SZZ54ZqRknAACA0SEUBwAAOKFOQkC8trZWN5Xz3NzcAKthEEqlUpRKpb3fBeLJqFQqdaPE5+fn625CAQAASJOxQRcAAADAYIz69Om71tbWYmpqKiIiisVirK+vC+9OmP1T6T/55JMDrGR0XL58ee/Gmnw+f2i5AgAAgDQRigMAAJxQW1tbdb+P6rTH+Xw+NjY2YmZmJiJqYd709PTIPl/q5fP5yOfzgy5jpOzeXBJR+9x44YUXBlwRAADA0UyfDgAAcELduHFj0CX0zfT0dKytrUVEbdpn06hDZ/b//WSz2djc3HSDCQAAkHpCcQAAgBPqpEyfvmt2djaWl5cjojbSdf96yEBrLl26FJVKZW+EeC6XG3RJAAAAxxKKAwAAnFC76wGfJIuLi3vB+MrKShSLxbbbOEkj7GG/hYWFKJVKe4G4aekBAIBhIRQHAAA4oQ6OFD8pIfni4mIUCoWIODnPGZJw48aNvSnTBeIAAMAwGRt0AQAAAPTfSQ+D5+fnY3p6+tipnxuNCj/pfcfJtba2FuVy2ZTpAADA0DFSHAAA4ARqFPaetGnBWwn2Njc3G24XjHNSCcQBAIBhZKQ4AADACXRw6nRqKpVK3LhxIyqVSly9ejVWV1cbPm5ubi6WlpYil8vFuXPnIpvN9rdQAAAAoGVCcQAAgBNofyiezWbj4sWLJ36N4KWlpVhZWWnpscViMYrFYt22arXai7IAAACALgnFAQAATqD5+fmICGH4Pvfdd9/e1NC7I7/PnTvX9PG7082bSh0AAADSLVN1KzsAAAAAAAAAI+rUoAsAAAAAAAAAgF4RigMAAAAAAAAwsoTiAAAAAAAAAIwsoTgAAAAAAAAAI0soDgAAAAAAAMDIEooDAAAAAAAAMLKE4gAAAAAAAACMLKE4AAAAAAAAACNLKA4AAAAAAADAyPr/A3hazBxvEpK+AAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "fig = plt.figure(figsize=(20,10))\n", - "\n", - "ax = []\n", - "n = 0\n", - "l_tot = 1\n", - "c_tot = 1\n", - "\n", - "x_boundaries = 0.0047, 0.0055\n", - "x_ticks = [0.0047, 0.005, 0.0055]\n", - "y_boundaries = 0, 0.2\n", - "y_ticks = [0, 0.05, 0.1, 0.15, 0.2]\n", - "\n", - "n += 1\n", - "ax.append(plt.subplot(l_tot, c_tot, n))\n", - "\n", - "for path, legend, color, symbol in zip(paths, legends, [myred, myblue], [\"s\", \"o\"]):\n", - " data = path + \"density.dat\"\n", - " file = open(data, \"r\")\n", - " steps, dens = np.loadtxt(file).T\n", - "\n", - " proba, density = np.histogram(dens[10:], bins=50, range=(x_boundaries))\n", - " density = (density[1:]+density[:-1])/2\n", - " proba = proba/np.sum(proba)\n", - "\n", - " ax[-1].plot(density, proba, symbol, color=color, markersize=15, label=legend)\n", - "\n", - "plt.xlim(x_boundaries)\n", - "plt.xticks(x_ticks)\n", - "plt.ylim(y_boundaries)\n", - "plt.yticks(y_ticks)\n", - "\n", - "complete_panel(ax[-1], r'$\\rho$ (part/\\AA)', r'$p$ ($\\rho$)', legend=True)\n", - "\n", - "fig.tight_layout()\n", - "plt.savefig('density_200atm_NPT.png', bbox_inches = 'tight', pad_inches = 0.062)\n", - "plt.show()" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.7" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/benchmark/density_200atm_NPT.png b/benchmark/density_200atm_NPT.png deleted file mode 100644 index 6d8e76b..0000000 Binary files a/benchmark/density_200atm_NPT.png and /dev/null differ diff --git a/benchmark/density_300K_2kcalmol.png b/benchmark/density_300K_2kcalmol.png deleted file mode 100644 index fcdffcc..0000000 Binary files a/benchmark/density_300K_2kcalmol.png and /dev/null differ diff --git a/benchmark/energies_300K.png b/benchmark/energies_300K.png deleted file mode 100644 index 02aa5b8..0000000 Binary files a/benchmark/energies_300K.png and /dev/null differ diff --git a/benchmark/lammps_25part_1.7nm3_300K_NVT/input.lammps b/benchmark/lammps_25part_1.7nm3_300K_NVT/input.lammps deleted file mode 100644 index 004979f..0000000 --- a/benchmark/lammps_25part_1.7nm3_300K_NVT/input.lammps +++ /dev/null @@ -1,39 +0,0 @@ -variable dump equal 500 -variable thermo equal 500 -variable maximum_steps equal 2000000 - -# main parameters -units real -dimension 3 -atom_style atomic -pair_style lj/cut 10 -boundary p p p - -#read_data twoparticle.data -region myreg block -6 6 -6 6 -6 6 -create_box 1 myreg -create_atoms 1 random 25 32141 myreg - -mass 1 1 -pair_coeff 1 1 0.1 1.0 -neigh_modify every 1 - -velocity all create 300 4928459 -fix mynve all nve -fix myber all temp/berendsen 300 300 100 -timestep 0.1 - -thermo ${thermo} -dump mydmp all custom ${dump} dump.lammpstrj id type x y z vx vy vz - -variable Epot equal pe -variable Ekin equal ke -variable Etot equal v_Epot+v_Ekin -variable pressure equal press -variable temperature equal temp -fix myat1 all ave/time ${dump} 1 ${dump} v_Epot file Epot.dat -fix myat2 all ave/time ${dump} 1 ${dump} v_Ekin file Ekin.dat -fix myat3 all ave/time ${dump} 1 ${dump} v_Etot file Etot.dat -fix myat4 all ave/time ${dump} 1 ${dump} v_pressure file pressure.dat -fix myat5 all ave/time ${dump} 1 ${dump} v_temperature file temperature.dat -run ${maximum_steps} diff --git a/benchmark/lammps_25part_300K_NPT/input.lammps b/benchmark/lammps_25part_300K_NPT/input.lammps deleted file mode 100644 index 228bef5..0000000 --- a/benchmark/lammps_25part_300K_NPT/input.lammps +++ /dev/null @@ -1,44 +0,0 @@ -variable dump equal 500 -variable thermo equal 500 -variable maximum_steps equal 200000 - -# main parameters -units real -dimension 3 -atom_style atomic -pair_style lj/cut 10 -boundary p p p - -#read_data twoparticle.data -region myreg block -6 6 -6 6 -6 6 -create_box 1 myreg -create_atoms 1 random 25 14141 myreg - -mass 1 1 -pair_coeff 1 1 0.1 1.0 -neigh_modify every 1 - -velocity all create 300 4928459 -fix mynve all nve -fix mytemp all temp/berendsen 300 300 100 -fix mypress all press/berendsen iso 200 200 1000 -timestep 1 - -thermo ${thermo} -dump mydmp all custom ${dump} dump.lammpstrj id type x y z vx vy vz - -variable Epot equal pe -variable Ekin equal ke -variable Etot equal v_Epot+v_Ekin -variable pressure equal press -variable temperature equal temp -variable volume equal vol -variable density equal count(all)/v_volume -fix myat1 all ave/time ${dump} 1 ${dump} v_Epot file Epot.dat -fix myat2 all ave/time ${dump} 1 ${dump} v_Ekin file Ekin.dat -fix myat3 all ave/time ${dump} 1 ${dump} v_Etot file Etot.dat -fix myat4 all ave/time ${dump} 1 ${dump} v_pressure file pressure.dat -fix myat5 all ave/time ${dump} 1 ${dump} v_temperature file temperature.dat -fix myat6 all ave/time ${dump} 1 ${dump} v_volume file volume.dat -fix myat7 all ave/time ${dump} 1 ${dump} v_density file density.dat -run ${maximum_steps} diff --git a/benchmark/lammps_mu2_1.7nm3_300K_GCMC/input.lammps b/benchmark/lammps_mu2_1.7nm3_300K_GCMC/input.lammps deleted file mode 100644 index 4131f7f..0000000 --- a/benchmark/lammps_mu2_1.7nm3_300K_GCMC/input.lammps +++ /dev/null @@ -1,34 +0,0 @@ -variable dump equal 500 -variable thermo equal 500 -variable maximum_steps equal 2000000 - -# main parameters -units real -dimension 3 -atom_style atomic -pair_style lj/cut 10 -boundary p p p - -#read_data twoparticle.data -region myreg block -10 10 -10 10 -10 10 -create_box 1 myreg -create_atoms 1 random 25 14141 myreg - -mass 1 1 -pair_coeff 1 1 0.1 1.0 -neigh_modify every 1 - - -timestep 0.1 -fix mygcmc all gcmc 1 1 0 1 29494 300 -4 0.01 - -thermo ${thermo} -dump mydmp all custom ${dump} dump.lammpstrj id type x y z vx vy vz - -variable atom atom "type==1" -group atom dynamic all var atom -variable n_atom equal count(atom) -variable density equal v_n_atom/vol -fix myat1 all ave/time ${dump} 1 ${dump} v_density file density.dat - -run ${maximum_steps} diff --git a/benchmark/pressures_300K.png b/benchmark/pressures_300K.png deleted file mode 100644 index f301275..0000000 Binary files a/benchmark/pressures_300K.png and /dev/null differ diff --git a/benchmark/python_25part_1.7nm3_300K_NVT/run.ipynb b/benchmark/python_25part_1.7nm3_300K_NVT/run.ipynb deleted file mode 100644 index 499b9dd..0000000 --- a/benchmark/python_25part_1.7nm3_300K_NVT/run.ipynb +++ /dev/null @@ -1,456 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "step N temp epot ekin press vol\n", - "0 25 97.73 -1.11E-01 6.99E+00 2.18E+02 1.73E+03\n", - "500 25 298.48 -1.83E-01 2.14E+01 5.52E+02 1.73E+03\n", - "1000 25 300.61 -1.36E-01 2.15E+01 5.59E+02 1.73E+03\n", - "1500 25 300.05 -1.73E-01 2.15E+01 5.73E+02 1.73E+03\n", - "2000 25 300.12 -1.69E-01 2.15E+01 5.57E+02 1.73E+03\n", - "2500 25 301.49 -2.78E-01 2.16E+01 5.58E+02 1.73E+03\n", - "3000 25 299.6 -2.00E-01 2.14E+01 5.53E+02 1.73E+03\n", - "3500 25 299.44 -1.41E-01 2.14E+01 5.59E+02 1.73E+03\n", - "4000 25 298.81 -1.01E-01 2.14E+01 6.03E+02 1.73E+03\n", - "4500 25 299.21 -8.21E-02 2.14E+01 5.60E+02 1.73E+03\n", - "5000 25 298.67 -7.25E-02 2.14E+01 6.24E+02 1.73E+03\n", - "5500 25 295.94 1.27E-01 2.12E+01 7.40E+02 1.73E+03\n", - "6000 25 293.04 3.44E-01 2.10E+01 7.03E+02 1.73E+03\n", - "6500 25 303.19 -4.13E-01 2.17E+01 5.83E+02 1.73E+03\n", - "7000 25 300.53 -1.79E-01 2.15E+01 5.57E+02 1.73E+03\n", - "7500 25 300.43 -1.64E-01 2.15E+01 5.57E+02 1.73E+03\n", - "8000 25 297.83 9.78E-04 2.13E+01 6.59E+02 1.73E+03\n", - "8500 25 300.51 -2.81E-01 2.15E+01 5.67E+02 1.73E+03\n", - "9000 25 302.3 -2.92E-01 2.16E+01 5.57E+02 1.73E+03\n", - "9500 25 299.39 -1.17E-01 2.14E+01 6.03E+02 1.73E+03\n", - "10000 25 301.97 -3.25E-01 2.16E+01 5.57E+02 1.73E+03\n", - "10500 25 298.35 -4.08E-02 2.13E+01 5.61E+02 1.73E+03\n", - "11000 25 296.48 8.78E-02 2.12E+01 6.33E+02 1.73E+03\n", - "11500 25 299.58 -1.60E-01 2.14E+01 5.55E+02 1.73E+03\n", - "12000 25 300.99 -1.80E-01 2.15E+01 5.56E+02 1.73E+03\n", - "12500 25 301.09 -2.57E-01 2.15E+01 5.56E+02 1.73E+03\n", - "13000 25 295.95 2.20E-01 2.12E+01 6.48E+02 1.73E+03\n", - "13500 25 301.29 -2.26E-01 2.16E+01 5.56E+02 1.73E+03\n", - "14000 25 300.09 -8.66E-02 2.15E+01 5.61E+02 1.73E+03\n", - "14500 25 300.16 -2.54E-01 2.15E+01 5.56E+02 1.73E+03\n", - "15000 25 300.01 -1.14E-01 2.15E+01 5.59E+02 1.73E+03\n", - "15500 25 301.17 -3.40E-01 2.15E+01 5.80E+02 1.73E+03\n", - "16000 25 300.45 -9.37E-02 2.15E+01 5.62E+02 1.73E+03\n", - "16500 25 303.74 -5.25E-01 2.17E+01 5.55E+02 1.73E+03\n", - "17000 25 300.75 -2.85E-01 2.15E+01 5.52E+02 1.73E+03\n", - "17500 25 300.17 -1.54E-01 2.15E+01 5.56E+02 1.73E+03\n", - "18000 25 296.87 9.02E-02 2.12E+01 6.22E+02 1.73E+03\n", - "18500 25 299.87 -6.34E-02 2.15E+01 5.63E+02 1.73E+03\n", - "19000 25 299.56 -1.49E-01 2.14E+01 5.58E+02 1.73E+03\n", - "19500 25 302.18 -3.43E-01 2.16E+01 5.61E+02 1.73E+03\n", - "20000 25 297.45 -2.37E-02 2.13E+01 6.46E+02 1.73E+03\n", - "20500 25 300.04 -1.63E-01 2.15E+01 5.58E+02 1.73E+03\n", - "21000 25 301.44 -3.08E-01 2.16E+01 5.65E+02 1.73E+03\n", - "21500 25 301.5 -2.42E-01 2.16E+01 5.72E+02 1.73E+03\n", - "22000 25 302.05 -3.47E-01 2.16E+01 5.53E+02 1.73E+03\n", - "22500 25 299.97 -1.45E-01 2.15E+01 5.58E+02 1.73E+03\n", - "23000 25 301.97 -4.05E-01 2.16E+01 5.64E+02 1.73E+03\n", - "23500 25 300.37 -2.32E-01 2.15E+01 5.53E+02 1.73E+03\n", - "24000 25 301.43 -1.80E-01 2.16E+01 5.61E+02 1.73E+03\n", - "24500 25 300.35 -8.72E-02 2.15E+01 5.62E+02 1.73E+03\n", - "25000 25 301.98 -3.05E-01 2.16E+01 5.54E+02 1.73E+03\n", - "25500 25 299.84 -2.10E-01 2.15E+01 5.76E+02 1.73E+03\n", - "26000 25 299.47 -1.23E-01 2.14E+01 5.58E+02 1.73E+03\n", - "26500 25 299.65 -1.24E-01 2.14E+01 5.58E+02 1.73E+03\n", - "27000 25 300.87 -1.55E-01 2.15E+01 5.59E+02 1.73E+03\n", - "27500 25 300.96 -2.83E-01 2.15E+01 5.50E+02 1.73E+03\n", - "28000 25 302.13 -3.91E-01 2.16E+01 5.48E+02 1.73E+03\n", - "28500 25 302.84 -3.95E-01 2.17E+01 5.58E+02 1.73E+03\n", - "29000 25 301.63 -2.73E-01 2.16E+01 5.67E+02 1.73E+03\n", - "29500 25 300.05 -1.45E-01 2.15E+01 5.58E+02 1.73E+03\n", - "30000 25 301.57 -3.36E-01 2.16E+01 5.59E+02 1.73E+03\n", - "30500 25 301.67 -2.96E-01 2.16E+01 5.53E+02 1.73E+03\n", - "31000 25 298.71 -8.05E-02 2.14E+01 5.59E+02 1.73E+03\n", - "31500 25 301.68 -2.42E-01 2.16E+01 5.74E+02 1.73E+03\n", - "32000 25 300.9 -2.63E-01 2.15E+01 5.54E+02 1.73E+03\n", - "32500 25 300.95 -2.48E-01 2.15E+01 5.91E+02 1.73E+03\n", - "33000 25 300.96 -2.61E-01 2.15E+01 5.60E+02 1.73E+03\n", - "33500 25 301.75 -2.65E-01 2.16E+01 5.54E+02 1.73E+03\n", - "34000 25 305.45 -4.81E-01 2.19E+01 5.51E+02 1.73E+03\n", - "34500 25 299.15 -1.89E-01 2.14E+01 5.52E+02 1.73E+03\n", - "35000 25 297.9 6.55E-02 2.13E+01 6.66E+02 1.73E+03\n", - "35500 25 301.56 -2.72E-01 2.16E+01 5.86E+02 1.73E+03\n", - "36000 25 301.57 -2.40E-01 2.16E+01 5.71E+02 1.73E+03\n", - "36500 25 299.01 -9.54E-02 2.14E+01 5.59E+02 1.73E+03\n", - "37000 25 299.58 -1.50E-01 2.14E+01 5.56E+02 1.73E+03\n", - "37500 25 299.52 -1.58E-01 2.14E+01 5.62E+02 1.73E+03\n", - "38000 25 300.38 -2.50E-01 2.15E+01 5.51E+02 1.73E+03\n", - "38500 25 301.32 -2.23E-01 2.16E+01 5.66E+02 1.73E+03\n", - "39000 25 300.6 -1.49E-01 2.15E+01 5.58E+02 1.73E+03\n", - "39500 25 301.52 -4.11E-01 2.16E+01 5.48E+02 1.73E+03\n", - "40000 25 299.48 -1.75E-01 2.14E+01 5.67E+02 1.73E+03\n", - "40500 25 299.28 -1.53E-01 2.14E+01 5.59E+02 1.73E+03\n", - "41000 25 283.77 1.04E+00 2.03E+01 7.95E+02 1.73E+03\n", - "41500 25 299.08 -1.43E-01 2.14E+01 5.77E+02 1.73E+03\n", - "42000 25 300.35 -1.85E-01 2.15E+01 5.55E+02 1.73E+03\n", - "42500 25 300.66 -2.33E-01 2.15E+01 5.66E+02 1.73E+03\n", - "43000 25 302.61 -3.58E-01 2.16E+01 5.89E+02 1.73E+03\n", - "43500 25 298.36 -8.44E-02 2.13E+01 5.58E+02 1.73E+03\n", - "44000 25 299.61 -1.40E-01 2.14E+01 5.58E+02 1.73E+03\n", - "44500 25 299.82 -9.65E-02 2.14E+01 5.60E+02 1.73E+03\n", - "45000 25 300.88 -1.64E-01 2.15E+01 5.57E+02 1.73E+03\n", - "45500 25 301.72 -2.82E-01 2.16E+01 5.67E+02 1.73E+03\n", - "46000 25 295.66 8.59E-02 2.12E+01 6.25E+02 1.73E+03\n", - "46500 25 299.7 -9.17E-02 2.14E+01 5.60E+02 1.73E+03\n", - "47000 25 301.48 -2.88E-01 2.16E+01 5.66E+02 1.73E+03\n", - "47500 25 301.0 -2.18E-01 2.15E+01 5.54E+02 1.73E+03\n", - "48000 25 300.7 -2.05E-01 2.15E+01 5.62E+02 1.73E+03\n", - "48500 25 302.03 -2.85E-01 2.16E+01 5.71E+02 1.73E+03\n", - "49000 25 299.99 -1.33E-01 2.15E+01 6.13E+02 1.73E+03\n", - "49500 25 299.54 -7.61E-02 2.14E+01 5.61E+02 1.73E+03\n", - "50000 25 301.39 -2.53E-01 2.16E+01 5.57E+02 1.73E+03\n", - "50500 25 300.81 -2.74E-01 2.15E+01 5.87E+02 1.73E+03\n", - "51000 25 301.0 -2.55E-01 2.15E+01 5.54E+02 1.73E+03\n", - "51500 25 304.2 -5.06E-01 2.18E+01 5.46E+02 1.73E+03\n", - "52000 25 300.85 -2.57E-01 2.15E+01 5.82E+02 1.73E+03\n", - "52500 25 300.87 -2.55E-01 2.15E+01 5.57E+02 1.73E+03\n", - "53000 25 299.77 -1.49E-01 2.14E+01 5.56E+02 1.73E+03\n", - "53500 25 299.36 -9.22E-02 2.14E+01 5.60E+02 1.73E+03\n", - "54000 25 295.35 1.16E-01 2.11E+01 6.41E+02 1.73E+03\n", - "54500 25 291.52 4.29E-01 2.09E+01 6.91E+02 1.73E+03\n", - "55000 25 298.83 -1.39E-01 2.14E+01 5.55E+02 1.73E+03\n", - "55500 25 301.26 -2.92E-01 2.16E+01 5.64E+02 1.73E+03\n", - "56000 25 301.49 -2.91E-01 2.16E+01 5.65E+02 1.73E+03\n", - "56500 25 300.86 -1.67E-01 2.15E+01 5.66E+02 1.73E+03\n", - "57000 25 299.78 -1.20E-01 2.14E+01 5.90E+02 1.73E+03\n", - "57500 25 302.27 -3.59E-01 2.16E+01 5.93E+02 1.73E+03\n", - "58000 25 301.54 -3.01E-01 2.16E+01 5.61E+02 1.73E+03\n", - "58500 25 299.04 -1.54E-01 2.14E+01 5.54E+02 1.73E+03\n", - "59000 25 291.34 4.38E-01 2.08E+01 7.68E+02 1.73E+03\n", - "59500 25 301.8 -2.63E-01 2.16E+01 5.55E+02 1.73E+03\n", - "60000 25 301.34 -2.89E-01 2.16E+01 5.60E+02 1.73E+03\n", - "60500 25 299.67 -1.74E-01 2.14E+01 5.57E+02 1.73E+03\n", - "61000 25 299.51 -1.14E-01 2.14E+01 5.59E+02 1.73E+03\n", - "61500 25 300.04 -1.76E-01 2.15E+01 5.55E+02 1.73E+03\n", - "62000 25 299.42 -5.44E-02 2.14E+01 5.62E+02 1.73E+03\n", - "62500 25 299.92 -8.42E-02 2.15E+01 5.61E+02 1.73E+03\n", - "63000 25 301.05 -3.48E-01 2.15E+01 5.54E+02 1.73E+03\n", - "63500 25 300.55 -1.51E-01 2.15E+01 5.63E+02 1.73E+03\n", - "64000 25 280.86 1.25E+00 2.01E+01 8.72E+02 1.73E+03\n", - "64500 25 300.88 -2.43E-01 2.15E+01 5.59E+02 1.73E+03\n", - "65000 25 297.92 -1.71E-02 2.13E+01 6.65E+02 1.73E+03\n", - "65500 25 299.99 -1.62E-01 2.15E+01 5.56E+02 1.73E+03\n", - "66000 25 299.32 -6.96E-02 2.14E+01 5.61E+02 1.73E+03\n", - "66500 25 300.41 -1.15E-01 2.15E+01 5.60E+02 1.73E+03\n", - "67000 25 301.17 -2.02E-01 2.15E+01 5.96E+02 1.73E+03\n", - "67500 25 303.07 -3.58E-01 2.17E+01 5.55E+02 1.73E+03\n", - "68000 25 302.94 -4.10E-01 2.17E+01 5.49E+02 1.73E+03\n", - "68500 25 299.8 -1.76E-01 2.14E+01 5.58E+02 1.73E+03\n", - "69000 25 293.73 2.81E-01 2.10E+01 6.96E+02 1.73E+03\n", - "69500 25 300.08 -1.72E-01 2.15E+01 5.56E+02 1.73E+03\n", - "70000 25 298.6 -2.10E-01 2.14E+01 6.55E+02 1.73E+03\n", - "70500 25 299.59 -1.05E-01 2.14E+01 5.60E+02 1.73E+03\n", - "71000 25 301.13 -3.08E-01 2.15E+01 5.67E+02 1.73E+03\n", - "71500 25 299.16 -1.54E-01 2.14E+01 5.56E+02 1.73E+03\n", - "72000 25 299.94 -1.40E-01 2.15E+01 5.58E+02 1.73E+03\n", - "72500 25 298.72 -8.88E-02 2.14E+01 5.58E+02 1.73E+03\n", - "73000 25 300.66 -1.59E-01 2.15E+01 5.71E+02 1.73E+03\n", - "73500 25 302.05 -3.64E-01 2.16E+01 6.04E+02 1.73E+03\n", - "74000 25 300.4 -1.67E-01 2.15E+01 5.66E+02 1.73E+03\n", - "74500 25 298.52 -1.30E-01 2.14E+01 6.20E+02 1.73E+03\n", - "75000 25 302.8 -3.87E-01 2.17E+01 5.56E+02 1.73E+03\n", - "75500 25 299.88 -1.17E-01 2.15E+01 5.60E+02 1.73E+03\n", - "76000 25 297.35 9.18E-02 2.13E+01 6.30E+02 1.73E+03\n", - "76500 25 298.5 -9.31E-02 2.14E+01 5.93E+02 1.73E+03\n", - "77000 25 299.61 -8.55E-02 2.14E+01 5.61E+02 1.73E+03\n", - "77500 25 300.85 -1.75E-01 2.15E+01 5.57E+02 1.73E+03\n", - "78000 25 301.43 -2.98E-01 2.16E+01 5.50E+02 1.73E+03\n", - "78500 25 300.61 -2.14E-01 2.15E+01 5.53E+02 1.73E+03\n", - "79000 25 299.57 -1.39E-01 2.14E+01 5.58E+02 1.73E+03\n", - "79500 25 299.59 -1.03E-01 2.14E+01 5.59E+02 1.73E+03\n", - "80000 25 300.36 -1.90E-01 2.15E+01 5.54E+02 1.73E+03\n", - "80500 25 298.78 -6.00E-02 2.14E+01 5.61E+02 1.73E+03\n", - "81000 25 296.44 4.33E-02 2.12E+01 6.16E+02 1.73E+03\n", - "81500 25 301.78 -2.55E-01 2.16E+01 5.71E+02 1.73E+03\n", - "82000 25 299.22 -1.42E-01 2.14E+01 5.55E+02 1.73E+03\n", - "82500 25 299.34 -1.79E-01 2.14E+01 5.58E+02 1.73E+03\n", - "83000 25 300.63 -1.84E-01 2.15E+01 5.55E+02 1.73E+03\n", - "83500 25 304.01 -5.13E-01 2.17E+01 5.80E+02 1.73E+03\n", - "84000 25 300.49 -2.19E-01 2.15E+01 5.78E+02 1.73E+03\n", - "84500 25 300.5 -1.90E-01 2.15E+01 5.56E+02 1.73E+03\n", - "85000 25 299.5 -9.22E-02 2.14E+01 5.60E+02 1.73E+03\n", - "85500 25 301.15 -2.66E-01 2.15E+01 5.51E+02 1.73E+03\n", - "86000 25 301.59 -2.42E-01 2.16E+01 5.55E+02 1.73E+03\n", - "86500 25 299.38 -1.43E-01 2.14E+01 5.86E+02 1.73E+03\n", - "87000 25 302.25 -2.78E-01 2.16E+01 5.53E+02 1.73E+03\n", - "87500 25 302.36 -2.44E-01 2.16E+01 5.66E+02 1.73E+03\n", - "88000 25 301.26 -2.24E-01 2.16E+01 5.59E+02 1.73E+03\n", - "88500 25 300.69 -1.15E-01 2.15E+01 5.60E+02 1.73E+03\n", - "89000 25 302.56 -4.46E-01 2.16E+01 5.53E+02 1.73E+03\n", - "89500 25 302.25 -3.95E-01 2.16E+01 5.46E+02 1.73E+03\n", - "90000 25 299.41 -1.86E-01 2.14E+01 5.78E+02 1.73E+03\n", - "90500 25 300.56 -1.92E-01 2.15E+01 5.55E+02 1.73E+03\n", - "91000 25 302.58 -3.40E-01 2.16E+01 5.66E+02 1.73E+03\n", - "91500 25 301.78 -3.37E-01 2.16E+01 5.76E+02 1.73E+03\n", - "92000 25 300.59 -2.91E-01 2.15E+01 5.54E+02 1.73E+03\n", - "92500 25 299.83 -1.35E-01 2.14E+01 5.87E+02 1.73E+03\n", - "93000 25 301.08 -1.89E-01 2.15E+01 5.60E+02 1.73E+03\n", - "93500 25 301.27 -2.73E-01 2.16E+01 5.58E+02 1.73E+03\n", - "94000 25 299.04 -9.77E-02 2.14E+01 5.59E+02 1.73E+03\n", - "94500 25 299.72 -2.47E-01 2.14E+01 5.49E+02 1.73E+03\n", - "95000 25 301.32 -2.22E-01 2.16E+01 5.87E+02 1.73E+03\n", - "95500 25 300.28 -1.90E-01 2.15E+01 5.59E+02 1.73E+03\n", - "96000 25 299.2 -1.68E-01 2.14E+01 5.54E+02 1.73E+03\n", - "96500 25 299.97 -1.11E-01 2.15E+01 5.60E+02 1.73E+03\n", - "97000 25 299.09 -8.91E-02 2.14E+01 5.59E+02 1.73E+03\n", - "97500 25 296.06 1.00E-01 2.12E+01 6.33E+02 1.73E+03\n", - "98000 25 300.89 -1.91E-01 2.15E+01 5.59E+02 1.73E+03\n", - "98500 25 303.29 -4.01E-01 2.17E+01 5.94E+02 1.73E+03\n", - "99000 25 299.55 -1.57E-01 2.14E+01 5.56E+02 1.73E+03\n", - "99500 25 300.79 -2.24E-01 2.15E+01 5.53E+02 1.73E+03\n", - "100000 25 295.66 1.70E-01 2.12E+01 6.74E+02 1.73E+03\n", - "100500 25 305.11 -4.80E-01 2.18E+01 5.93E+02 1.73E+03\n", - "101000 25 300.87 -2.35E-01 2.15E+01 5.76E+02 1.73E+03\n", - "101500 25 300.27 -1.38E-01 2.15E+01 5.58E+02 1.73E+03\n", - "102000 25 296.84 1.17E-01 2.12E+01 6.40E+02 1.73E+03\n", - "102500 25 300.18 -2.13E-01 2.15E+01 5.54E+02 1.73E+03\n", - "103000 25 301.77 -3.35E-01 2.16E+01 5.84E+02 1.73E+03\n", - "103500 25 301.92 -4.21E-01 2.16E+01 5.57E+02 1.73E+03\n", - "104000 25 299.45 -1.16E-01 2.14E+01 5.58E+02 1.73E+03\n", - "104500 25 299.73 -1.72E-01 2.14E+01 5.59E+02 1.73E+03\n", - "105000 25 299.07 -1.22E-01 2.14E+01 5.57E+02 1.73E+03\n", - "105500 25 298.42 -5.01E-02 2.13E+01 5.61E+02 1.73E+03\n", - "106000 25 300.07 -2.01E-01 2.15E+01 5.67E+02 1.73E+03\n", - "106500 25 299.98 -1.18E-01 2.15E+01 5.59E+02 1.73E+03\n", - "107000 25 301.93 -4.06E-01 2.16E+01 5.61E+02 1.73E+03\n", - "107500 25 299.79 -1.50E-01 2.14E+01 5.56E+02 1.73E+03\n", - "108000 25 299.23 -7.22E-02 2.14E+01 5.61E+02 1.73E+03\n", - "108500 25 297.55 7.58E-02 2.13E+01 6.19E+02 1.73E+03\n", - "109000 25 300.95 -1.61E-01 2.15E+01 5.59E+02 1.73E+03\n", - "109500 25 300.82 -1.70E-01 2.15E+01 5.61E+02 1.73E+03\n", - "110000 25 299.24 -9.61E-02 2.14E+01 5.59E+02 1.73E+03\n", - "110500 25 299.63 -1.07E-01 2.14E+01 5.59E+02 1.73E+03\n", - "111000 25 300.13 -1.44E-01 2.15E+01 5.63E+02 1.73E+03\n", - "111500 25 299.3 -1.22E-01 2.14E+01 5.57E+02 1.73E+03\n", - "112000 25 301.31 -2.94E-01 2.16E+01 5.52E+02 1.73E+03\n", - "112500 25 299.4 -1.71E-01 2.14E+01 5.60E+02 1.73E+03\n", - "113000 25 299.7 -1.44E-01 2.14E+01 5.57E+02 1.73E+03\n", - "113500 25 302.49 -3.01E-01 2.16E+01 5.65E+02 1.73E+03\n", - "114000 25 301.95 -3.60E-01 2.16E+01 5.65E+02 1.73E+03\n", - "114500 25 300.19 -1.88E-01 2.15E+01 5.74E+02 1.73E+03\n", - "115000 25 299.72 -1.68E-01 2.14E+01 6.24E+02 1.73E+03\n", - "115500 25 301.02 -2.48E-01 2.15E+01 5.54E+02 1.73E+03\n", - "116000 25 297.79 -7.43E-02 2.13E+01 6.12E+02 1.73E+03\n", - "116500 25 301.29 -3.45E-01 2.16E+01 5.63E+02 1.73E+03\n", - "117000 25 299.54 -1.51E-01 2.14E+01 5.61E+02 1.73E+03\n", - "117500 25 298.65 -1.78E-01 2.14E+01 5.56E+02 1.73E+03\n", - "118000 25 293.5 1.86E-01 2.10E+01 6.98E+02 1.73E+03\n", - "118500 25 301.27 -2.71E-01 2.16E+01 5.61E+02 1.73E+03\n", - "119000 25 299.67 -1.35E-01 2.14E+01 5.57E+02 1.73E+03\n", - "119500 25 300.61 -2.07E-01 2.15E+01 5.61E+02 1.73E+03\n", - "120000 25 299.74 -1.90E-01 2.14E+01 5.67E+02 1.73E+03\n", - "120500 25 298.19 -7.06E-02 2.13E+01 5.59E+02 1.73E+03\n", - "121000 25 299.53 -4.36E-02 2.14E+01 5.63E+02 1.73E+03\n", - "121500 25 302.43 -3.10E-01 2.16E+01 5.66E+02 1.73E+03\n", - "122000 25 300.62 -1.78E-01 2.15E+01 5.61E+02 1.73E+03\n", - "122500 25 299.26 -1.82E-01 2.14E+01 5.53E+02 1.73E+03\n", - "123000 25 291.24 4.97E-01 2.08E+01 6.95E+02 1.73E+03\n", - "123500 25 301.78 -2.06E-01 2.16E+01 5.61E+02 1.73E+03\n", - "124000 25 300.56 -2.09E-01 2.15E+01 5.56E+02 1.73E+03\n", - "124500 25 302.46 -3.46E-01 2.16E+01 5.96E+02 1.73E+03\n", - "125000 25 300.0 -2.43E-01 2.15E+01 6.61E+02 1.73E+03\n", - "125500 25 297.88 5.42E-02 2.13E+01 6.48E+02 1.73E+03\n", - "126000 25 299.5 -1.60E-01 2.14E+01 5.55E+02 1.73E+03\n", - "126500 25 301.94 -2.98E-01 2.16E+01 5.53E+02 1.73E+03\n", - "127000 25 301.43 -2.53E-01 2.16E+01 5.67E+02 1.73E+03\n", - "127500 25 299.5 -7.85E-02 2.14E+01 5.61E+02 1.73E+03\n", - "128000 25 301.08 -2.26E-01 2.15E+01 5.59E+02 1.73E+03\n", - "128500 25 299.71 -2.02E-01 2.14E+01 5.53E+02 1.73E+03\n", - "129000 25 300.03 -1.50E-01 2.15E+01 5.57E+02 1.73E+03\n", - "129500 25 298.24 1.98E-02 2.13E+01 6.11E+02 1.73E+03\n", - "130000 25 302.59 -2.76E-01 2.16E+01 5.57E+02 1.73E+03\n", - "130500 25 298.91 -1.51E-01 2.14E+01 5.54E+02 1.73E+03\n", - "131000 25 297.56 -1.22E-01 2.13E+01 6.52E+02 1.73E+03\n", - "131500 25 299.16 -2.26E-01 2.14E+01 5.51E+02 1.73E+03\n", - "132000 25 301.19 -2.61E-01 2.15E+01 5.67E+02 1.73E+03\n", - "132500 25 299.05 -7.70E-02 2.14E+01 5.60E+02 1.73E+03\n", - "133000 25 300.44 -1.48E-01 2.15E+01 5.70E+02 1.73E+03\n", - "133500 25 299.44 -5.82E-02 2.14E+01 5.62E+02 1.73E+03\n", - "134000 25 303.51 -4.36E-01 2.17E+01 5.67E+02 1.73E+03\n", - "134500 25 294.96 6.97E-02 2.11E+01 6.26E+02 1.73E+03\n", - "135000 25 301.7 -2.57E-01 2.16E+01 5.54E+02 1.73E+03\n", - "135500 25 300.9 -3.09E-01 2.15E+01 5.48E+02 1.73E+03\n", - "136000 25 302.29 -3.44E-01 2.16E+01 5.52E+02 1.73E+03\n", - "136500 25 300.18 -1.38E-01 2.15E+01 5.58E+02 1.73E+03\n", - "137000 25 300.62 -2.00E-01 2.15E+01 5.57E+02 1.73E+03\n", - "137500 25 301.19 -2.39E-01 2.15E+01 5.54E+02 1.73E+03\n", - "138000 25 299.88 -2.09E-01 2.15E+01 5.53E+02 1.73E+03\n", - "138500 25 298.74 -4.15E-02 2.14E+01 5.62E+02 1.73E+03\n", - "139000 25 299.25 -6.58E-02 2.14E+01 5.61E+02 1.73E+03\n", - "139500 25 299.53 -1.39E-01 2.14E+01 5.63E+02 1.73E+03\n", - "140000 25 305.35 -5.99E-01 2.18E+01 5.68E+02 1.73E+03\n", - "140500 25 301.57 -2.82E-01 2.16E+01 5.58E+02 1.73E+03\n", - "141000 25 301.63 -3.06E-01 2.16E+01 5.64E+02 1.73E+03\n", - "141500 25 300.86 -3.47E-01 2.15E+01 5.52E+02 1.73E+03\n", - "142000 25 300.88 -2.12E-01 2.15E+01 5.55E+02 1.73E+03\n", - "142500 25 291.65 4.57E-01 2.09E+01 7.04E+02 1.73E+03\n", - "143000 25 302.88 -4.22E-01 2.17E+01 5.78E+02 1.73E+03\n", - "143500 25 299.66 -1.43E-01 2.14E+01 5.57E+02 1.73E+03\n", - "144000 25 299.55 -1.18E-01 2.14E+01 5.98E+02 1.73E+03\n", - "144500 25 299.85 -1.50E-01 2.15E+01 5.56E+02 1.73E+03\n", - "145000 25 300.75 -1.76E-01 2.15E+01 5.56E+02 1.73E+03\n", - "145500 25 298.63 -1.02E-01 2.14E+01 5.57E+02 1.73E+03\n", - "146000 25 284.53 9.29E-01 2.04E+01 7.70E+02 1.73E+03\n", - "146500 25 297.97 -1.33E-01 2.13E+01 5.54E+02 1.73E+03\n", - "147000 25 299.74 -6.56E-02 2.14E+01 5.62E+02 1.73E+03\n", - "147500 25 300.29 -1.75E-01 2.15E+01 5.63E+02 1.73E+03\n", - "148000 25 295.92 9.05E-02 2.12E+01 6.24E+02 1.73E+03\n", - "148500 25 299.68 -7.68E-02 2.14E+01 5.61E+02 1.73E+03\n", - "149000 25 300.5 -2.09E-01 2.15E+01 5.54E+02 1.73E+03\n", - "149500 25 300.66 -1.70E-01 2.15E+01 5.60E+02 1.73E+03\n", - "150000 25 301.76 -2.02E-01 2.16E+01 5.69E+02 1.73E+03\n", - "150500 25 301.08 -2.44E-01 2.15E+01 5.54E+02 1.73E+03\n", - "151000 25 300.09 -1.24E-01 2.15E+01 5.59E+02 1.73E+03\n", - "151500 25 299.43 -1.30E-01 2.14E+01 5.57E+02 1.73E+03\n", - "152000 25 296.75 8.68E-02 2.12E+01 6.66E+02 1.73E+03\n", - "152500 25 301.52 -2.55E-01 2.16E+01 5.60E+02 1.73E+03\n", - "153000 25 301.45 -2.32E-01 2.16E+01 5.61E+02 1.73E+03\n", - "153500 25 301.28 -2.27E-01 2.16E+01 5.74E+02 1.73E+03\n", - "154000 25 301.08 -1.64E-01 2.15E+01 5.58E+02 1.73E+03\n", - "154500 25 301.42 -2.74E-01 2.16E+01 5.63E+02 1.73E+03\n", - "155000 25 299.69 -8.65E-02 2.14E+01 5.60E+02 1.73E+03\n", - "155500 25 295.0 2.69E-01 2.11E+01 6.98E+02 1.73E+03\n", - "156000 25 300.97 -1.78E-01 2.15E+01 5.57E+02 1.73E+03\n", - "156500 25 299.38 -1.53E-01 2.14E+01 5.59E+02 1.73E+03\n", - "157000 25 301.49 -1.87E-01 2.16E+01 5.58E+02 1.73E+03\n", - "157500 25 299.27 -6.76E-02 2.14E+01 5.61E+02 1.73E+03\n", - "158000 25 299.11 -9.40E-02 2.14E+01 6.02E+02 1.73E+03\n", - "158500 25 295.29 2.28E-01 2.11E+01 6.55E+02 1.73E+03\n", - "159000 25 301.26 -1.87E-01 2.16E+01 5.61E+02 1.73E+03\n", - "159500 25 300.51 -1.54E-01 2.15E+01 5.58E+02 1.73E+03\n", - "160000 25 300.96 -1.88E-01 2.15E+01 5.72E+02 1.73E+03\n", - "160500 25 299.62 -1.41E-01 2.14E+01 5.57E+02 1.73E+03\n", - "161000 25 300.67 -2.01E-01 2.15E+01 5.59E+02 1.73E+03\n", - "161500 25 299.87 -2.08E-01 2.15E+01 5.81E+02 1.73E+03\n", - "162000 25 292.0 4.60E-01 2.09E+01 7.16E+02 1.73E+03\n", - "162500 25 302.94 -5.09E-01 2.17E+01 5.63E+02 1.73E+03\n", - "163000 25 295.29 2.49E-01 2.11E+01 6.51E+02 1.73E+03\n", - "163500 25 299.54 -2.45E-01 2.14E+01 5.50E+02 1.73E+03\n", - "164000 25 299.89 -1.39E-01 2.15E+01 5.58E+02 1.73E+03\n", - "164500 25 303.17 -3.73E-01 2.17E+01 5.52E+02 1.73E+03\n", - "165000 25 299.45 -9.69E-02 2.14E+01 5.59E+02 1.73E+03\n", - "165500 25 299.27 -1.21E-01 2.14E+01 5.57E+02 1.73E+03\n", - "166000 25 301.03 -1.56E-01 2.15E+01 5.58E+02 1.73E+03\n", - "166500 25 300.83 -2.47E-01 2.15E+01 5.62E+02 1.73E+03\n", - "167000 25 298.86 -1.07E-01 2.14E+01 7.26E+02 1.73E+03\n", - "167500 25 302.91 -3.54E-01 2.17E+01 5.56E+02 1.73E+03\n", - "168000 25 300.11 -2.23E-01 2.15E+01 5.87E+02 1.73E+03\n", - "168500 25 299.21 -1.08E-01 2.14E+01 5.58E+02 1.73E+03\n", - "169000 25 299.57 -8.36E-02 2.14E+01 5.86E+02 1.73E+03\n", - "169500 25 300.69 -2.43E-01 2.15E+01 5.55E+02 1.73E+03\n", - "170000 25 301.37 -2.37E-01 2.16E+01 5.54E+02 1.73E+03\n", - "170500 25 300.88 -1.58E-01 2.15E+01 5.58E+02 1.73E+03\n", - "171000 25 301.91 -3.15E-01 2.16E+01 5.51E+02 1.73E+03\n", - "171500 25 301.3 -3.26E-01 2.16E+01 5.54E+02 1.73E+03\n", - "172000 25 299.52 -1.33E-01 2.14E+01 5.57E+02 1.73E+03\n", - "172500 25 300.15 -1.60E-01 2.15E+01 5.57E+02 1.73E+03\n", - "173000 25 302.26 -2.44E-01 2.16E+01 5.60E+02 1.73E+03\n", - "173500 25 300.5 -3.57E-01 2.15E+01 5.55E+02 1.73E+03\n", - "174000 25 298.78 -1.77E-01 2.14E+01 5.57E+02 1.73E+03\n", - "174500 25 300.61 -3.09E-01 2.15E+01 5.49E+02 1.73E+03\n", - "175000 25 300.01 -1.48E-01 2.15E+01 5.57E+02 1.73E+03\n", - "175500 25 300.1 -2.97E-01 2.15E+01 5.52E+02 1.73E+03\n", - "176000 25 300.01 -1.93E-01 2.15E+01 5.55E+02 1.73E+03\n", - "176500 25 301.0 -1.69E-01 2.15E+01 6.06E+02 1.73E+03\n", - "177000 25 300.66 -1.58E-01 2.15E+01 5.61E+02 1.73E+03\n", - "177500 25 299.43 -1.79E-01 2.14E+01 5.57E+02 1.73E+03\n", - "178000 25 298.78 -9.62E-02 2.14E+01 5.58E+02 1.73E+03\n", - "178500 25 297.05 2.95E-02 2.13E+01 6.26E+02 1.73E+03\n", - "179000 25 299.19 -8.98E-02 2.14E+01 5.90E+02 1.73E+03\n", - "179500 25 300.99 -2.22E-01 2.15E+01 5.54E+02 1.73E+03\n", - "180000 25 298.91 -1.73E-01 2.14E+01 5.74E+02 1.73E+03\n", - "180500 25 298.66 -1.14E-01 2.14E+01 5.57E+02 1.73E+03\n", - "181000 25 298.74 -2.29E-01 2.14E+01 5.49E+02 1.73E+03\n", - "181500 25 300.76 -1.72E-01 2.15E+01 5.59E+02 1.73E+03\n", - "182000 25 300.8 -2.22E-01 2.15E+01 5.54E+02 1.73E+03\n", - "182500 25 295.69 1.31E-01 2.12E+01 6.47E+02 1.73E+03\n", - "183000 25 298.04 1.89E-03 2.13E+01 6.39E+02 1.73E+03\n", - "183500 25 301.46 -2.12E-01 2.16E+01 5.61E+02 1.73E+03\n", - "184000 25 300.54 -1.99E-01 2.15E+01 5.74E+02 1.73E+03\n", - "184500 25 300.53 -2.27E-01 2.15E+01 6.19E+02 1.73E+03\n", - "185000 25 300.13 -1.72E-01 2.15E+01 5.57E+02 1.73E+03\n", - "185500 25 301.69 -2.43E-01 2.16E+01 5.56E+02 1.73E+03\n", - "186000 25 300.17 -1.00E-01 2.15E+01 5.60E+02 1.73E+03\n", - "186500 25 300.47 -1.40E-01 2.15E+01 5.58E+02 1.73E+03\n", - "187000 25 299.83 -1.60E-01 2.14E+01 5.56E+02 1.73E+03\n", - "187500 25 298.8 -6.14E-02 2.14E+01 5.61E+02 1.73E+03\n", - "188000 25 298.31 -8.74E-02 2.13E+01 5.58E+02 1.73E+03\n", - "188500 25 302.09 -2.53E-01 2.16E+01 5.69E+02 1.73E+03\n", - "189000 25 300.37 -1.76E-01 2.15E+01 5.68E+02 1.73E+03\n", - "189500 25 299.27 -2.38E-01 2.14E+01 5.60E+02 1.73E+03\n", - "190000 25 300.47 -1.26E-01 2.15E+01 5.59E+02 1.73E+03\n", - "190500 25 301.92 -2.55E-01 2.16E+01 5.81E+02 1.73E+03\n", - "191000 25 301.07 -2.59E-01 2.15E+01 5.61E+02 1.73E+03\n", - "191500 25 301.28 -2.40E-01 2.16E+01 5.66E+02 1.73E+03\n", - "192000 25 299.35 -1.29E-01 2.14E+01 5.87E+02 1.73E+03\n", - "192500 25 299.38 -1.25E-01 2.14E+01 5.57E+02 1.73E+03\n", - "193000 25 299.66 -1.76E-01 2.14E+01 5.54E+02 1.73E+03\n", - "193500 25 301.22 -2.08E-01 2.15E+01 5.59E+02 1.73E+03\n", - "194000 25 301.71 -3.15E-01 2.16E+01 5.67E+02 1.73E+03\n", - "194500 25 300.39 -1.84E-01 2.15E+01 5.57E+02 1.73E+03\n", - "195000 25 300.63 -3.16E-01 2.15E+01 5.58E+02 1.73E+03\n", - "195500 25 298.91 -2.02E-01 2.14E+01 5.50E+02 1.73E+03\n", - "196000 25 300.05 -2.03E-01 2.15E+01 6.15E+02 1.73E+03\n", - "196500 25 300.18 -1.96E-01 2.15E+01 5.55E+02 1.73E+03\n", - "197000 25 299.81 -1.41E-01 2.14E+01 5.63E+02 1.73E+03\n", - "197500 25 298.87 -1.46E-01 2.14E+01 5.56E+02 1.73E+03\n", - "198000 25 299.47 -1.73E-01 2.14E+01 5.54E+02 1.73E+03\n", - "198500 25 301.37 -3.20E-01 2.16E+01 5.53E+02 1.73E+03\n", - "199000 25 299.0 -1.04E-01 2.14E+01 5.58E+02 1.73E+03\n", - "199500 25 299.79 -1.68E-01 2.14E+01 5.56E+02 1.73E+03\n", - "200000 25 299.46 -1.24E-01 2.14E+01 5.57E+02 1.73E+03\n" - ] - } - ], - "source": [ - "import sys\n", - "sys.path.append(\"../../molecular-simulation/\")\n", - "from main import MolecularDynamics\n", - "\n", - "MolecularDynamics(number_atoms=25,\n", - " Lx=12,\n", - " maximum_steps=200000,\n", - " dimensions= 3,\n", - " desired_temperature=300,\n", - " tau_temp=100,\n", - " seed=21982,\n", - " thermo=500,\n", - " dump=500,\n", - " ).run()" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.7" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/benchmark/python_25part_300K_NPT/run.ipynb b/benchmark/python_25part_300K_NPT/run.ipynb deleted file mode 100644 index a081f62..0000000 --- a/benchmark/python_25part_300K_NPT/run.ipynb +++ /dev/null @@ -1,458 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "step N temp epot ekin press vol\n", - "0 25 92.27 -3.17E-01 6.60E+00 1.69E+02 1.73E+03\n", - "500 25 299.49 -2.38E-01 2.14E+01 3.12E+02 3.15E+03\n", - "1000 25 301.58 -2.03E-01 2.16E+01 2.41E+02 4.07E+03\n", - "1500 25 300.72 -1.09E-01 2.15E+01 2.16E+02 4.51E+03\n", - "2000 25 299.36 -1.90E-02 2.14E+01 2.05E+02 4.76E+03\n", - "2500 25 299.55 -4.49E-02 2.14E+01 2.03E+02 4.88E+03\n", - "3000 25 302.55 -1.08E-01 2.16E+01 2.03E+02 4.82E+03\n", - "3500 25 300.98 -1.84E-01 2.15E+01 2.09E+02 4.89E+03\n", - "4000 25 299.57 -2.27E-02 2.14E+01 2.01E+02 4.86E+03\n", - "4500 25 299.81 -3.11E-02 2.14E+01 1.98E+02 4.96E+03\n", - "5000 25 301.46 -1.44E-01 2.16E+01 2.11E+02 4.94E+03\n", - "5500 25 300.3 -1.15E-01 2.15E+01 2.12E+02 4.93E+03\n", - "6000 25 300.31 -2.55E-02 2.15E+01 2.01E+02 4.88E+03\n", - "6500 25 300.52 -6.86E-02 2.15E+01 1.97E+02 4.96E+03\n", - "7000 25 299.69 -5.47E-03 2.14E+01 1.98E+02 4.94E+03\n", - "7500 25 300.33 -1.24E-01 2.15E+01 1.97E+02 4.94E+03\n", - "8000 25 300.25 -4.07E-02 2.15E+01 1.98E+02 4.96E+03\n", - "8500 25 300.23 -7.96E-02 2.15E+01 2.04E+02 4.94E+03\n", - "9000 25 300.98 -1.29E-01 2.15E+01 1.59E+02 4.94E+03\n", - "9500 25 300.07 -4.35E-02 2.15E+01 2.01E+02 4.86E+03\n", - "10000 25 299.81 -4.48E-02 2.14E+01 2.00E+02 4.89E+03\n", - "10500 25 299.56 -1.36E-02 2.14E+01 2.00E+02 4.90E+03\n", - "11000 25 299.76 -1.95E-02 2.14E+01 1.99E+02 4.91E+03\n", - "11500 25 297.53 1.03E-01 2.13E+01 -2.04E+02 4.87E+03\n", - "12000 25 302.07 -1.61E-01 2.16E+01 1.99E+02 4.89E+03\n", - "12500 25 299.9 -2.26E-02 2.15E+01 2.00E+02 4.89E+03\n", - "13000 25 300.26 -1.37E-01 2.15E+01 2.08E+02 4.96E+03\n", - "13500 25 301.41 -2.56E-01 2.16E+01 2.02E+02 4.97E+03\n", - "14000 25 299.2 -1.52E-01 2.14E+01 1.95E+02 4.93E+03\n", - "14500 25 298.7 -4.16E-02 2.14E+01 1.97E+02 4.95E+03\n", - "15000 25 299.51 -3.56E-02 2.14E+01 1.98E+02 4.94E+03\n", - "15500 25 301.61 -1.99E-01 2.16E+01 1.98E+02 4.90E+03\n", - "16000 25 302.16 -1.22E-01 2.16E+01 1.90E+02 4.82E+03\n", - "16500 25 299.12 -2.96E-02 2.14E+01 2.00E+02 4.88E+03\n", - "17000 25 299.46 -1.20E-02 2.14E+01 1.98E+02 4.94E+03\n", - "17500 25 302.3 -2.56E-01 2.16E+01 1.99E+02 4.94E+03\n", - "18000 25 299.33 -1.19E-02 2.14E+01 1.99E+02 4.91E+03\n", - "18500 25 300.86 -1.15E-01 2.15E+01 1.98E+02 4.92E+03\n", - "19000 25 300.1 -3.26E-02 2.15E+01 1.99E+02 4.91E+03\n", - "19500 25 300.91 -1.24E-01 2.15E+01 1.98E+02 4.93E+03\n", - "20000 25 299.69 -1.11E-01 2.14E+01 2.03E+02 4.86E+03\n", - "20500 25 300.64 -1.99E-01 2.15E+01 1.98E+02 4.90E+03\n", - "21000 25 301.85 -1.97E-01 2.16E+01 1.99E+02 4.91E+03\n", - "21500 25 299.42 -5.14E-02 2.14E+01 1.98E+02 4.91E+03\n", - "22000 25 299.75 -3.98E-02 2.14E+01 1.97E+02 4.95E+03\n", - "22500 25 300.31 -1.38E-01 2.15E+01 2.00E+02 4.95E+03\n", - "23000 25 300.16 -3.96E-02 2.15E+01 1.98E+02 4.94E+03\n", - "23500 25 301.3 -1.47E-01 2.16E+01 1.96E+02 4.96E+03\n", - "24000 25 299.12 -1.22E-02 2.14E+01 1.98E+02 4.95E+03\n", - "24500 25 299.96 -2.30E-02 2.15E+01 2.02E+02 4.94E+03\n", - "25000 25 301.41 -1.40E-01 2.16E+01 2.11E+02 4.93E+03\n", - "25500 25 299.97 -8.96E-02 2.15E+01 2.05E+02 4.91E+03\n", - "26000 25 300.03 -6.85E-02 2.15E+01 2.02E+02 4.92E+03\n", - "26500 25 299.45 -9.49E-03 2.14E+01 1.99E+02 4.93E+03\n", - "27000 25 299.85 -8.65E-02 2.15E+01 1.95E+02 4.98E+03\n", - "27500 25 300.42 -1.07E-01 2.15E+01 1.99E+02 4.95E+03\n", - "28000 25 299.63 -3.30E-02 2.14E+01 1.98E+02 4.94E+03\n", - "28500 25 299.84 -4.91E-02 2.15E+01 2.00E+02 4.90E+03\n", - "29000 25 300.21 -4.35E-02 2.15E+01 1.99E+02 4.94E+03\n", - "29500 25 300.02 -6.85E-02 2.15E+01 2.06E+02 4.73E+03\n", - "30000 25 299.25 -2.77E-02 2.14E+01 2.02E+02 4.83E+03\n", - "30500 25 299.67 -1.00E-02 2.14E+01 2.02E+02 4.85E+03\n", - "31000 25 299.61 -1.94E-02 2.14E+01 2.00E+02 4.90E+03\n", - "31500 25 300.06 -4.40E-02 2.15E+01 1.99E+02 4.92E+03\n", - "32000 25 299.45 -2.01E-02 2.14E+01 1.97E+02 4.95E+03\n", - "32500 25 301.32 -1.27E-01 2.16E+01 1.95E+02 4.98E+03\n", - "33000 25 300.62 -1.12E-01 2.15E+01 1.96E+02 4.96E+03\n", - "33500 25 301.21 -1.58E-01 2.15E+01 1.97E+02 4.93E+03\n", - "34000 25 300.48 -1.47E-01 2.15E+01 1.96E+02 4.93E+03\n", - "34500 25 301.09 -1.18E-01 2.15E+01 1.97E+02 4.94E+03\n", - "35000 25 300.42 -7.27E-02 2.15E+01 2.08E+02 4.96E+03\n", - "35500 25 296.62 1.97E-01 2.12E+01 -3.09E+02 4.87E+03\n", - "36000 25 296.54 1.53E-01 2.12E+01 2.30E+02 4.82E+03\n", - "36500 25 299.96 -9.56E-02 2.15E+01 2.02E+02 4.88E+03\n", - "37000 25 301.77 -1.73E-01 2.16E+01 1.99E+02 4.91E+03\n", - "37500 25 300.82 -1.44E-01 2.15E+01 1.96E+02 4.93E+03\n", - "38000 25 298.06 3.76E-02 2.13E+01 2.22E+02 4.95E+03\n", - "38500 25 300.59 -1.12E-01 2.15E+01 2.04E+02 4.95E+03\n", - "39000 25 299.68 -5.22E-02 2.14E+01 2.12E+02 4.80E+03\n", - "39500 25 299.79 -5.57E-02 2.14E+01 2.00E+02 4.87E+03\n", - "40000 25 299.89 -3.48E-02 2.15E+01 2.00E+02 4.90E+03\n", - "40500 25 300.09 -3.30E-02 2.15E+01 1.99E+02 4.92E+03\n", - "41000 25 300.89 -1.53E-01 2.15E+01 1.97E+02 4.91E+03\n", - "41500 25 300.89 -1.11E-01 2.15E+01 1.97E+02 4.94E+03\n", - "42000 25 300.47 -1.15E-01 2.15E+01 2.06E+02 4.92E+03\n", - "42500 25 299.66 -4.21E-02 2.14E+01 1.99E+02 4.91E+03\n", - "43000 25 299.78 -1.14E-02 2.14E+01 1.99E+02 4.94E+03\n", - "43500 25 299.78 -3.07E-02 2.14E+01 2.07E+02 4.77E+03\n", - "44000 25 301.05 -1.11E-01 2.15E+01 2.03E+02 4.84E+03\n", - "44500 25 299.67 -3.24E-02 2.14E+01 2.00E+02 4.89E+03\n", - "45000 25 300.6 -8.96E-02 2.15E+01 2.00E+02 4.90E+03\n", - "45500 25 301.11 -1.37E-01 2.15E+01 1.98E+02 4.91E+03\n", - "46000 25 299.98 -7.56E-02 2.15E+01 1.97E+02 4.92E+03\n", - "46500 25 300.62 -1.19E-01 2.15E+01 1.99E+02 4.92E+03\n", - "47000 25 299.35 -1.91E-02 2.14E+01 2.01E+02 4.87E+03\n", - "47500 25 300.75 -1.49E-01 2.15E+01 2.02E+02 4.88E+03\n", - "48000 25 300.56 -1.29E-01 2.15E+01 2.00E+02 4.90E+03\n", - "48500 25 298.51 5.96E-02 2.14E+01 2.25E+02 4.94E+03\n", - "49000 25 299.41 -3.31E-02 2.14E+01 2.02E+02 4.83E+03\n", - "49500 25 299.97 -1.32E-02 2.15E+01 2.02E+02 4.86E+03\n", - "50000 25 300.95 -1.34E-01 2.15E+01 2.00E+02 4.91E+03\n", - "50500 25 299.26 -6.57E-02 2.14E+01 1.99E+02 4.93E+03\n", - "51000 25 300.22 -8.70E-02 2.15E+01 2.01E+02 4.94E+03\n", - "51500 25 299.7 -8.67E-03 2.14E+01 1.98E+02 4.94E+03\n", - "52000 25 301.78 -1.29E-01 2.16E+01 2.01E+02 4.84E+03\n", - "52500 25 300.48 -7.36E-02 2.15E+01 2.00E+02 4.88E+03\n", - "53000 25 300.06 -3.34E-02 2.15E+01 2.00E+02 4.90E+03\n", - "53500 25 300.58 -7.00E-02 2.15E+01 2.03E+02 4.91E+03\n", - "54000 25 299.69 -2.98E-02 2.14E+01 1.98E+02 4.93E+03\n", - "54500 25 299.93 -6.00E-02 2.15E+01 1.96E+02 4.97E+03\n", - "55000 25 300.14 -6.12E-02 2.15E+01 1.99E+02 4.96E+03\n", - "55500 25 300.96 -1.78E-01 2.15E+01 2.08E+02 4.92E+03\n", - "56000 25 300.29 -3.86E-02 2.15E+01 1.98E+02 4.95E+03\n", - "56500 25 301.15 -1.00E-01 2.15E+01 1.97E+02 4.95E+03\n", - "57000 25 299.7 -3.71E-02 2.14E+01 1.99E+02 4.94E+03\n", - "57500 25 300.42 -1.10E-01 2.15E+01 2.05E+02 4.92E+03\n", - "58000 25 300.74 -9.23E-02 2.15E+01 1.98E+02 4.92E+03\n", - "58500 25 298.61 2.73E-02 2.14E+01 2.14E+02 4.91E+03\n", - "59000 25 299.69 -1.20E-02 2.14E+01 1.99E+02 4.95E+03\n", - "59500 25 299.38 -2.88E-02 2.14E+01 1.98E+02 4.95E+03\n", - "60000 25 298.9 -6.03E-02 2.14E+01 2.06E+02 4.98E+03\n", - "60500 25 300.51 -1.64E-01 2.15E+01 1.95E+02 4.98E+03\n", - "61000 25 299.34 -5.67E-03 2.14E+01 1.97E+02 4.96E+03\n", - "61500 25 301.58 -1.43E-01 2.16E+01 2.07E+02 4.98E+03\n", - "62000 25 299.79 -1.71E-02 2.14E+01 2.01E+02 4.90E+03\n", - "62500 25 293.17 4.21E-01 2.10E+01 2.36E+02 4.97E+03\n", - "63000 25 300.53 -1.07E-01 2.15E+01 1.96E+02 4.95E+03\n", - "63500 25 300.11 -4.80E-02 2.15E+01 1.98E+02 4.94E+03\n", - "64000 25 299.99 -3.10E-02 2.15E+01 1.98E+02 4.93E+03\n", - "64500 25 299.59 -5.45E-02 2.14E+01 1.97E+02 4.95E+03\n", - "65000 25 300.17 -3.31E-02 2.15E+01 1.98E+02 4.92E+03\n", - "65500 25 299.1 -2.02E-02 2.14E+01 1.98E+02 4.92E+03\n", - "66000 25 300.23 -7.24E-02 2.15E+01 1.97E+02 4.96E+03\n", - "66500 25 299.74 -1.47E-02 2.14E+01 1.98E+02 4.94E+03\n", - "67000 25 299.41 -9.11E-03 2.14E+01 1.97E+02 4.97E+03\n", - "67500 25 300.78 -1.69E-01 2.15E+01 1.95E+02 4.96E+03\n", - "68000 25 301.04 -1.64E-01 2.15E+01 2.05E+02 4.73E+03\n", - "68500 25 300.96 -1.28E-01 2.15E+01 2.05E+02 4.80E+03\n", - "69000 25 301.03 -1.53E-01 2.15E+01 2.00E+02 4.87E+03\n", - "69500 25 299.6 -7.28E-02 2.14E+01 2.12E+02 4.92E+03\n", - "70000 25 300.35 -1.30E-01 2.15E+01 2.05E+02 4.87E+03\n", - "70500 25 299.48 -2.77E-02 2.14E+01 2.01E+02 4.91E+03\n", - "71000 25 299.16 -1.84E-02 2.14E+01 1.99E+02 4.94E+03\n", - "71500 25 299.74 -1.12E-02 2.14E+01 1.99E+02 4.94E+03\n", - "72000 25 299.74 -9.90E-02 2.14E+01 2.07E+02 4.93E+03\n", - "72500 25 299.49 -6.43E-02 2.14E+01 2.00E+02 4.88E+03\n", - "73000 25 301.27 -1.80E-01 2.16E+01 2.00E+02 4.93E+03\n", - "73500 25 300.31 -7.84E-02 2.15E+01 2.05E+02 4.93E+03\n", - "74000 25 300.89 -1.19E-01 2.15E+01 1.96E+02 4.95E+03\n", - "74500 25 300.17 -4.73E-02 2.15E+01 1.98E+02 4.92E+03\n", - "75000 25 299.6 -6.09E-03 2.14E+01 2.01E+02 4.86E+03\n", - "75500 25 300.67 -1.20E-01 2.15E+01 2.00E+02 4.90E+03\n", - "76000 25 301.1 -1.02E-01 2.15E+01 2.01E+02 4.89E+03\n", - "76500 25 299.53 -5.42E-02 2.14E+01 1.99E+02 4.89E+03\n", - "77000 25 299.71 -2.19E-02 2.14E+01 2.05E+02 4.81E+03\n", - "77500 25 299.95 -1.47E-01 2.15E+01 2.01E+02 4.83E+03\n", - "78000 25 301.5 -2.18E-01 2.16E+01 2.01E+02 4.87E+03\n", - "78500 25 299.92 -1.29E-02 2.15E+01 2.01E+02 4.87E+03\n", - "79000 25 300.03 -7.32E-02 2.15E+01 1.99E+02 4.88E+03\n", - "79500 25 300.09 -3.61E-02 2.15E+01 1.98E+02 4.94E+03\n", - "80000 25 300.41 -1.11E-01 2.15E+01 1.96E+02 4.96E+03\n", - "80500 25 300.28 -5.57E-02 2.15E+01 1.99E+02 4.94E+03\n", - "81000 25 300.67 -1.31E-01 2.15E+01 1.96E+02 4.97E+03\n", - "81500 25 300.32 -4.39E-02 2.15E+01 1.97E+02 4.95E+03\n", - "82000 25 299.81 -7.90E-03 2.14E+01 1.98E+02 4.95E+03\n", - "82500 25 299.79 -1.52E-02 2.14E+01 2.03E+02 4.84E+03\n", - "83000 25 299.28 -5.15E-02 2.14E+01 2.00E+02 4.87E+03\n", - "83500 25 299.52 -2.89E-02 2.14E+01 2.00E+02 4.89E+03\n", - "84000 25 300.91 -1.29E-01 2.15E+01 1.97E+02 4.93E+03\n", - "84500 25 300.09 -1.18E-01 2.15E+01 2.02E+02 4.96E+03\n", - "85000 25 302.0 -2.44E-01 2.16E+01 2.00E+02 4.96E+03\n", - "85500 25 300.87 -1.07E-01 2.15E+01 2.00E+02 4.95E+03\n", - "86000 25 300.01 -3.16E-02 2.15E+01 2.02E+02 4.85E+03\n", - "86500 25 300.51 -1.04E-01 2.15E+01 2.00E+02 4.88E+03\n", - "87000 25 299.71 -2.61E-02 2.14E+01 2.00E+02 4.88E+03\n", - "87500 25 299.88 -5.37E-02 2.15E+01 2.00E+02 4.89E+03\n", - "88000 25 300.2 -7.26E-02 2.15E+01 1.98E+02 4.90E+03\n", - "88500 25 300.79 -9.76E-02 2.15E+01 1.98E+02 4.92E+03\n", - "89000 25 301.74 -1.70E-01 2.16E+01 2.14E+02 4.69E+03\n", - "89500 25 301.95 -2.15E-01 2.16E+01 2.11E+02 4.81E+03\n", - "90000 25 299.99 -8.70E-02 2.15E+01 2.00E+02 4.87E+03\n", - "90500 25 299.67 -2.06E-02 2.14E+01 1.99E+02 4.95E+03\n", - "91000 25 299.78 -2.57E-02 2.14E+01 1.98E+02 4.96E+03\n", - "91500 25 300.09 -5.79E-02 2.15E+01 2.05E+02 4.95E+03\n", - "92000 25 301.33 -1.76E-01 2.16E+01 1.96E+02 4.95E+03\n", - "92500 25 300.1 -5.61E-02 2.15E+01 1.98E+02 4.93E+03\n", - "93000 25 299.4 -4.35E-02 2.14E+01 1.99E+02 4.91E+03\n", - "93500 25 299.8 -2.13E-02 2.14E+01 1.99E+02 4.93E+03\n", - "94000 25 300.68 -1.12E-01 2.15E+01 1.98E+02 4.92E+03\n", - "94500 25 300.5 -9.90E-02 2.15E+01 2.00E+02 4.88E+03\n", - "95000 25 299.47 -2.95E-02 2.14E+01 1.99E+02 4.90E+03\n", - "95500 25 297.5 1.20E-01 2.13E+01 2.25E+02 4.80E+03\n", - "96000 25 300.13 -4.23E-02 2.15E+01 1.99E+02 4.90E+03\n", - "96500 25 299.78 -1.78E-02 2.14E+01 1.99E+02 4.92E+03\n", - "97000 25 299.77 -5.69E-03 2.14E+01 2.00E+02 4.92E+03\n", - "97500 25 299.57 -1.10E-02 2.14E+01 2.00E+02 4.90E+03\n", - "98000 25 299.64 -5.85E-02 2.14E+01 1.97E+02 4.94E+03\n", - "98500 25 299.12 -1.67E-02 2.14E+01 1.99E+02 4.92E+03\n", - "99000 25 299.97 -2.38E-02 2.15E+01 1.98E+02 4.94E+03\n", - "99500 25 300.25 -4.51E-02 2.15E+01 1.97E+02 4.95E+03\n", - "100000 25 300.37 -5.92E-02 2.15E+01 1.97E+02 4.95E+03\n", - "100500 25 299.95 -8.40E-02 2.15E+01 1.97E+02 4.93E+03\n", - "101000 25 300.66 -1.38E-01 2.15E+01 1.97E+02 4.92E+03\n", - "101500 25 299.97 -1.07E-01 2.15E+01 2.02E+02 4.95E+03\n", - "102000 25 299.53 -1.64E-02 2.14E+01 1.98E+02 4.93E+03\n", - "102500 25 299.63 -7.33E-02 2.14E+01 2.09E+02 4.94E+03\n", - "103000 25 299.95 -1.39E-02 2.15E+01 1.98E+02 4.94E+03\n", - "103500 25 299.72 -1.82E-02 2.14E+01 1.98E+02 4.94E+03\n", - "104000 25 300.92 -9.44E-02 2.15E+01 1.98E+02 4.93E+03\n", - "104500 25 298.29 1.22E-01 2.13E+01 2.19E+02 4.95E+03\n", - "105000 25 300.59 -7.94E-02 2.15E+01 2.07E+02 4.94E+03\n", - "105500 25 300.28 -3.62E-02 2.15E+01 2.02E+02 4.96E+03\n", - "106000 25 299.87 -1.15E-02 2.15E+01 1.98E+02 4.95E+03\n", - "106500 25 299.69 -2.56E-02 2.14E+01 2.01E+02 4.86E+03\n", - "107000 25 299.53 -2.87E-02 2.14E+01 1.99E+02 4.92E+03\n", - "107500 25 301.31 -1.27E-01 2.16E+01 1.97E+02 4.94E+03\n", - "108000 25 300.74 -1.07E-01 2.15E+01 2.03E+02 4.85E+03\n", - "108500 25 299.48 -9.12E-03 2.14E+01 2.01E+02 4.87E+03\n", - "109000 25 299.79 -1.06E-01 2.14E+01 2.01E+02 4.89E+03\n", - "109500 25 300.34 -9.70E-02 2.15E+01 1.98E+02 4.91E+03\n", - "110000 25 299.93 -7.57E-02 2.15E+01 1.99E+02 4.94E+03\n", - "110500 25 300.37 -6.87E-02 2.15E+01 2.04E+02 4.81E+03\n", - "111000 25 299.92 -2.68E-02 2.15E+01 2.01E+02 4.87E+03\n", - "111500 25 301.39 -1.38E-01 2.16E+01 1.75E+02 4.80E+03\n", - "112000 25 301.03 -1.64E-01 2.15E+01 2.16E+02 4.68E+03\n", - "112500 25 280.75 1.34E+00 2.01E+01 2.97E+02 4.82E+03\n", - "113000 25 300.03 -5.89E-02 2.15E+01 2.02E+02 4.84E+03\n", - "113500 25 301.16 -1.14E-01 2.15E+01 2.00E+02 4.89E+03\n", - "114000 25 302.17 -1.93E-01 2.16E+01 1.98E+02 4.95E+03\n", - "114500 25 299.37 -1.86E-02 2.14E+01 1.98E+02 4.93E+03\n", - "115000 25 299.51 -8.93E-02 2.14E+01 2.06E+02 4.98E+03\n", - "115500 25 301.1 -1.89E-01 2.15E+01 2.21E+02 4.98E+03\n", - "116000 25 298.89 -7.17E-02 2.14E+01 1.94E+02 4.99E+03\n", - "116500 25 300.05 -9.32E-03 2.15E+01 1.97E+02 4.98E+03\n", - "117000 25 299.24 -3.30E-02 2.14E+01 1.97E+02 4.96E+03\n", - "117500 25 301.47 -5.72E-02 2.16E+01 2.16E+02 4.76E+03\n", - "118000 25 299.65 -4.65E-02 2.14E+01 2.09E+02 4.86E+03\n", - "118500 25 299.61 -1.74E-02 2.14E+01 2.00E+02 4.89E+03\n", - "119000 25 298.61 -2.01E-02 2.14E+01 1.98E+02 4.94E+03\n", - "119500 25 299.08 -2.60E-02 2.14E+01 2.13E+02 4.92E+03\n", - "120000 25 299.72 -4.77E-02 2.14E+01 2.03E+02 4.80E+03\n", - "120500 25 299.76 -4.60E-02 2.14E+01 2.00E+02 4.88E+03\n", - "121000 25 299.22 -1.52E-02 2.14E+01 1.98E+02 4.92E+03\n", - "121500 25 300.11 -9.92E-02 2.15E+01 1.97E+02 4.94E+03\n", - "122000 25 300.33 -7.67E-02 2.15E+01 1.98E+02 4.93E+03\n", - "122500 25 299.02 -4.40E-03 2.14E+01 2.00E+02 4.89E+03\n", - "123000 25 299.79 -6.12E-02 2.14E+01 1.99E+02 4.90E+03\n", - "123500 25 300.0 -4.24E-02 2.15E+01 1.98E+02 4.92E+03\n", - "124000 25 300.7 -1.18E-01 2.15E+01 1.99E+02 4.92E+03\n", - "124500 25 300.48 -7.65E-02 2.15E+01 1.99E+02 4.91E+03\n", - "125000 25 300.85 -1.26E-01 2.15E+01 2.04E+02 4.90E+03\n", - "125500 25 301.92 -2.57E-01 2.16E+01 2.02E+02 4.91E+03\n", - "126000 25 299.87 -8.78E-03 2.15E+01 1.99E+02 4.94E+03\n", - "126500 25 299.82 -3.63E-02 2.14E+01 1.98E+02 4.94E+03\n", - "127000 25 300.05 -2.75E-02 2.15E+01 1.98E+02 4.93E+03\n", - "127500 25 299.58 -2.10E-02 2.14E+01 1.99E+02 4.92E+03\n", - "128000 25 301.62 -2.13E-01 2.16E+01 2.00E+02 4.94E+03\n", - "128500 25 299.64 -3.76E-02 2.14E+01 1.98E+02 4.93E+03\n", - "129000 25 300.4 -1.09E-01 2.15E+01 2.06E+02 4.95E+03\n", - "129500 25 299.61 -9.69E-02 2.14E+01 2.00E+02 4.93E+03\n", - "130000 25 299.78 -1.01E-02 2.14E+01 1.99E+02 4.94E+03\n", - "130500 25 300.49 -8.62E-02 2.15E+01 2.11E+02 4.93E+03\n", - "131000 25 300.18 -1.14E-01 2.15E+01 1.97E+02 4.92E+03\n", - "131500 25 299.56 -3.86E-02 2.14E+01 1.97E+02 4.94E+03\n", - "132000 25 299.47 -1.05E-02 2.14E+01 1.99E+02 4.93E+03\n", - "132500 25 301.26 -1.63E-01 2.16E+01 2.05E+02 4.90E+03\n", - "133000 25 299.64 -3.87E-02 2.14E+01 1.99E+02 4.93E+03\n", - "133500 25 299.58 -1.43E-02 2.14E+01 1.99E+02 4.92E+03\n", - "134000 25 300.23 -1.01E-01 2.15E+01 1.98E+02 4.92E+03\n", - "134500 25 300.72 -1.29E-01 2.15E+01 1.98E+02 4.94E+03\n", - "135000 25 299.06 -1.14E-02 2.14E+01 2.01E+02 4.86E+03\n", - "135500 25 299.89 -7.59E-02 2.15E+01 2.09E+02 4.93E+03\n", - "136000 25 290.52 5.68E-01 2.08E+01 2.51E+02 4.98E+03\n", - "136500 25 301.61 -1.95E-01 2.16E+01 2.05E+02 4.98E+03\n", - "137000 25 299.6 -1.28E-02 2.14E+01 1.98E+02 4.95E+03\n", - "137500 25 300.28 -7.72E-02 2.15E+01 1.97E+02 4.93E+03\n", - "138000 25 299.12 -7.85E-02 2.14E+01 2.01E+02 4.85E+03\n", - "138500 25 301.64 -2.63E-01 2.16E+01 2.01E+02 4.89E+03\n", - "139000 25 300.61 -1.49E-01 2.15E+01 1.98E+02 4.91E+03\n", - "139500 25 299.76 -2.33E-02 2.14E+01 2.02E+02 4.85E+03\n", - "140000 25 299.49 -2.27E-02 2.14E+01 2.02E+02 4.92E+03\n", - "140500 25 302.18 -4.05E-01 2.16E+01 2.09E+02 4.87E+03\n", - "141000 25 300.5 -7.73E-02 2.15E+01 1.99E+02 4.89E+03\n", - "141500 25 299.42 -3.23E-02 2.14E+01 2.13E+02 4.89E+03\n", - "142000 25 299.92 -6.82E-02 2.15E+01 2.02E+02 4.90E+03\n", - "142500 25 300.3 -3.82E-02 2.15E+01 1.98E+02 4.93E+03\n", - "143000 25 300.4 -4.91E-02 2.15E+01 2.07E+02 4.94E+03\n", - "143500 25 300.94 -1.70E-01 2.15E+01 1.96E+02 4.94E+03\n", - "144000 25 299.61 -1.56E-02 2.14E+01 1.99E+02 4.93E+03\n", - "144500 25 299.81 -9.47E-02 2.14E+01 1.98E+02 4.92E+03\n", - "145000 25 299.9 -3.09E-02 2.15E+01 1.98E+02 4.92E+03\n", - "145500 25 303.24 -3.31E-01 2.17E+01 1.99E+02 5.00E+03\n", - "146000 25 299.78 -2.60E-02 2.14E+01 1.97E+02 4.96E+03\n", - "146500 25 301.63 -9.92E-02 2.16E+01 2.09E+02 4.67E+03\n", - "147000 25 300.37 -5.04E-02 2.15E+01 2.09E+02 4.72E+03\n", - "147500 25 300.02 -6.01E-02 2.15E+01 2.06E+02 4.84E+03\n", - "148000 25 299.88 -7.66E-02 2.15E+01 2.13E+02 4.90E+03\n", - "148500 25 301.09 -1.75E-01 2.15E+01 2.10E+02 4.68E+03\n", - "149000 25 300.25 -1.46E-01 2.15E+01 2.14E+02 4.84E+03\n", - "149500 25 299.87 -8.19E-02 2.15E+01 2.02E+02 4.92E+03\n", - "150000 25 301.45 -1.90E-01 2.16E+01 2.00E+02 4.89E+03\n", - "150500 25 300.12 -5.18E-02 2.15E+01 1.99E+02 4.89E+03\n", - "151000 25 300.17 -8.66E-03 2.15E+01 1.99E+02 4.93E+03\n", - "151500 25 299.54 -5.43E-02 2.14E+01 1.97E+02 4.96E+03\n", - "152000 25 300.89 -1.16E-01 2.15E+01 2.00E+02 4.85E+03\n", - "152500 25 299.53 -4.78E-02 2.14E+01 1.99E+02 4.89E+03\n", - "153000 25 300.18 -6.13E-02 2.15E+01 1.99E+02 4.90E+03\n", - "153500 25 292.32 5.09E-01 2.09E+01 2.46E+02 4.90E+03\n", - "154000 25 299.98 -4.94E-02 2.15E+01 1.98E+02 4.92E+03\n", - "154500 25 288.52 6.95E-01 2.06E+01 2.70E+02 4.96E+03\n", - "155000 25 300.13 -8.80E-02 2.15E+01 1.97E+02 4.93E+03\n", - "155500 25 300.33 -1.16E-01 2.15E+01 2.13E+02 4.88E+03\n", - "156000 25 300.84 -1.07E-01 2.15E+01 1.99E+02 4.92E+03\n", - "156500 25 300.7 -1.65E-01 2.15E+01 1.98E+02 4.94E+03\n", - "157000 25 299.61 -2.11E-02 2.14E+01 1.98E+02 4.94E+03\n", - "157500 25 299.83 -2.48E-02 2.14E+01 1.98E+02 4.94E+03\n", - "158000 25 299.3 -2.69E-02 2.14E+01 1.98E+02 4.94E+03\n", - "158500 25 302.49 -2.21E-01 2.16E+01 2.05E+02 4.92E+03\n", - "159000 25 299.36 -2.38E-02 2.14E+01 1.98E+02 4.93E+03\n", - "159500 25 299.79 -2.10E-02 2.14E+01 1.98E+02 4.94E+03\n", - "160000 25 299.62 -9.24E-03 2.14E+01 1.98E+02 4.94E+03\n", - "160500 25 299.85 -1.83E-02 2.15E+01 1.97E+02 4.96E+03\n", - "161000 25 300.49 -7.69E-02 2.15E+01 2.14E+02 4.96E+03\n", - "161500 25 300.62 -9.31E-02 2.15E+01 1.97E+02 4.94E+03\n", - "162000 25 300.01 -3.29E-02 2.15E+01 1.98E+02 4.92E+03\n", - "162500 25 300.0 -1.56E-01 2.15E+01 2.26E+02 4.94E+03\n", - "163000 25 299.85 -7.59E-02 2.15E+01 2.05E+02 4.94E+03\n", - "163500 25 300.71 -1.09E-01 2.15E+01 2.00E+02 4.91E+03\n", - "164000 25 299.95 -3.88E-02 2.15E+01 1.99E+02 4.91E+03\n", - "164500 25 299.87 -7.49E-02 2.15E+01 1.97E+02 4.96E+03\n", - "165000 25 302.03 -2.96E-01 2.16E+01 1.95E+02 4.97E+03\n", - "165500 25 300.97 -1.23E-01 2.15E+01 2.01E+02 4.95E+03\n", - "166000 25 300.83 -1.46E-01 2.15E+01 1.97E+02 4.93E+03\n", - "166500 25 300.2 -1.16E-01 2.15E+01 1.97E+02 4.93E+03\n", - "167000 25 299.15 -4.69E-02 2.14E+01 1.97E+02 4.94E+03\n", - "167500 25 300.06 -6.28E-02 2.15E+01 2.09E+02 4.85E+03\n", - "168000 25 300.63 -8.54E-02 2.15E+01 2.22E+02 4.80E+03\n", - "168500 25 300.52 -1.22E-01 2.15E+01 1.99E+02 4.87E+03\n", - "169000 25 293.39 3.41E-01 2.10E+01 2.38E+02 4.91E+03\n", - "169500 25 300.62 -7.83E-02 2.15E+01 1.98E+02 4.92E+03\n", - "170000 25 299.83 -6.29E-02 2.14E+01 1.98E+02 4.93E+03\n", - "170500 25 299.51 -2.53E-02 2.14E+01 2.00E+02 4.95E+03\n", - "171000 25 300.22 -1.13E-01 2.15E+01 2.00E+02 4.98E+03\n", - "171500 25 300.36 -6.48E-03 2.15E+01 2.04E+02 4.82E+03\n", - "172000 25 299.56 -9.30E-03 2.14E+01 2.00E+02 4.89E+03\n", - "172500 25 299.57 -2.03E-02 2.14E+01 1.99E+02 4.91E+03\n", - "173000 25 301.73 -1.94E-01 2.16E+01 1.98E+02 4.93E+03\n", - "173500 25 300.24 -6.29E-02 2.15E+01 1.96E+02 4.97E+03\n", - "174000 25 299.75 -8.51E-03 2.14E+01 2.00E+02 4.89E+03\n", - "174500 25 299.35 -6.88E-03 2.14E+01 2.01E+02 4.87E+03\n", - "175000 25 300.93 -9.24E-02 2.15E+01 2.10E+02 4.91E+03\n", - "175500 25 300.78 -1.01E-01 2.15E+01 1.99E+02 4.91E+03\n", - "176000 25 300.93 -1.20E-01 2.15E+01 2.00E+02 4.92E+03\n", - "176500 25 300.25 -1.55E-01 2.15E+01 1.99E+02 4.98E+03\n", - "177000 25 299.93 -2.27E-02 2.15E+01 2.01E+02 4.95E+03\n", - "177500 25 300.66 -1.08E-01 2.15E+01 1.97E+02 4.94E+03\n", - "178000 25 299.74 -1.70E-02 2.14E+01 1.98E+02 4.93E+03\n", - "178500 25 300.33 -4.81E-02 2.15E+01 1.98E+02 4.94E+03\n", - "179000 25 298.13 7.47E-02 2.13E+01 2.23E+02 4.97E+03\n", - "179500 25 301.49 -1.28E-01 2.16E+01 2.09E+02 4.89E+03\n", - "180000 25 299.71 -2.18E-02 2.14E+01 1.98E+02 4.94E+03\n", - "180500 25 301.92 -1.97E-01 2.16E+01 2.11E+02 4.96E+03\n", - "181000 25 299.39 -1.34E-02 2.14E+01 2.22E+02 4.96E+03\n", - "181500 25 300.0 -3.20E-02 2.15E+01 2.01E+02 4.94E+03\n", - "182000 25 301.04 -1.71E-01 2.15E+01 2.00E+02 4.94E+03\n", - "182500 25 299.45 -2.28E-02 2.14E+01 1.97E+02 4.97E+03\n", - "183000 25 299.85 -1.25E-01 2.15E+01 2.00E+02 4.88E+03\n", - "183500 25 299.6 -3.65E-02 2.14E+01 2.02E+02 4.96E+03\n", - "184000 25 300.58 -1.07E-01 2.15E+01 1.37E+02 4.87E+03\n", - "184500 25 300.62 -6.91E-02 2.15E+01 2.00E+02 4.90E+03\n", - "185000 25 299.74 -2.95E-02 2.14E+01 1.98E+02 4.93E+03\n", - "185500 25 299.86 -4.04E-02 2.15E+01 1.98E+02 4.94E+03\n", - "186000 25 301.1 -1.50E-01 2.15E+01 1.97E+02 4.93E+03\n", - "186500 25 301.81 -1.87E-01 2.16E+01 1.99E+02 4.92E+03\n", - "187000 25 299.96 -1.76E-01 2.15E+01 1.98E+02 4.91E+03\n", - "187500 25 301.3 -1.77E-01 2.16E+01 2.01E+02 4.92E+03\n", - "188000 25 299.68 -1.13E-02 2.14E+01 1.99E+02 4.91E+03\n", - "188500 25 299.65 -2.78E-02 2.14E+01 2.01E+02 4.93E+03\n", - "189000 25 301.19 -1.18E-01 2.15E+01 1.99E+02 4.95E+03\n", - "189500 25 301.05 -1.11E-01 2.15E+01 2.00E+02 4.92E+03\n", - "190000 25 300.58 -9.29E-02 2.15E+01 1.98E+02 4.94E+03\n", - "190500 25 300.01 -5.52E-02 2.15E+01 2.09E+02 4.94E+03\n", - "191000 25 299.77 -1.62E-02 2.14E+01 1.97E+02 4.96E+03\n", - "191500 25 300.85 -1.08E-01 2.15E+01 1.99E+02 4.94E+03\n", - "192000 25 299.77 -3.62E-02 2.14E+01 1.97E+02 4.95E+03\n", - "192500 25 299.57 -4.57E-02 2.14E+01 1.97E+02 4.96E+03\n", - "193000 25 299.64 -1.85E-02 2.14E+01 1.98E+02 4.94E+03\n", - "193500 25 300.99 -1.09E-01 2.15E+01 2.00E+02 4.91E+03\n", - "194000 25 300.59 -6.44E-02 2.15E+01 2.16E+02 4.80E+03\n", - "194500 25 299.86 -6.15E-02 2.15E+01 2.02E+02 4.86E+03\n", - "195000 25 301.75 -1.92E-01 2.16E+01 2.02E+02 4.81E+03\n", - "195500 25 299.21 -2.72E-02 2.14E+01 2.03E+02 4.88E+03\n", - "196000 25 301.17 -1.13E-01 2.15E+01 2.12E+02 4.78E+03\n", - "196500 25 299.5 -1.63E-02 2.14E+01 2.00E+02 4.89E+03\n", - "197000 25 299.04 -2.41E-02 2.14E+01 2.01E+02 4.86E+03\n", - "197500 25 300.2 -1.10E-01 2.15E+01 1.99E+02 4.91E+03\n", - "198000 25 300.06 -5.75E-02 2.15E+01 2.08E+02 4.93E+03\n", - "198500 25 299.03 3.47E-02 2.14E+01 2.15E+02 4.92E+03\n", - "199000 25 299.56 -1.35E-02 2.14E+01 1.98E+02 4.93E+03\n", - "199500 25 299.5 -2.71E-02 2.14E+01 1.97E+02 4.96E+03\n", - "200000 25 299.8 -2.04E-02 2.14E+01 1.99E+02 4.96E+03\n" - ] - } - ], - "source": [ - "import sys\n", - "sys.path.append(\"../../molecular-simulation/\")\n", - "from main import MolecularDynamics\n", - "\n", - "MolecularDynamics(number_atoms=25,\n", - " Lx=12,\n", - " maximum_steps=200000,\n", - " dimensions= 3,\n", - " desired_temperature=300,\n", - " desired_pressure=200,\n", - " tau_temp=100,\n", - " tau_press=1000,\n", - " seed=41982,\n", - " thermo=500,\n", - " dump=500,\n", - " ).run()" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.7" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/benchmark/python_mu2_1.7nm3_300K_GCMC/run.ipynb b/benchmark/python_mu2_1.7nm3_300K_GCMC/run.ipynb deleted file mode 100644 index 1fd24b6..0000000 --- a/benchmark/python_mu2_1.7nm3_300K_GCMC/run.ipynb +++ /dev/null @@ -1,1263 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "step N temp epot ekin press vol\n", - "0 24 94.07 -1.36E-02 6.45E+00 3.68E+01 8.00E+03\n", - "500 9 270.45 -7.36E-04 6.45E+00 3.68E+01 8.00E+03\n", - "1000 9 270.45 -2.00E-04 6.45E+00 3.69E+01 8.00E+03\n", - "1500 10 240.4 -2.12E-03 6.45E+00 3.68E+01 8.00E+03\n", - "2000 10 240.4 -3.82E-03 6.45E+00 3.68E+01 8.00E+03\n", - "2500 10 240.4 -1.60E-04 6.45E+00 3.69E+01 8.00E+03\n", - "3000 11 216.36 -7.60E-03 6.45E+00 3.67E+01 8.00E+03\n", - "3500 6 432.72 -2.58E-05 6.45E+00 3.69E+01 8.00E+03\n", - "4000 17 135.23 -6.69E-04 6.45E+00 3.69E+01 8.00E+03\n", - "4500 6 432.72 -8.38E-05 6.45E+00 3.69E+01 8.00E+03\n", - "5000 6 432.72 -1.53E-05 6.45E+00 3.69E+01 8.00E+03\n", - "5500 13 180.3 -1.99E-02 6.45E+00 3.65E+01 8.00E+03\n", - "6000 7 360.6 -5.68E-04 6.45E+00 3.69E+01 8.00E+03\n", - "6500 13 180.3 -1.30E-03 6.45E+00 3.69E+01 8.00E+03\n", - "7000 17 135.23 -1.31E-02 6.45E+00 3.67E+01 8.00E+03\n", - "7500 12 196.69 -5.73E-04 6.45E+00 3.68E+01 8.00E+03\n", - "8000 9 270.45 -4.82E-04 6.45E+00 3.69E+01 8.00E+03\n", - "8500 9 270.45 -3.86E-04 6.45E+00 3.69E+01 8.00E+03\n", - "9000 12 196.69 -4.57E-03 6.45E+00 3.68E+01 8.00E+03\n", - "9500 9 270.45 -1.62E-03 6.45E+00 3.69E+01 8.00E+03\n", - "10000 10 240.4 -1.02E-04 6.45E+00 3.69E+01 8.00E+03\n", - "10500 7 360.6 -1.12E-04 6.45E+00 3.69E+01 8.00E+03\n", - "11000 9 270.45 -1.71E-03 6.45E+00 3.68E+01 8.00E+03\n", - "11500 14 166.43 -9.31E-03 6.45E+00 3.67E+01 8.00E+03\n", - "12000 12 196.69 -1.97E-03 6.45E+00 3.68E+01 8.00E+03\n", - "12500 15 154.54 -8.26E-04 6.45E+00 3.69E+01 8.00E+03\n", - "13000 10 240.4 -2.32E-04 6.45E+00 3.69E+01 8.00E+03\n", - "13500 7 360.6 -1.07E-04 6.45E+00 3.69E+01 8.00E+03\n", - "14000 8 309.09 -2.14E-04 6.45E+00 3.69E+01 8.00E+03\n", - "14500 6 432.72 -1.00E-04 6.45E+00 3.69E+01 8.00E+03\n", - "15000 14 166.43 -9.60E-02 6.45E+00 3.59E+01 8.00E+03\n", - "15500 5 540.91 -4.83E-05 6.45E+00 3.69E+01 8.00E+03\n", - "16000 8 309.09 -7.15E-03 6.45E+00 3.67E+01 8.00E+03\n", - "16500 9 270.45 -2.68E-04 6.45E+00 3.69E+01 8.00E+03\n", - "17000 9 270.45 -1.17E-03 6.45E+00 3.68E+01 8.00E+03\n", - "17500 8 309.09 -4.61E-05 6.45E+00 3.69E+01 8.00E+03\n", - "18000 12 196.69 -7.87E-03 6.45E+00 3.67E+01 8.00E+03\n", - "18500 11 216.36 -2.37E-03 6.45E+00 3.68E+01 8.00E+03\n", - "19000 10 240.4 -2.27E-04 6.45E+00 3.69E+01 8.00E+03\n", - "19500 7 360.6 -1.84E-05 6.45E+00 3.69E+01 8.00E+03\n", - "20000 12 196.69 -1.31E-03 6.45E+00 3.68E+01 8.00E+03\n", - "20500 6 432.72 -3.94E-04 6.45E+00 3.69E+01 8.00E+03\n", - "21000 14 166.43 -5.68E-04 6.45E+00 3.69E+01 8.00E+03\n", - "21500 10 240.4 -1.28E-02 6.45E+00 3.66E+01 8.00E+03\n", - "22000 2 2163.62 -6.66E-07 6.45E+00 3.69E+01 8.00E+03\n", - "22500 11 216.36 -8.45E-02 6.45E+00 3.87E+01 8.00E+03\n", - "23000 7 360.6 -7.54E-04 6.45E+00 3.68E+01 8.00E+03\n", - "23500 9 270.45 -5.81E-04 6.45E+00 3.68E+01 8.00E+03\n", - "24000 10 240.4 -2.51E-04 6.45E+00 3.69E+01 8.00E+03\n", - "24500 9 270.45 -5.21E-04 6.45E+00 3.68E+01 8.00E+03\n", - "25000 15 154.54 -6.47E-03 6.45E+00 3.67E+01 8.00E+03\n", - "25500 11 216.36 -2.43E-04 6.45E+00 3.69E+01 8.00E+03\n", - "26000 11 216.36 -1.14E-03 6.45E+00 3.68E+01 8.00E+03\n", - "26500 6 432.72 -1.59E-05 6.45E+00 3.69E+01 8.00E+03\n", - "27000 4 721.21 -2.05E-05 6.45E+00 3.69E+01 8.00E+03\n", - "27500 10 240.4 -6.68E-04 6.45E+00 3.68E+01 8.00E+03\n", - "28000 8 309.09 -2.09E-04 6.45E+00 3.69E+01 8.00E+03\n", - "28500 13 180.3 -6.64E-04 6.45E+00 3.68E+01 8.00E+03\n", - "29000 11 216.36 -1.09E-03 6.45E+00 3.69E+01 8.00E+03\n", - "29500 5 540.91 -1.86E-05 6.45E+00 3.69E+01 8.00E+03\n", - "30000 6 432.72 -4.01E-05 6.45E+00 3.69E+01 8.00E+03\n", - "30500 8 309.09 -3.57E-04 6.45E+00 3.69E+01 8.00E+03\n", - "31000 16 144.24 -5.77E-02 6.45E+00 4.06E+01 8.00E+03\n", - "31500 8 309.09 -5.25E-03 6.45E+00 3.75E+01 8.00E+03\n", - "32000 2 2163.62 -4.88E-07 6.45E+00 3.69E+01 8.00E+03\n", - "32500 5 540.91 -5.14E-06 6.45E+00 3.69E+01 8.00E+03\n", - "33000 13 180.3 -6.71E-04 6.45E+00 3.68E+01 8.00E+03\n", - "33500 12 196.69 -2.21E-03 6.45E+00 3.68E+01 8.00E+03\n", - "34000 8 309.09 -1.99E-04 6.45E+00 3.69E+01 8.00E+03\n", - "34500 6 432.72 -7.04E-05 6.45E+00 3.69E+01 8.00E+03\n", - "35000 9 270.45 -3.31E-04 6.45E+00 3.69E+01 8.00E+03\n", - "35500 7 360.6 -2.76E-03 6.45E+00 3.68E+01 8.00E+03\n", - "36000 9 270.45 -2.74E-04 6.45E+00 3.69E+01 8.00E+03\n", - "36500 8 309.09 -1.75E-04 6.45E+00 3.69E+01 8.00E+03\n", - "37000 8 309.09 -4.78E-03 6.45E+00 3.68E+01 8.00E+03\n", - "37500 5 540.91 -2.17E-04 6.45E+00 3.69E+01 8.00E+03\n", - "38000 12 196.69 -3.09E-04 6.45E+00 3.69E+01 8.00E+03\n", - "38500 7 360.6 -2.18E-04 6.45E+00 3.69E+01 8.00E+03\n", - "39000 7 360.6 -4.70E-04 6.45E+00 3.69E+01 8.00E+03\n", - "39500 5 540.91 -1.99E-05 6.45E+00 3.69E+01 8.00E+03\n", - "40000 14 166.43 -1.41E-03 6.45E+00 3.68E+01 8.00E+03\n", - "40500 10 240.4 -7.40E-05 6.45E+00 3.69E+01 8.00E+03\n", - "41000 10 240.4 -4.02E-04 6.45E+00 3.69E+01 8.00E+03\n", - "41500 9 270.45 -1.75E-03 6.45E+00 3.68E+01 8.00E+03\n", - "42000 11 216.36 -1.56E-04 6.45E+00 3.69E+01 8.00E+03\n", - "42500 9 270.45 -1.60E-02 6.45E+00 3.66E+01 8.00E+03\n", - "43000 11 216.36 -1.24E-04 6.45E+00 3.69E+01 8.00E+03\n", - "43500 10 240.4 -2.12E-03 6.45E+00 3.68E+01 8.00E+03\n", - "44000 13 180.3 -1.16E-03 6.45E+00 3.69E+01 8.00E+03\n", - "44500 7 360.6 -4.54E-04 6.45E+00 3.69E+01 8.00E+03\n", - "45000 12 196.69 -2.31E-03 6.45E+00 3.68E+01 8.00E+03\n", - "45500 13 180.3 -6.49E-03 6.45E+00 3.70E+01 8.00E+03\n", - "46000 7 360.6 -2.03E-05 6.45E+00 3.69E+01 8.00E+03\n", - "46500 9 270.45 -7.06E-05 6.45E+00 3.69E+01 8.00E+03\n", - "47000 8 309.09 -1.06E-04 6.45E+00 3.69E+01 8.00E+03\n", - "47500 9 270.45 -7.40E-05 6.45E+00 3.69E+01 8.00E+03\n", - "48000 9 270.45 -4.39E-05 6.45E+00 3.69E+01 8.00E+03\n", - "48500 9 270.45 -7.38E-04 6.45E+00 3.68E+01 8.00E+03\n", - "49000 10 240.4 -2.12E-02 6.45E+00 3.65E+01 8.00E+03\n", - "49500 17 135.23 -1.11E-02 6.45E+00 3.71E+01 8.00E+03\n", - "50000 15 154.54 -2.80E-03 6.45E+00 3.68E+01 8.00E+03\n", - "50500 11 216.36 -3.93E-04 6.45E+00 3.69E+01 8.00E+03\n", - "51000 6 432.72 -7.95E-04 6.45E+00 3.68E+01 8.00E+03\n", - "51500 14 166.43 -5.38E-04 6.45E+00 3.68E+01 8.00E+03\n", - "52000 11 216.36 -1.25E-03 6.45E+00 3.68E+01 8.00E+03\n", - "52500 8 309.09 -1.85E-04 6.45E+00 3.69E+01 8.00E+03\n", - "53000 11 216.36 -2.40E-04 6.45E+00 3.69E+01 8.00E+03\n", - "53500 10 240.4 -2.03E-04 6.45E+00 3.69E+01 8.00E+03\n", - "54000 3 1081.81 -6.10E-06 6.45E+00 3.69E+01 8.00E+03\n", - "54500 11 216.36 -3.47E-04 6.45E+00 3.69E+01 8.00E+03\n", - "55000 11 216.36 -2.31E-04 6.45E+00 3.69E+01 8.00E+03\n", - "55500 7 360.6 -6.80E-05 6.45E+00 3.69E+01 8.00E+03\n", - "56000 8 309.09 -3.16E-03 6.45E+00 3.68E+01 8.00E+03\n", - "56500 5 540.91 -1.14E-05 6.45E+00 3.69E+01 8.00E+03\n", - "57000 11 216.36 -3.49E-04 6.45E+00 3.69E+01 8.00E+03\n", - "57500 8 309.09 -1.04E-04 6.45E+00 3.69E+01 8.00E+03\n", - "58000 5 540.91 -1.40E-03 6.45E+00 3.68E+01 8.00E+03\n", - "58500 8 309.09 -2.23E-04 6.45E+00 3.69E+01 8.00E+03\n", - "59000 11 216.36 -5.60E-04 6.45E+00 3.68E+01 8.00E+03\n", - "59500 6 432.72 -3.79E-05 6.45E+00 3.69E+01 8.00E+03\n", - "60000 9 270.45 -3.64E-04 6.45E+00 3.69E+01 8.00E+03\n", - "60500 7 360.6 -4.82E-04 6.45E+00 3.69E+01 8.00E+03\n", - "61000 10 240.4 -1.97E-04 6.45E+00 3.69E+01 8.00E+03\n", - "61500 13 180.3 -6.15E-04 6.45E+00 3.68E+01 8.00E+03\n", - "62000 6 432.72 -2.35E-05 6.45E+00 3.69E+01 8.00E+03\n", - "62500 4 721.21 -7.09E-05 6.45E+00 3.69E+01 8.00E+03\n", - "63000 11 216.36 -2.34E-03 6.45E+00 3.70E+01 8.00E+03\n", - "63500 9 270.45 -7.18E-05 6.45E+00 3.69E+01 8.00E+03\n", - "64000 10 240.4 -1.68E-04 6.45E+00 3.69E+01 8.00E+03\n", - "64500 8 309.09 -9.82E-02 6.45E+00 3.74E+01 8.00E+03\n", - "65000 15 154.54 -1.91E-03 6.45E+00 3.69E+01 8.00E+03\n", - "65500 10 240.4 -1.95E-03 6.45E+00 3.68E+01 8.00E+03\n", - "66000 9 270.45 -6.95E-04 6.45E+00 3.68E+01 8.00E+03\n", - "66500 12 196.69 -3.36E-03 6.45E+00 3.68E+01 8.00E+03\n", - "67000 6 432.72 -1.06E-05 6.45E+00 3.69E+01 8.00E+03\n", - "67500 5 540.91 -2.47E-02 6.45E+00 3.65E+01 8.00E+03\n", - "68000 5 540.91 -2.64E-05 6.45E+00 3.69E+01 8.00E+03\n", - "68500 10 240.4 -2.36E-02 6.45E+00 3.65E+01 8.00E+03\n", - "69000 11 216.36 -7.95E-04 6.45E+00 3.69E+01 8.00E+03\n", - "69500 11 216.36 -1.81E-03 6.45E+00 3.68E+01 8.00E+03\n", - "70000 13 180.3 -1.44E-03 6.45E+00 3.69E+01 8.00E+03\n", - "70500 9 270.45 -1.61E-04 6.45E+00 3.69E+01 8.00E+03\n", - "71000 7 360.6 -4.42E-04 6.45E+00 3.69E+01 8.00E+03\n", - "71500 7 360.6 -7.25E-04 6.45E+00 3.68E+01 8.00E+03\n", - "72000 9 270.45 -1.99E-04 6.45E+00 3.69E+01 8.00E+03\n", - "72500 8 309.09 -1.50E-04 6.45E+00 3.69E+01 8.00E+03\n", - "73000 9 270.45 -2.67E-04 6.45E+00 3.69E+01 8.00E+03\n", - "73500 14 166.43 -2.38E-02 6.45E+00 4.02E+01 8.00E+03\n", - "74000 9 270.45 -5.29E-03 6.45E+00 3.68E+01 8.00E+03\n", - "74500 13 180.3 -3.82E-04 6.45E+00 3.69E+01 8.00E+03\n", - "75000 11 216.36 -1.68E-04 6.45E+00 3.69E+01 8.00E+03\n", - "75500 12 196.69 -2.55E-04 6.45E+00 3.69E+01 8.00E+03\n", - "76000 8 309.09 -1.07E-04 6.45E+00 3.69E+01 8.00E+03\n", - "76500 11 216.36 -1.08E-03 6.45E+00 3.68E+01 8.00E+03\n", - "77000 13 180.3 -5.91E-02 6.45E+00 3.61E+01 8.00E+03\n", - "77500 14 166.43 -5.79E-03 6.45E+00 3.68E+01 8.00E+03\n", - "78000 14 166.43 -4.00E-04 6.45E+00 3.69E+01 8.00E+03\n", - "78500 12 196.69 -4.62E-03 6.45E+00 3.72E+01 8.00E+03\n", - "79000 13 180.3 -9.17E-03 6.45E+00 3.67E+01 8.00E+03\n", - "79500 9 270.45 -3.27E-04 6.45E+00 3.69E+01 8.00E+03\n", - "80000 7 360.6 -7.36E-04 6.45E+00 3.68E+01 8.00E+03\n", - "80500 12 196.69 -2.35E-02 6.45E+00 3.65E+01 8.00E+03\n", - "81000 7 360.6 -6.40E-05 6.45E+00 3.69E+01 8.00E+03\n", - "81500 7 360.6 -1.04E-04 6.45E+00 3.69E+01 8.00E+03\n", - "82000 11 216.36 -8.37E-02 6.45E+00 3.60E+01 8.00E+03\n", - "82500 10 240.4 -2.95E-04 6.45E+00 3.69E+01 8.00E+03\n", - "83000 12 196.69 -1.09E-03 6.45E+00 3.68E+01 8.00E+03\n", - "83500 10 240.4 -7.88E-03 6.45E+00 3.67E+01 8.00E+03\n", - "84000 7 360.6 -3.35E-04 6.45E+00 3.69E+01 8.00E+03\n", - "84500 10 240.4 -1.09E-03 6.45E+00 3.68E+01 8.00E+03\n", - "85000 8 309.09 -1.11E-04 6.45E+00 3.69E+01 8.00E+03\n", - "85500 6 432.72 -9.17E-05 6.45E+00 3.69E+01 8.00E+03\n", - "86000 9 270.45 -1.19E-03 6.45E+00 3.68E+01 8.00E+03\n", - "86500 10 240.4 -1.64E-04 6.45E+00 3.69E+01 8.00E+03\n", - "87000 18 127.27 -1.46E-02 6.45E+00 3.82E+01 8.00E+03\n", - "87500 9 270.45 -1.37E-03 6.45E+00 3.69E+01 8.00E+03\n", - "88000 10 240.4 -1.31E-04 6.45E+00 3.69E+01 8.00E+03\n", - "88500 7 360.6 -1.78E-04 6.45E+00 3.69E+01 8.00E+03\n", - "89000 7 360.6 -9.35E-06 6.45E+00 3.69E+01 8.00E+03\n", - "89500 13 180.3 -9.58E-04 6.45E+00 3.69E+01 8.00E+03\n", - "90000 8 309.09 -1.13E-04 6.45E+00 3.69E+01 8.00E+03\n", - "90500 9 270.45 -9.30E-04 6.45E+00 3.68E+01 8.00E+03\n", - "91000 12 196.69 -4.40E-03 6.45E+00 3.70E+01 8.00E+03\n", - "91500 14 166.43 -2.19E-03 6.45E+00 3.68E+01 8.00E+03\n", - "92000 13 180.3 -4.81E-02 6.45E+00 3.62E+01 8.00E+03\n", - "92500 11 216.36 -1.05E-03 6.45E+00 3.69E+01 8.00E+03\n", - "93000 8 309.09 -4.56E-05 6.45E+00 3.69E+01 8.00E+03\n", - "93500 7 360.6 -6.01E-02 6.45E+00 4.79E+01 8.00E+03\n", - "94000 6 432.72 -2.48E-03 6.45E+00 3.68E+01 8.00E+03\n", - "94500 9 270.45 -1.29E-04 6.45E+00 3.69E+01 8.00E+03\n", - "95000 6 432.72 -6.63E-02 6.45E+00 5.25E+01 8.00E+03\n", - "95500 18 127.27 -9.91E-03 6.45E+00 3.67E+01 8.00E+03\n", - "96000 17 135.23 -4.21E-04 6.45E+00 3.69E+01 8.00E+03\n", - "96500 5 540.91 -6.48E-05 6.45E+00 3.69E+01 8.00E+03\n", - "97000 7 360.6 -6.71E-05 6.45E+00 3.69E+01 8.00E+03\n", - "97500 3 1081.81 -2.59E-06 6.45E+00 3.69E+01 8.00E+03\n", - "98000 11 216.36 -1.44E-04 6.45E+00 3.69E+01 8.00E+03\n", - "98500 14 166.43 -5.69E-04 6.45E+00 3.68E+01 8.00E+03\n", - "99000 9 270.45 -1.30E-03 6.45E+00 3.68E+01 8.00E+03\n", - "99500 7 360.6 -3.19E-04 6.45E+00 3.69E+01 8.00E+03\n", - "100000 7 360.6 -4.17E-04 6.45E+00 3.69E+01 8.00E+03\n", - "100500 7 360.6 -2.06E-04 6.45E+00 3.69E+01 8.00E+03\n", - "101000 11 216.36 -1.29E-02 6.45E+00 3.66E+01 8.00E+03\n", - "101500 11 216.36 -7.56E-03 6.45E+00 3.67E+01 8.00E+03\n", - "102000 7 360.6 -4.74E-04 6.45E+00 3.68E+01 8.00E+03\n", - "102500 3 1081.81 -2.09E-06 6.45E+00 3.69E+01 8.00E+03\n", - "103000 10 240.4 -2.16E-04 6.45E+00 3.69E+01 8.00E+03\n", - "103500 12 196.69 -5.60E-02 6.45E+00 4.24E+01 8.00E+03\n", - "104000 9 270.45 -7.63E-04 6.45E+00 3.68E+01 8.00E+03\n", - "104500 6 432.72 -6.22E-05 6.45E+00 3.69E+01 8.00E+03\n", - "105000 13 180.3 -8.97E-04 6.45E+00 3.68E+01 8.00E+03\n", - "105500 10 240.4 -2.00E-04 6.45E+00 3.69E+01 8.00E+03\n", - "106000 12 196.69 -2.92E-03 6.45E+00 3.68E+01 8.00E+03\n", - "106500 11 216.36 -8.25E-05 6.45E+00 3.69E+01 8.00E+03\n", - "107000 9 270.45 -4.08E-02 6.45E+00 3.62E+01 8.00E+03\n", - "107500 10 240.4 -3.65E-04 6.45E+00 3.69E+01 8.00E+03\n", - "108000 10 240.4 -1.46E-03 6.45E+00 3.68E+01 8.00E+03\n", - "108500 10 240.4 -1.41E-03 6.45E+00 3.70E+01 8.00E+03\n", - "109000 13 180.3 -1.08E-03 6.45E+00 3.68E+01 8.00E+03\n", - "109500 12 196.69 -1.95E-03 6.45E+00 3.68E+01 8.00E+03\n", - "110000 7 360.6 -8.56E-03 6.45E+00 3.67E+01 8.00E+03\n", - "110500 10 240.4 -4.80E-04 6.45E+00 3.69E+01 8.00E+03\n", - "111000 9 270.45 -6.10E-05 6.45E+00 3.69E+01 8.00E+03\n", - "111500 17 135.23 -6.30E-02 6.45E+00 3.65E+01 8.00E+03\n", - "112000 15 154.54 -1.72E-03 6.45E+00 3.68E+01 8.00E+03\n", - "112500 15 154.54 -8.89E-04 6.45E+00 3.69E+01 8.00E+03\n", - "113000 3 1081.81 -1.36E-06 6.45E+00 3.69E+01 8.00E+03\n", - "113500 6 432.72 -1.40E-03 6.45E+00 3.70E+01 8.00E+03\n", - "114000 7 360.6 -1.41E-03 6.45E+00 3.68E+01 8.00E+03\n", - "114500 10 240.4 -2.37E-02 6.45E+00 3.65E+01 8.00E+03\n", - "115000 9 270.45 -2.15E-04 6.45E+00 3.69E+01 8.00E+03\n", - "115500 4 721.21 -1.55E-02 6.45E+00 3.93E+01 8.00E+03\n", - "116000 10 240.4 -3.93E-04 6.45E+00 3.69E+01 8.00E+03\n", - "116500 10 240.4 -1.44E-04 6.45E+00 3.69E+01 8.00E+03\n", - "117000 14 166.43 -6.26E-03 6.45E+00 3.71E+01 8.00E+03\n", - "117500 10 240.4 -7.63E-04 6.45E+00 3.68E+01 8.00E+03\n", - "118000 13 180.3 -5.44E-02 6.45E+00 3.60E+01 8.00E+03\n", - "118500 7 360.6 -2.23E-04 6.45E+00 3.69E+01 8.00E+03\n", - "119000 12 196.69 -1.76E-03 6.45E+00 3.70E+01 8.00E+03\n", - "119500 9 270.45 -1.22E-04 6.45E+00 3.69E+01 8.00E+03\n", - "120000 13 180.3 -2.90E-03 6.45E+00 3.69E+01 8.00E+03\n", - "120500 14 166.43 -1.17E-03 6.45E+00 3.68E+01 8.00E+03\n", - "121000 14 166.43 -3.36E-03 6.45E+00 3.68E+01 8.00E+03\n", - "121500 10 240.4 1.31E-01 6.45E+00 5.00E+01 8.00E+03\n", - "122000 10 240.4 -5.04E-03 6.45E+00 3.68E+01 8.00E+03\n", - "122500 12 196.69 -2.31E-03 6.45E+00 3.69E+01 8.00E+03\n", - "123000 10 240.4 -4.03E-04 6.45E+00 3.69E+01 8.00E+03\n", - "123500 11 216.36 -8.63E-03 6.45E+00 3.67E+01 8.00E+03\n", - "124000 9 270.45 1.04E-01 6.45E+00 4.94E+01 8.00E+03\n", - "124500 9 270.45 -2.73E-04 6.45E+00 3.69E+01 8.00E+03\n", - "125000 7 360.6 -2.48E-05 6.45E+00 3.69E+01 8.00E+03\n", - "125500 10 240.4 -4.09E-04 6.45E+00 3.69E+01 8.00E+03\n", - "126000 6 432.72 -5.96E-05 6.45E+00 3.69E+01 8.00E+03\n", - "126500 9 270.45 -5.43E-03 6.45E+00 3.68E+01 8.00E+03\n", - "127000 10 240.4 -1.18E-03 6.45E+00 3.69E+01 8.00E+03\n", - "127500 10 240.4 -1.11E-03 6.45E+00 3.68E+01 8.00E+03\n", - "128000 6 432.72 -9.68E-05 6.45E+00 3.69E+01 8.00E+03\n", - "128500 6 432.72 -6.51E-04 6.45E+00 3.68E+01 8.00E+03\n", - "129000 15 154.54 -5.49E-02 6.45E+00 3.61E+01 8.00E+03\n", - "129500 11 216.36 -5.58E-03 6.45E+00 3.68E+01 8.00E+03\n", - "130000 14 166.43 -3.97E-02 6.45E+00 3.63E+01 8.00E+03\n", - "130500 12 196.69 -8.03E-04 6.45E+00 3.68E+01 8.00E+03\n", - "131000 9 270.45 -9.80E-04 6.45E+00 3.68E+01 8.00E+03\n", - "131500 9 270.45 -3.02E-02 6.45E+00 3.64E+01 8.00E+03\n", - "132000 14 166.43 -1.14E-03 6.45E+00 3.69E+01 8.00E+03\n", - "132500 11 216.36 -8.42E-04 6.45E+00 3.68E+01 8.00E+03\n", - "133000 6 432.72 1.59E-01 6.45E+00 5.12E+01 8.00E+03\n", - "133500 8 309.09 -4.00E-04 6.45E+00 3.69E+01 8.00E+03\n", - "134000 6 432.72 -7.91E-05 6.45E+00 3.69E+01 8.00E+03\n", - "134500 9 270.45 -5.91E-02 6.45E+00 3.60E+01 8.00E+03\n", - "135000 6 432.72 -1.12E-04 6.45E+00 3.69E+01 8.00E+03\n", - "135500 10 240.4 -2.28E-03 6.45E+00 3.68E+01 8.00E+03\n", - "136000 12 196.69 -1.35E-03 6.45E+00 3.68E+01 8.00E+03\n", - "136500 7 360.6 -8.94E-03 6.45E+00 3.67E+01 8.00E+03\n", - "137000 8 309.09 -2.31E-04 6.45E+00 3.69E+01 8.00E+03\n", - "137500 14 166.43 -5.22E-03 6.45E+00 3.68E+01 8.00E+03\n", - "138000 9 270.45 -2.79E-04 6.45E+00 3.69E+01 8.00E+03\n", - "138500 6 432.72 -1.06E-05 6.45E+00 3.69E+01 8.00E+03\n", - "139000 5 540.91 -1.84E-05 6.45E+00 3.69E+01 8.00E+03\n", - "139500 11 216.36 -1.15E-02 6.45E+00 3.67E+01 8.00E+03\n", - "140000 5 540.91 -1.95E-04 6.45E+00 3.69E+01 8.00E+03\n", - "140500 11 216.36 -1.21E-03 6.45E+00 3.69E+01 8.00E+03\n", - "141000 14 166.43 -3.00E-03 6.45E+00 3.68E+01 8.00E+03\n", - "141500 8 309.09 -3.11E-04 6.45E+00 3.69E+01 8.00E+03\n", - "142000 12 196.69 -9.60E-03 6.45E+00 3.68E+01 8.00E+03\n", - "142500 13 180.3 -8.74E-02 6.45E+00 3.60E+01 8.00E+03\n", - "143000 12 196.69 -1.41E-03 6.45E+00 3.68E+01 8.00E+03\n", - "143500 7 360.6 -1.28E-04 6.45E+00 3.69E+01 8.00E+03\n", - "144000 8 309.09 -4.21E-04 6.45E+00 3.69E+01 8.00E+03\n", - "144500 9 270.45 -1.02E-04 6.45E+00 3.69E+01 8.00E+03\n", - "145000 7 360.6 -1.40E-04 6.45E+00 3.69E+01 8.00E+03\n", - "145500 9 270.45 -1.18E-04 6.45E+00 3.69E+01 8.00E+03\n", - "146000 3 1081.81 -9.90E-06 6.45E+00 3.69E+01 8.00E+03\n", - "146500 13 180.3 -1.31E-02 6.45E+00 3.67E+01 8.00E+03\n", - "147000 14 166.43 -6.63E-03 6.45E+00 3.70E+01 8.00E+03\n", - "147500 10 240.4 -2.11E-04 6.45E+00 3.69E+01 8.00E+03\n", - "148000 7 360.6 -7.97E-05 6.45E+00 3.69E+01 8.00E+03\n", - "148500 14 166.43 -2.89E-03 6.45E+00 3.68E+01 8.00E+03\n", - "149000 8 309.09 -7.40E-05 6.45E+00 3.69E+01 8.00E+03\n", - "149500 20 113.87 -2.07E-03 6.45E+00 3.69E+01 8.00E+03\n", - "150000 6 432.72 -4.30E-05 6.45E+00 3.69E+01 8.00E+03\n", - "150500 13 180.3 -1.16E-03 6.45E+00 3.69E+01 8.00E+03\n", - "151000 10 240.4 -2.28E-03 6.45E+00 3.68E+01 8.00E+03\n", - "151500 6 432.72 -1.55E-03 6.45E+00 3.70E+01 8.00E+03\n", - "152000 3 1081.81 -8.66E-07 6.45E+00 3.69E+01 8.00E+03\n", - "152500 11 216.36 -1.37E-03 6.45E+00 3.69E+01 8.00E+03\n", - "153000 6 432.72 -4.01E-04 6.45E+00 3.68E+01 8.00E+03\n", - "153500 13 180.3 -1.01E-01 6.45E+00 3.68E+01 8.00E+03\n", - "154000 8 309.09 -1.60E-04 6.45E+00 3.69E+01 8.00E+03\n", - "154500 9 270.45 -3.19E-03 6.45E+00 3.68E+01 8.00E+03\n", - "155000 15 154.54 -1.52E-03 6.45E+00 3.68E+01 8.00E+03\n", - "155500 13 180.3 -1.08E-03 6.45E+00 3.68E+01 8.00E+03\n", - "156000 10 240.4 -9.07E-02 6.45E+00 3.61E+01 8.00E+03\n", - "156500 10 240.4 -1.28E-03 6.45E+00 3.69E+01 8.00E+03\n", - "157000 9 270.45 -3.90E-04 6.45E+00 3.69E+01 8.00E+03\n", - "157500 9 270.45 -2.00E-04 6.45E+00 3.69E+01 8.00E+03\n", - "158000 5 540.91 -5.22E-03 6.45E+00 3.68E+01 8.00E+03\n", - "158500 9 270.45 -5.39E-03 6.45E+00 3.72E+01 8.00E+03\n", - "159000 12 196.69 -7.39E-04 6.45E+00 3.68E+01 8.00E+03\n", - "159500 3 1081.81 -5.76E-07 6.45E+00 3.69E+01 8.00E+03\n", - "160000 5 540.91 -6.21E-06 6.45E+00 3.69E+01 8.00E+03\n", - "160500 13 180.3 -6.24E-03 6.45E+00 3.68E+01 8.00E+03\n", - "161000 14 166.43 -7.54E-03 6.45E+00 3.67E+01 8.00E+03\n", - "161500 1 inf 0.00E+00 6.45E+00 NAN 8.00E+03\n", - "162000 5 540.91 -5.10E-05 6.45E+00 3.69E+01 8.00E+03\n", - "162500 7 360.6 -9.85E-03 6.45E+00 3.67E+01 8.00E+03\n", - "163000 15 154.54 -7.01E-04 6.45E+00 3.69E+01 8.00E+03\n", - "163500 9 270.45 -3.52E-04 6.45E+00 3.69E+01 8.00E+03\n", - "164000 9 270.45 -1.88E-04 6.45E+00 3.69E+01 8.00E+03\n", - "164500 14 166.43 -2.18E-03 6.45E+00 3.68E+01 8.00E+03\n", - "165000 5 540.91 -2.16E-04 6.45E+00 3.69E+01 8.00E+03\n", - "165500 10 240.4 -1.60E-04 6.45E+00 3.69E+01 8.00E+03\n", - "166000 11 216.36 -1.04E-01 6.45E+00 3.64E+01 8.00E+03\n", - "166500 6 432.72 -2.18E-05 6.45E+00 3.69E+01 8.00E+03\n", - "167000 11 216.36 -2.19E-03 6.45E+00 3.68E+01 8.00E+03\n", - "167500 14 166.43 -3.60E-03 6.45E+00 3.70E+01 8.00E+03\n", - "168000 8 309.09 -4.66E-04 6.45E+00 3.68E+01 8.00E+03\n", - "168500 12 196.69 -2.35E-03 6.45E+00 3.68E+01 8.00E+03\n", - "169000 5 540.91 -8.44E-04 6.45E+00 3.68E+01 8.00E+03\n", - "169500 7 360.6 -5.19E-04 6.45E+00 3.69E+01 8.00E+03\n", - "170000 12 196.69 -3.09E-04 6.45E+00 3.69E+01 8.00E+03\n", - "170500 8 309.09 -2.46E-03 6.45E+00 3.70E+01 8.00E+03\n", - "171000 5 540.91 -1.99E-04 6.45E+00 3.69E+01 8.00E+03\n", - "171500 8 309.09 -8.63E-05 6.45E+00 3.69E+01 8.00E+03\n", - "172000 8 309.09 -7.48E-05 6.45E+00 3.69E+01 8.00E+03\n", - "172500 8 309.09 -2.43E-04 6.45E+00 3.69E+01 8.00E+03\n", - "173000 8 309.09 -1.31E-04 6.45E+00 3.69E+01 8.00E+03\n", - "173500 14 166.43 -5.40E-04 6.45E+00 3.69E+01 8.00E+03\n", - "174000 12 196.69 -9.96E-03 6.45E+00 3.67E+01 8.00E+03\n", - "174500 11 216.36 -1.32E-02 6.45E+00 3.66E+01 8.00E+03\n", - "175000 6 432.72 -4.43E-05 6.45E+00 3.69E+01 8.00E+03\n", - "175500 8 309.09 -3.35E-02 6.45E+00 3.63E+01 8.00E+03\n", - "176000 10 240.4 -8.68E-02 6.45E+00 3.56E+01 8.00E+03\n", - "176500 13 180.3 -4.56E-04 6.45E+00 3.69E+01 8.00E+03\n", - "177000 9 270.45 -3.04E-04 6.45E+00 3.69E+01 8.00E+03\n", - "177500 13 180.3 -1.01E-03 6.45E+00 3.68E+01 8.00E+03\n", - "178000 5 540.91 -3.68E-04 6.45E+00 3.69E+01 8.00E+03\n", - "178500 10 240.4 -1.79E-04 6.45E+00 3.69E+01 8.00E+03\n", - "179000 9 270.45 -8.23E-02 6.45E+00 3.60E+01 8.00E+03\n", - "179500 12 196.69 -1.00E-01 6.45E+00 3.66E+01 8.00E+03\n", - "180000 8 309.09 -3.36E-04 6.45E+00 3.69E+01 8.00E+03\n", - "180500 6 432.72 -9.46E-05 6.45E+00 3.69E+01 8.00E+03\n", - "181000 7 360.6 -4.32E-05 6.45E+00 3.69E+01 8.00E+03\n", - "181500 9 270.45 -1.42E-03 6.45E+00 3.68E+01 8.00E+03\n", - "182000 13 180.3 -8.99E-04 6.45E+00 3.69E+01 8.00E+03\n", - "182500 14 166.43 -7.76E-04 6.45E+00 3.69E+01 8.00E+03\n", - "183000 9 270.45 -2.22E-02 6.45E+00 3.89E+01 8.00E+03\n", - "183500 9 270.45 -3.32E-03 6.45E+00 3.68E+01 8.00E+03\n", - "184000 5 540.91 -2.02E-05 6.45E+00 3.69E+01 8.00E+03\n", - "184500 8 309.09 -2.21E-03 6.45E+00 3.68E+01 8.00E+03\n", - "185000 8 309.09 -9.33E-02 6.45E+00 3.62E+01 8.00E+03\n", - "185500 4 721.21 -9.64E-06 6.45E+00 3.69E+01 8.00E+03\n", - "186000 14 166.43 -8.17E-03 6.45E+00 3.68E+01 8.00E+03\n", - "186500 4 721.21 -3.40E-05 6.45E+00 3.69E+01 8.00E+03\n", - "187000 7 360.6 -8.40E-05 6.45E+00 3.69E+01 8.00E+03\n", - "187500 7 360.6 -1.41E-04 6.45E+00 3.69E+01 8.00E+03\n", - "188000 9 270.45 -1.37E-04 6.45E+00 3.69E+01 8.00E+03\n", - "188500 9 270.45 -2.11E-03 6.45E+00 3.68E+01 8.00E+03\n", - "189000 9 270.45 -4.33E-04 6.45E+00 3.69E+01 8.00E+03\n", - "189500 8 309.09 -2.41E-05 6.45E+00 3.69E+01 8.00E+03\n", - "190000 9 270.45 -1.28E-04 6.45E+00 3.69E+01 8.00E+03\n", - "190500 9 270.45 -1.29E-04 6.45E+00 3.69E+01 8.00E+03\n", - "191000 4 721.21 -3.01E-04 6.45E+00 3.69E+01 8.00E+03\n", - "191500 10 240.4 -4.83E-02 6.45E+00 3.62E+01 8.00E+03\n", - "192000 11 216.36 -3.42E-04 6.45E+00 3.69E+01 8.00E+03\n", - "192500 11 216.36 -1.33E-01 6.45E+00 3.59E+01 8.00E+03\n", - "193000 9 270.45 -1.82E-04 6.45E+00 3.69E+01 8.00E+03\n", - "193500 11 216.36 -1.08E-02 6.45E+00 3.67E+01 8.00E+03\n", - "194000 10 240.4 -4.79E-04 6.45E+00 3.68E+01 8.00E+03\n", - "194500 12 196.69 -7.57E-02 6.45E+00 3.60E+01 8.00E+03\n", - "195000 7 360.6 -6.95E-05 6.45E+00 3.69E+01 8.00E+03\n", - "195500 12 196.69 -5.82E-04 6.45E+00 3.69E+01 8.00E+03\n", - "196000 15 154.54 -1.82E-03 6.45E+00 3.69E+01 8.00E+03\n", - "196500 16 144.24 -1.42E-03 6.45E+00 3.69E+01 8.00E+03\n", - "197000 11 216.36 -4.11E-03 6.45E+00 3.68E+01 8.00E+03\n", - "197500 9 270.45 -7.93E-03 6.45E+00 3.67E+01 8.00E+03\n", - "198000 9 270.45 -5.40E-04 6.45E+00 3.68E+01 8.00E+03\n", - "198500 7 360.6 -3.13E-04 6.45E+00 3.69E+01 8.00E+03\n", - "199000 16 144.24 -6.58E-03 6.45E+00 3.69E+01 8.00E+03\n", - "199500 8 309.09 -1.61E-03 6.45E+00 3.68E+01 8.00E+03\n", - "200000 9 270.45 -6.23E-03 6.45E+00 3.68E+01 8.00E+03\n", - "200500 6 432.72 -3.58E-05 6.45E+00 3.69E+01 8.00E+03\n", - "201000 6 432.72 -1.63E-04 6.45E+00 3.69E+01 8.00E+03\n", - "201500 9 270.45 -1.76E-04 6.45E+00 3.69E+01 8.00E+03\n", - "202000 7 360.6 -1.51E-05 6.45E+00 3.69E+01 8.00E+03\n", - "202500 12 196.69 -8.59E-04 6.45E+00 3.69E+01 8.00E+03\n", - "203000 9 270.45 -4.58E-04 6.45E+00 3.68E+01 8.00E+03\n", - "203500 9 270.45 -5.48E-04 6.45E+00 3.69E+01 8.00E+03\n", - "204000 13 180.3 -9.75E-04 6.45E+00 3.68E+01 8.00E+03\n", - "204500 11 216.36 -8.02E-05 6.45E+00 3.69E+01 8.00E+03\n", - "205000 10 240.4 -1.06E-03 6.45E+00 3.68E+01 8.00E+03\n", - "205500 14 166.43 -1.03E-02 6.45E+00 3.67E+01 8.00E+03\n", - "206000 8 309.09 -2.31E-02 6.45E+00 3.65E+01 8.00E+03\n", - "206500 9 270.45 -1.70E-04 6.45E+00 3.69E+01 8.00E+03\n", - "207000 8 309.09 -4.17E-04 6.45E+00 3.69E+01 8.00E+03\n", - "207500 10 240.4 -4.52E-03 6.45E+00 3.68E+01 8.00E+03\n", - "208000 9 270.45 -2.10E-04 6.45E+00 3.69E+01 8.00E+03\n", - "208500 5 540.91 -2.94E-06 6.45E+00 3.69E+01 8.00E+03\n", - "209000 12 196.69 -1.92E-04 6.45E+00 3.69E+01 8.00E+03\n", - "209500 11 216.36 -7.12E-02 6.45E+00 3.60E+01 8.00E+03\n", - "210000 5 540.91 -1.50E-05 6.45E+00 3.69E+01 8.00E+03\n", - "210500 13 180.3 -6.37E-04 6.45E+00 3.69E+01 8.00E+03\n", - "211000 14 166.43 -8.42E-04 6.45E+00 3.68E+01 8.00E+03\n", - "211500 3 1081.81 -1.60E-06 6.45E+00 3.69E+01 8.00E+03\n", - "212000 11 216.36 -1.56E-02 6.45E+00 3.66E+01 8.00E+03\n", - "212500 12 196.69 -1.19E-03 6.45E+00 3.69E+01 8.00E+03\n", - "213000 8 309.09 -1.26E-04 6.45E+00 3.69E+01 8.00E+03\n", - "213500 8 309.09 -9.98E-04 6.45E+00 3.69E+01 8.00E+03\n", - "214000 6 432.72 -4.38E-05 6.45E+00 3.69E+01 8.00E+03\n", - "214500 7 360.6 -7.47E-05 6.45E+00 3.69E+01 8.00E+03\n", - "215000 5 540.91 -1.05E-03 6.45E+00 3.69E+01 8.00E+03\n", - "215500 10 240.4 -1.88E-04 6.45E+00 3.69E+01 8.00E+03\n", - "216000 10 240.4 -8.26E-04 6.45E+00 3.68E+01 8.00E+03\n", - "216500 12 196.69 -2.57E-02 6.45E+00 3.65E+01 8.00E+03\n", - "217000 9 270.45 -2.22E-04 6.45E+00 3.69E+01 8.00E+03\n", - "217500 10 240.4 -8.39E-04 6.45E+00 3.68E+01 8.00E+03\n", - "218000 7 360.6 -3.63E-04 6.45E+00 3.69E+01 8.00E+03\n", - "218500 9 270.45 -6.85E-05 6.45E+00 3.69E+01 8.00E+03\n", - "219000 9 270.45 -5.74E-05 6.45E+00 3.69E+01 8.00E+03\n", - "219500 15 154.54 -4.13E-02 6.45E+00 3.62E+01 8.00E+03\n", - "220000 9 270.45 -7.57E-04 6.45E+00 3.69E+01 8.00E+03\n", - "220500 12 196.69 -4.09E-04 6.45E+00 3.69E+01 8.00E+03\n", - "221000 6 432.72 -1.63E-03 6.45E+00 3.68E+01 8.00E+03\n", - "221500 13 180.3 -1.97E-03 6.45E+00 3.68E+01 8.00E+03\n", - "222000 3 1081.81 -8.94E-07 6.45E+00 3.69E+01 8.00E+03\n", - "222500 5 540.91 -2.85E-04 6.45E+00 3.69E+01 8.00E+03\n", - "223000 4 721.21 -2.41E-05 6.45E+00 3.69E+01 8.00E+03\n", - "223500 9 270.45 -1.52E-03 6.45E+00 3.69E+01 8.00E+03\n", - "224000 15 154.54 -1.04E-02 6.45E+00 3.77E+01 8.00E+03\n", - "224500 5 540.91 -1.22E-05 6.45E+00 3.69E+01 8.00E+03\n", - "225000 14 166.43 -5.27E-04 6.45E+00 3.68E+01 8.00E+03\n", - "225500 8 309.09 -1.97E-04 6.45E+00 3.69E+01 8.00E+03\n", - "226000 9 270.45 -4.61E-04 6.45E+00 3.69E+01 8.00E+03\n", - "226500 11 216.36 -2.84E-04 6.45E+00 3.69E+01 8.00E+03\n", - "227000 10 240.4 -2.33E-03 6.45E+00 3.70E+01 8.00E+03\n", - "227500 11 216.36 -2.69E-04 6.45E+00 3.69E+01 8.00E+03\n", - "228000 11 216.36 -1.86E-04 6.45E+00 3.69E+01 8.00E+03\n", - "228500 10 240.4 -8.09E-04 6.45E+00 3.68E+01 8.00E+03\n", - "229000 5 540.91 -1.31E-05 6.45E+00 3.69E+01 8.00E+03\n", - "229500 7 360.6 -7.31E-04 6.45E+00 3.68E+01 8.00E+03\n", - "230000 14 166.43 -7.93E-03 6.45E+00 3.67E+01 8.00E+03\n", - "230500 8 309.09 -1.38E-02 6.45E+00 3.66E+01 8.00E+03\n", - "231000 13 180.3 -3.73E-03 6.45E+00 3.68E+01 8.00E+03\n", - "231500 6 432.72 -2.64E-03 6.45E+00 3.68E+01 8.00E+03\n", - "232000 6 432.72 -5.02E-05 6.45E+00 3.69E+01 8.00E+03\n", - "232500 6 432.72 -3.56E-05 6.45E+00 3.69E+01 8.00E+03\n", - "233000 17 135.23 -1.98E-03 6.45E+00 3.68E+01 8.00E+03\n", - "233500 6 432.72 -3.24E-04 6.45E+00 3.69E+01 8.00E+03\n", - "234000 8 309.09 -6.32E-03 6.45E+00 3.68E+01 8.00E+03\n", - "234500 15 154.54 -7.52E-04 6.45E+00 3.68E+01 8.00E+03\n", - "235000 10 240.4 -9.60E-03 6.45E+00 3.67E+01 8.00E+03\n", - "235500 8 309.09 -2.50E-04 6.45E+00 3.69E+01 8.00E+03\n", - "236000 10 240.4 -2.17E-04 6.45E+00 3.69E+01 8.00E+03\n", - "236500 13 180.3 -6.04E-03 6.45E+00 3.69E+01 8.00E+03\n", - "237000 12 196.69 -6.22E-04 6.45E+00 3.69E+01 8.00E+03\n", - "237500 9 270.45 -9.75E-05 6.45E+00 3.69E+01 8.00E+03\n", - "238000 6 432.72 -1.34E-05 6.45E+00 3.69E+01 8.00E+03\n", - "238500 16 144.24 -7.64E-04 6.45E+00 3.68E+01 8.00E+03\n", - "239000 8 309.09 -7.74E-04 6.45E+00 3.68E+01 8.00E+03\n", - "239500 13 180.3 -1.08E-02 6.45E+00 3.67E+01 8.00E+03\n", - "240000 7 360.6 -1.66E-04 6.45E+00 3.69E+01 8.00E+03\n", - "240500 7 360.6 -2.02E-04 6.45E+00 3.69E+01 8.00E+03\n", - "241000 13 180.3 -4.32E-04 6.45E+00 3.69E+01 8.00E+03\n", - "241500 8 309.09 -4.35E-04 6.45E+00 3.69E+01 8.00E+03\n", - "242000 7 360.6 -1.15E-03 6.45E+00 3.68E+01 8.00E+03\n", - "242500 7 360.6 -3.82E-05 6.45E+00 3.69E+01 8.00E+03\n", - "243000 11 216.36 -1.24E-03 6.45E+00 3.69E+01 8.00E+03\n", - "243500 20 113.87 -3.51E-02 6.45E+00 3.72E+01 8.00E+03\n", - "244000 10 240.4 -1.16E-02 6.45E+00 3.67E+01 8.00E+03\n", - "244500 15 154.54 -4.34E-04 6.45E+00 3.69E+01 8.00E+03\n", - "245000 13 180.3 -3.71E-04 6.45E+00 3.69E+01 8.00E+03\n", - "245500 12 196.69 -1.26E-03 6.45E+00 3.68E+01 8.00E+03\n", - "246000 18 127.27 -6.18E-04 6.45E+00 3.68E+01 8.00E+03\n", - "246500 8 309.09 -8.24E-03 6.45E+00 3.67E+01 8.00E+03\n", - "247000 7 360.6 -1.02E-03 6.45E+00 3.68E+01 8.00E+03\n", - "247500 12 196.69 -3.57E-04 6.45E+00 3.69E+01 8.00E+03\n", - "248000 12 196.69 -5.99E-03 6.45E+00 3.76E+01 8.00E+03\n", - "248500 4 721.21 -8.49E-06 6.45E+00 3.69E+01 8.00E+03\n", - "249000 11 216.36 -3.90E-04 6.45E+00 3.69E+01 8.00E+03\n", - "249500 10 240.4 -1.16E-02 6.45E+00 3.67E+01 8.00E+03\n", - "250000 7 360.6 -1.70E-05 6.45E+00 3.69E+01 8.00E+03\n", - "250500 8 309.09 -7.35E-03 6.45E+00 3.67E+01 8.00E+03\n", - "251000 13 180.3 -1.17E-03 6.45E+00 3.69E+01 8.00E+03\n", - "251500 13 180.3 -3.59E-03 6.45E+00 3.69E+01 8.00E+03\n", - "252000 8 309.09 -5.58E-05 6.45E+00 3.69E+01 8.00E+03\n", - "252500 16 144.24 -5.86E-03 6.45E+00 3.70E+01 8.00E+03\n", - "253000 8 309.09 -1.00E-03 6.45E+00 3.68E+01 8.00E+03\n", - "253500 9 270.45 -6.28E-05 6.45E+00 3.69E+01 8.00E+03\n", - "254000 4 721.21 -1.67E-05 6.45E+00 3.69E+01 8.00E+03\n", - "254500 8 309.09 -3.86E-04 6.45E+00 3.69E+01 8.00E+03\n", - "255000 8 309.09 -1.09E-04 6.45E+00 3.69E+01 8.00E+03\n", - "255500 15 154.54 -1.15E-01 6.45E+00 4.18E+01 8.00E+03\n", - "256000 13 180.3 -1.01E-01 6.45E+00 3.73E+01 8.00E+03\n", - "256500 9 270.45 -3.52E-03 6.45E+00 3.68E+01 8.00E+03\n", - "257000 11 216.36 -1.42E-03 6.45E+00 3.69E+01 8.00E+03\n", - "257500 9 270.45 -1.17E-04 6.45E+00 3.69E+01 8.00E+03\n", - "258000 11 216.36 -9.05E-02 6.45E+00 4.74E+01 8.00E+03\n", - "258500 8 309.09 -1.02E-04 6.45E+00 3.69E+01 8.00E+03\n", - "259000 8 309.09 -9.67E-05 6.45E+00 3.69E+01 8.00E+03\n", - "259500 7 360.6 -9.06E-05 6.45E+00 3.69E+01 8.00E+03\n", - "260000 10 240.4 -2.81E-02 6.45E+00 3.64E+01 8.00E+03\n", - "260500 9 270.45 -2.72E-04 6.45E+00 3.69E+01 8.00E+03\n", - "261000 9 270.45 -2.24E-02 6.45E+00 3.65E+01 8.00E+03\n", - "261500 7 360.6 -6.71E-04 6.45E+00 3.69E+01 8.00E+03\n", - "262000 8 309.09 -1.83E-04 6.45E+00 3.69E+01 8.00E+03\n", - "262500 7 360.6 -4.24E-03 6.45E+00 3.68E+01 8.00E+03\n", - "263000 4 721.21 -1.44E-05 6.45E+00 3.69E+01 8.00E+03\n", - "263500 9 270.45 -4.37E-03 6.45E+00 3.68E+01 8.00E+03\n", - "264000 10 240.4 -1.18E-03 6.45E+00 3.68E+01 8.00E+03\n", - "264500 9 270.45 -2.10E-04 6.45E+00 3.69E+01 8.00E+03\n", - "265000 8 309.09 -2.60E-04 6.45E+00 3.69E+01 8.00E+03\n", - "265500 16 144.24 -1.81E-02 6.45E+00 3.79E+01 8.00E+03\n", - "266000 5 540.91 -2.94E-03 6.45E+00 3.68E+01 8.00E+03\n", - "266500 8 309.09 -6.72E-04 6.45E+00 3.69E+01 8.00E+03\n", - "267000 12 196.69 -1.16E-03 6.45E+00 3.68E+01 8.00E+03\n", - "267500 10 240.4 -5.43E-04 6.45E+00 3.69E+01 8.00E+03\n", - "268000 12 196.69 -2.80E-03 6.45E+00 3.68E+01 8.00E+03\n", - "268500 9 270.45 -3.98E-03 6.45E+00 3.68E+01 8.00E+03\n", - "269000 13 180.3 -6.11E-03 6.45E+00 3.72E+01 8.00E+03\n", - "269500 8 309.09 -5.79E-03 6.45E+00 3.68E+01 8.00E+03\n", - "270000 9 270.45 -4.76E-03 6.45E+00 3.68E+01 8.00E+03\n", - "270500 13 180.3 -9.23E-04 6.45E+00 3.68E+01 8.00E+03\n", - "271000 13 180.3 -4.41E-02 6.45E+00 3.61E+01 8.00E+03\n", - "271500 8 309.09 -1.55E-04 6.45E+00 3.69E+01 8.00E+03\n", - "272000 10 240.4 -9.65E-04 6.45E+00 3.68E+01 8.00E+03\n", - "272500 6 432.72 -2.02E-04 6.45E+00 3.69E+01 8.00E+03\n", - "273000 11 216.36 -4.95E-04 6.45E+00 3.68E+01 8.00E+03\n", - "273500 4 721.21 -3.77E-05 6.45E+00 3.69E+01 8.00E+03\n", - "274000 8 309.09 -2.75E-03 6.45E+00 3.69E+01 8.00E+03\n", - "274500 13 180.3 -2.00E-03 6.45E+00 3.70E+01 8.00E+03\n", - "275000 6 432.72 -1.22E-04 6.45E+00 3.69E+01 8.00E+03\n", - "275500 11 216.36 -5.38E-04 6.45E+00 3.69E+01 8.00E+03\n", - "276000 13 180.3 -2.11E-03 6.45E+00 3.68E+01 8.00E+03\n", - "276500 11 216.36 -7.41E-05 6.45E+00 3.69E+01 8.00E+03\n", - "277000 10 240.4 -3.22E-04 6.45E+00 3.69E+01 8.00E+03\n", - "277500 10 240.4 -2.47E-03 6.45E+00 3.68E+01 8.00E+03\n", - "278000 7 360.6 -2.44E-03 6.45E+00 3.68E+01 8.00E+03\n", - "278500 13 180.3 -2.90E-04 6.45E+00 3.69E+01 8.00E+03\n", - "279000 6 432.72 -5.10E-05 6.45E+00 3.69E+01 8.00E+03\n", - "279500 8 309.09 -1.05E-03 6.45E+00 3.68E+01 8.00E+03\n", - "280000 16 144.24 -3.82E-04 6.45E+00 3.69E+01 8.00E+03\n", - "280500 11 216.36 -1.94E-03 6.45E+00 3.70E+01 8.00E+03\n", - "281000 11 216.36 -6.22E-04 6.45E+00 3.69E+01 8.00E+03\n", - "281500 5 540.91 -1.37E-05 6.45E+00 3.69E+01 8.00E+03\n", - "282000 7 360.6 -9.00E-04 6.45E+00 3.68E+01 8.00E+03\n", - "282500 10 240.4 -1.41E-02 6.45E+00 3.66E+01 8.00E+03\n", - "283000 11 216.36 -4.27E-02 6.45E+00 3.62E+01 8.00E+03\n", - "283500 2 2163.62 -3.91E-07 6.45E+00 3.69E+01 8.00E+03\n", - "284000 10 240.4 -7.33E-03 6.45E+00 3.67E+01 8.00E+03\n", - "284500 7 360.6 -3.46E-05 6.45E+00 3.69E+01 8.00E+03\n", - "285000 3 1081.81 -1.54E-05 6.45E+00 3.69E+01 8.00E+03\n", - "285500 9 270.45 -1.50E-04 6.45E+00 3.69E+01 8.00E+03\n", - "286000 11 216.36 -1.74E-02 6.45E+00 3.66E+01 8.00E+03\n", - "286500 9 270.45 -1.28E-03 6.45E+00 3.68E+01 8.00E+03\n", - "287000 8 309.09 -1.02E-03 6.45E+00 3.68E+01 8.00E+03\n", - "287500 9 270.45 -1.29E-04 6.45E+00 3.69E+01 8.00E+03\n", - "288000 6 432.72 -2.62E-05 6.45E+00 3.69E+01 8.00E+03\n", - "288500 12 196.69 -1.56E-03 6.45E+00 3.68E+01 8.00E+03\n", - "289000 6 432.72 -3.20E-05 6.45E+00 3.69E+01 8.00E+03\n", - "289500 9 270.45 -1.47E-03 6.45E+00 3.69E+01 8.00E+03\n", - "290000 10 240.4 -4.79E-04 6.45E+00 3.69E+01 8.00E+03\n", - "290500 10 240.4 -5.01E-04 6.45E+00 3.69E+01 8.00E+03\n", - "291000 8 309.09 -2.84E-04 6.45E+00 3.69E+01 8.00E+03\n", - "291500 6 432.72 -3.41E-04 6.45E+00 3.69E+01 8.00E+03\n", - "292000 7 360.6 -2.04E-04 6.45E+00 3.69E+01 8.00E+03\n", - "292500 7 360.6 -7.63E-04 6.45E+00 3.69E+01 8.00E+03\n", - "293000 7 360.6 -1.01E-03 6.45E+00 3.68E+01 8.00E+03\n", - "293500 7 360.6 -2.44E-04 6.45E+00 3.69E+01 8.00E+03\n", - "294000 9 270.45 -1.71E-03 6.45E+00 3.68E+01 8.00E+03\n", - "294500 8 309.09 -6.25E-04 6.45E+00 3.68E+01 8.00E+03\n", - "295000 7 360.6 -2.18E-03 6.45E+00 3.68E+01 8.00E+03\n", - "295500 9 270.45 -5.14E-02 6.45E+00 4.10E+01 8.00E+03\n", - "296000 14 166.43 -4.26E-03 6.45E+00 3.68E+01 8.00E+03\n", - "296500 8 309.09 -7.74E-05 6.45E+00 3.69E+01 8.00E+03\n", - "297000 13 180.3 -1.06E-03 6.45E+00 3.69E+01 8.00E+03\n", - "297500 13 180.3 -3.02E-03 6.45E+00 3.68E+01 8.00E+03\n", - "298000 14 166.43 -7.78E-03 6.45E+00 3.67E+01 8.00E+03\n", - "298500 10 240.4 -3.71E-03 6.45E+00 3.68E+01 8.00E+03\n", - "299000 8 309.09 -1.26E-04 6.45E+00 3.69E+01 8.00E+03\n", - "299500 8 309.09 -4.04E-05 6.45E+00 3.69E+01 8.00E+03\n", - "300000 13 180.3 -4.50E-03 6.45E+00 3.68E+01 8.00E+03\n", - "300500 7 360.6 -2.55E-05 6.45E+00 3.69E+01 8.00E+03\n", - "301000 13 180.3 -9.96E-02 6.45E+00 3.72E+01 8.00E+03\n", - "301500 11 216.36 -1.38E-03 6.45E+00 3.69E+01 8.00E+03\n", - "302000 9 270.45 -1.79E-03 6.45E+00 3.68E+01 8.00E+03\n", - "302500 14 166.43 -1.30E-03 6.45E+00 3.68E+01 8.00E+03\n", - "303000 12 196.69 -1.39E-02 6.45E+00 3.66E+01 8.00E+03\n", - "303500 9 270.45 -6.76E-03 6.45E+00 3.67E+01 8.00E+03\n", - "304000 11 216.36 -1.92E-03 6.45E+00 3.68E+01 8.00E+03\n", - "304500 5 540.91 -2.16E-04 6.45E+00 3.69E+01 8.00E+03\n", - "305000 7 360.6 -1.54E-04 6.45E+00 3.69E+01 8.00E+03\n", - "305500 11 216.36 -2.91E-02 6.45E+00 3.64E+01 8.00E+03\n", - "306000 6 432.72 -1.11E-04 6.45E+00 3.69E+01 8.00E+03\n", - "306500 14 166.43 -7.93E-04 6.45E+00 3.68E+01 8.00E+03\n", - "307000 10 240.4 -7.21E-04 6.45E+00 3.68E+01 8.00E+03\n", - "307500 10 240.4 -4.60E-02 6.45E+00 3.63E+01 8.00E+03\n", - "308000 11 216.36 -3.51E-04 6.45E+00 3.69E+01 8.00E+03\n", - "308500 8 309.09 -2.24E-03 6.45E+00 3.68E+01 8.00E+03\n", - "309000 10 240.4 -5.72E-04 6.45E+00 3.69E+01 8.00E+03\n", - "309500 6 432.72 -1.59E-05 6.45E+00 3.69E+01 8.00E+03\n", - "310000 11 216.36 -2.42E-03 6.45E+00 3.69E+01 8.00E+03\n", - "310500 11 216.36 3.70E-01 6.45E+00 7.33E+01 8.00E+03\n", - "311000 9 270.45 -3.95E-04 6.45E+00 3.69E+01 8.00E+03\n", - "311500 16 144.24 -1.54E-02 6.45E+00 3.80E+01 8.00E+03\n", - "312000 9 270.45 -7.89E-03 6.45E+00 3.72E+01 8.00E+03\n", - "312500 13 180.3 -4.32E-03 6.45E+00 3.68E+01 8.00E+03\n", - "313000 11 216.36 -4.33E-03 6.45E+00 3.68E+01 8.00E+03\n", - "313500 8 309.09 -2.26E-04 6.45E+00 3.69E+01 8.00E+03\n", - "314000 9 270.45 -4.64E-04 6.45E+00 3.69E+01 8.00E+03\n", - "314500 13 180.3 -1.80E-03 6.45E+00 3.69E+01 8.00E+03\n", - "315000 9 270.45 -9.92E-02 6.45E+00 3.97E+01 8.00E+03\n", - "315500 10 240.4 -2.76E-04 6.45E+00 3.69E+01 8.00E+03\n", - "316000 5 540.91 -1.66E-04 6.45E+00 3.69E+01 8.00E+03\n", - "316500 6 432.72 -2.02E-04 6.45E+00 3.69E+01 8.00E+03\n", - "317000 9 270.45 -4.10E-04 6.45E+00 3.69E+01 8.00E+03\n", - "317500 11 216.36 -4.57E-04 6.45E+00 3.69E+01 8.00E+03\n", - "318000 6 432.72 -7.06E-05 6.45E+00 3.69E+01 8.00E+03\n", - "318500 7 360.6 -5.88E-04 6.45E+00 3.68E+01 8.00E+03\n", - "319000 7 360.6 -6.93E-05 6.45E+00 3.69E+01 8.00E+03\n", - "319500 11 216.36 -4.75E-04 6.45E+00 3.69E+01 8.00E+03\n", - "320000 8 309.09 -4.02E-04 6.45E+00 3.69E+01 8.00E+03\n", - "320500 9 270.45 -2.08E-03 6.45E+00 3.68E+01 8.00E+03\n", - "321000 16 144.24 -9.59E-04 6.45E+00 3.69E+01 8.00E+03\n", - "321500 10 240.4 -1.53E-02 6.45E+00 3.66E+01 8.00E+03\n", - "322000 12 196.69 -1.23E-03 6.45E+00 3.68E+01 8.00E+03\n", - "322500 11 216.36 -4.32E-03 6.45E+00 3.68E+01 8.00E+03\n", - "323000 8 309.09 -2.18E-04 6.45E+00 3.69E+01 8.00E+03\n", - "323500 10 240.4 -2.11E-04 6.45E+00 3.69E+01 8.00E+03\n", - "324000 9 270.45 -9.87E-03 6.45E+00 3.67E+01 8.00E+03\n", - "324500 7 360.6 -5.30E-04 6.45E+00 3.68E+01 8.00E+03\n", - "325000 13 180.3 -5.51E-04 6.45E+00 3.69E+01 8.00E+03\n", - "325500 12 196.69 -1.44E-03 6.45E+00 3.70E+01 8.00E+03\n", - "326000 7 360.6 -1.08E-04 6.45E+00 3.69E+01 8.00E+03\n", - "326500 9 270.45 -2.26E-04 6.45E+00 3.69E+01 8.00E+03\n", - "327000 7 360.6 -1.02E-03 6.45E+00 3.68E+01 8.00E+03\n", - "327500 2 2163.62 -3.41E-06 6.45E+00 3.69E+01 8.00E+03\n", - "328000 6 432.72 -2.52E-04 6.45E+00 3.69E+01 8.00E+03\n", - "328500 4 721.21 -9.67E-04 6.45E+00 3.68E+01 8.00E+03\n", - "329000 2 2163.62 -3.97E-06 6.45E+00 3.69E+01 8.00E+03\n", - "329500 9 270.45 -1.38E-03 6.45E+00 3.68E+01 8.00E+03\n", - "330000 4 721.21 -6.84E-02 6.45E+00 3.60E+01 8.00E+03\n", - "330500 10 240.4 -2.60E-04 6.45E+00 3.69E+01 8.00E+03\n", - "331000 10 240.4 -1.58E-04 6.45E+00 3.69E+01 8.00E+03\n", - "331500 8 309.09 -8.09E-05 6.45E+00 3.69E+01 8.00E+03\n", - "332000 8 309.09 -2.25E-04 6.45E+00 3.69E+01 8.00E+03\n", - "332500 10 240.4 -8.35E-04 6.45E+00 3.69E+01 8.00E+03\n", - "333000 9 270.45 -1.04E-04 6.45E+00 3.69E+01 8.00E+03\n", - "333500 5 540.91 -3.72E-05 6.45E+00 3.69E+01 8.00E+03\n", - "334000 6 432.72 -1.61E-03 6.45E+00 3.68E+01 8.00E+03\n", - "334500 11 216.36 -1.85E-02 6.45E+00 3.65E+01 8.00E+03\n", - "335000 16 144.24 -1.70E-03 6.45E+00 3.68E+01 8.00E+03\n", - "335500 16 144.24 -1.49E-03 6.45E+00 3.68E+01 8.00E+03\n", - "336000 10 240.4 -4.71E-03 6.45E+00 3.68E+01 8.00E+03\n", - "336500 20 113.87 -2.81E-02 6.45E+00 3.64E+01 8.00E+03\n", - "337000 7 360.6 -5.37E-05 6.45E+00 3.69E+01 8.00E+03\n", - "337500 10 240.4 -7.63E-03 6.45E+00 3.70E+01 8.00E+03\n", - "338000 14 166.43 -1.50E-02 6.45E+00 3.66E+01 8.00E+03\n", - "338500 16 144.24 -3.54E-03 6.45E+00 3.68E+01 8.00E+03\n", - "339000 8 309.09 -1.65E-03 6.45E+00 3.69E+01 8.00E+03\n", - "339500 6 432.72 -1.84E-05 6.45E+00 3.69E+01 8.00E+03\n", - "340000 11 216.36 -6.04E-04 6.45E+00 3.69E+01 8.00E+03\n", - "340500 5 540.91 -1.52E-05 6.45E+00 3.69E+01 8.00E+03\n", - "341000 8 309.09 -7.12E-02 6.45E+00 3.60E+01 8.00E+03\n", - "341500 9 270.45 -8.20E-04 6.45E+00 3.68E+01 8.00E+03\n", - "342000 11 216.36 -1.69E-02 6.45E+00 3.69E+01 8.00E+03\n", - "342500 11 216.36 -9.00E-03 6.45E+00 3.80E+01 8.00E+03\n", - "343000 7 360.6 -3.25E-05 6.45E+00 3.69E+01 8.00E+03\n", - "343500 11 216.36 -1.77E-02 6.45E+00 3.66E+01 8.00E+03\n", - "344000 7 360.6 -1.43E-05 6.45E+00 3.69E+01 8.00E+03\n", - "344500 11 216.36 -4.01E-02 6.45E+00 3.62E+01 8.00E+03\n", - "345000 8 309.09 -7.53E-05 6.45E+00 3.69E+01 8.00E+03\n", - "345500 14 166.43 -4.70E-02 6.45E+00 3.62E+01 8.00E+03\n", - "346000 7 360.6 -7.76E-05 6.45E+00 3.69E+01 8.00E+03\n", - "346500 6 432.72 -2.40E-05 6.45E+00 3.69E+01 8.00E+03\n", - "347000 17 135.23 -3.51E-04 6.45E+00 3.69E+01 8.00E+03\n", - "347500 13 180.3 -2.06E-04 6.45E+00 3.69E+01 8.00E+03\n", - "348000 8 309.09 -9.67E-02 6.45E+00 3.76E+01 8.00E+03\n", - "348500 4 721.21 -1.22E-05 6.45E+00 3.69E+01 8.00E+03\n", - "349000 8 309.09 -9.82E-05 6.45E+00 3.69E+01 8.00E+03\n", - "349500 11 216.36 -7.16E-03 6.45E+00 3.67E+01 8.00E+03\n", - "350000 9 270.45 -2.99E-04 6.45E+00 3.69E+01 8.00E+03\n", - "350500 9 270.45 -1.33E-04 6.45E+00 3.69E+01 8.00E+03\n", - "351000 9 270.45 -6.45E-04 6.45E+00 3.69E+01 8.00E+03\n", - "351500 7 360.6 -5.93E-05 6.45E+00 3.69E+01 8.00E+03\n", - "352000 7 360.6 -6.03E-05 6.45E+00 3.69E+01 8.00E+03\n", - "352500 12 196.69 -1.47E-03 6.45E+00 3.69E+01 8.00E+03\n", - "353000 10 240.4 -5.76E-04 6.45E+00 3.69E+01 8.00E+03\n", - "353500 6 432.72 -8.18E-05 6.45E+00 3.69E+01 8.00E+03\n", - "354000 7 360.6 -7.90E-04 6.45E+00 3.68E+01 8.00E+03\n", - "354500 5 540.91 -3.43E-04 6.45E+00 3.69E+01 8.00E+03\n", - "355000 9 270.45 -4.18E-04 6.45E+00 3.69E+01 8.00E+03\n", - "355500 8 309.09 -3.60E-04 6.45E+00 3.69E+01 8.00E+03\n", - "356000 10 240.4 -2.00E-03 6.45E+00 3.68E+01 8.00E+03\n", - "356500 10 240.4 -1.21E-04 6.45E+00 3.69E+01 8.00E+03\n", - "357000 13 180.3 -1.44E-03 6.45E+00 3.69E+01 8.00E+03\n", - "357500 6 432.72 -8.20E-05 6.45E+00 3.69E+01 8.00E+03\n", - "358000 8 309.09 -2.81E-03 6.45E+00 3.68E+01 8.00E+03\n", - "358500 11 216.36 -2.43E-04 6.45E+00 3.69E+01 8.00E+03\n", - "359000 10 240.4 -1.23E-03 6.45E+00 3.68E+01 8.00E+03\n", - "359500 12 196.69 -2.09E-03 6.45E+00 3.69E+01 8.00E+03\n", - "360000 12 196.69 -2.79E-03 6.45E+00 3.68E+01 8.00E+03\n", - "360500 10 240.4 -1.04E-02 6.45E+00 3.67E+01 8.00E+03\n", - "361000 10 240.4 -3.06E-02 6.45E+00 3.64E+01 8.00E+03\n", - "361500 11 216.36 -8.05E-04 6.45E+00 3.69E+01 8.00E+03\n", - "362000 7 360.6 -9.80E-02 6.45E+00 3.74E+01 8.00E+03\n", - "362500 9 270.45 -1.13E-04 6.45E+00 3.69E+01 8.00E+03\n", - "363000 11 216.36 -1.62E-04 6.45E+00 3.69E+01 8.00E+03\n", - "363500 10 240.4 -4.93E-02 6.45E+00 3.62E+01 8.00E+03\n", - "364000 11 216.36 2.33E-02 6.45E+00 4.76E+01 8.00E+03\n", - "364500 8 309.09 -3.16E-03 6.45E+00 3.68E+01 8.00E+03\n", - "365000 4 721.21 -2.84E-04 6.45E+00 3.69E+01 8.00E+03\n", - "365500 11 216.36 -8.03E-04 6.45E+00 3.69E+01 8.00E+03\n", - "366000 13 180.3 -6.73E-04 6.45E+00 3.69E+01 8.00E+03\n", - "366500 6 432.72 -2.73E-05 6.45E+00 3.69E+01 8.00E+03\n", - "367000 9 270.45 -4.20E-05 6.45E+00 3.69E+01 8.00E+03\n", - "367500 8 309.09 -4.38E-05 6.45E+00 3.69E+01 8.00E+03\n", - "368000 12 196.69 -6.85E-03 6.45E+00 3.68E+01 8.00E+03\n", - "368500 10 240.4 -8.66E-04 6.45E+00 3.69E+01 8.00E+03\n", - "369000 7 360.6 -6.01E-02 6.45E+00 3.60E+01 8.00E+03\n", - "369500 7 360.6 -6.01E-04 6.45E+00 3.68E+01 8.00E+03\n", - "370000 3 1081.81 -2.52E-05 6.45E+00 3.69E+01 8.00E+03\n", - "370500 6 432.72 -5.82E-05 6.45E+00 3.69E+01 8.00E+03\n", - "371000 11 216.36 -2.71E-02 6.45E+00 3.64E+01 8.00E+03\n", - "371500 9 270.45 -7.47E-05 6.45E+00 3.69E+01 8.00E+03\n", - "372000 11 216.36 -3.79E-02 6.45E+00 3.63E+01 8.00E+03\n", - "372500 6 432.72 -2.22E-05 6.45E+00 3.69E+01 8.00E+03\n", - "373000 9 270.45 -1.08E-04 6.45E+00 3.69E+01 8.00E+03\n", - "373500 9 270.45 -5.53E-05 6.45E+00 3.69E+01 8.00E+03\n", - "374000 5 540.91 -2.07E-05 6.45E+00 3.69E+01 8.00E+03\n", - "374500 9 270.45 -2.76E-04 6.45E+00 3.69E+01 8.00E+03\n", - "375000 4 721.21 -3.37E-06 6.45E+00 3.69E+01 8.00E+03\n", - "375500 6 432.72 -1.02E-04 6.45E+00 3.69E+01 8.00E+03\n", - "376000 8 309.09 -1.66E-04 6.45E+00 3.69E+01 8.00E+03\n", - "376500 6 432.72 -7.73E-05 6.45E+00 3.69E+01 8.00E+03\n", - "377000 12 196.69 -1.14E-03 6.45E+00 3.69E+01 8.00E+03\n", - "377500 9 270.45 -2.39E-04 6.45E+00 3.69E+01 8.00E+03\n", - "378000 10 240.4 -2.47E-04 6.45E+00 3.69E+01 8.00E+03\n", - "378500 9 270.45 -4.02E-04 6.45E+00 3.69E+01 8.00E+03\n", - "379000 12 196.69 -1.51E-02 6.45E+00 3.66E+01 8.00E+03\n", - "379500 9 270.45 -3.17E-03 6.45E+00 3.68E+01 8.00E+03\n", - "380000 9 270.45 -1.72E-02 6.45E+00 3.66E+01 8.00E+03\n", - "380500 10 240.4 -6.27E-04 6.45E+00 3.68E+01 8.00E+03\n", - "381000 16 144.24 -3.65E-03 6.45E+00 3.69E+01 8.00E+03\n", - "381500 9 270.45 -1.17E-04 6.45E+00 3.69E+01 8.00E+03\n", - "382000 8 309.09 -5.47E-05 6.45E+00 3.69E+01 8.00E+03\n", - "382500 9 270.45 -1.59E-04 6.45E+00 3.69E+01 8.00E+03\n", - "383000 5 540.91 -1.46E-05 6.45E+00 3.69E+01 8.00E+03\n", - "383500 6 432.72 -2.64E-05 6.45E+00 3.69E+01 8.00E+03\n", - "384000 6 432.72 -3.92E-04 6.45E+00 3.69E+01 8.00E+03\n", - "384500 6 432.72 -2.13E-04 6.45E+00 3.69E+01 8.00E+03\n", - "385000 11 216.36 -7.99E-05 6.45E+00 3.69E+01 8.00E+03\n", - "385500 14 166.43 -1.34E-04 6.45E+00 3.69E+01 8.00E+03\n", - "386000 11 216.36 -7.30E-04 6.45E+00 3.69E+01 8.00E+03\n", - "386500 12 196.69 -2.26E-03 6.45E+00 3.70E+01 8.00E+03\n", - "387000 10 240.4 -2.11E-02 6.45E+00 3.66E+01 8.00E+03\n", - "387500 4 721.21 -3.24E-06 6.45E+00 3.69E+01 8.00E+03\n", - "388000 6 432.72 -8.41E-05 6.45E+00 3.69E+01 8.00E+03\n", - "388500 8 309.09 -5.38E-03 6.45E+00 3.68E+01 8.00E+03\n", - "389000 13 180.3 -5.00E-04 6.45E+00 3.69E+01 8.00E+03\n", - "389500 11 216.36 -5.65E-04 6.45E+00 3.68E+01 8.00E+03\n", - "390000 12 196.69 -2.94E-03 6.45E+00 3.68E+01 8.00E+03\n", - "390500 10 240.4 -6.06E-04 6.45E+00 3.68E+01 8.00E+03\n", - "391000 12 196.69 -6.50E-04 6.45E+00 3.68E+01 8.00E+03\n", - "391500 8 309.09 -3.85E-05 6.45E+00 3.69E+01 8.00E+03\n", - "392000 10 240.4 -6.57E-04 6.45E+00 3.68E+01 8.00E+03\n", - "392500 15 154.54 -1.66E-03 6.45E+00 3.68E+01 8.00E+03\n", - "393000 7 360.6 -2.28E-04 6.45E+00 3.69E+01 8.00E+03\n", - "393500 9 270.45 -4.41E-04 6.45E+00 3.69E+01 8.00E+03\n", - "394000 8 309.09 -2.20E-04 6.45E+00 3.69E+01 8.00E+03\n", - "394500 6 432.72 -5.01E-04 6.45E+00 3.68E+01 8.00E+03\n", - "395000 3 1081.81 -9.65E-07 6.45E+00 3.69E+01 8.00E+03\n", - "395500 7 360.6 -7.40E-04 6.45E+00 3.69E+01 8.00E+03\n", - "396000 13 180.3 -2.73E-04 6.45E+00 3.69E+01 8.00E+03\n", - "396500 10 240.4 -2.18E-04 6.45E+00 3.69E+01 8.00E+03\n", - "397000 8 309.09 -1.29E-04 6.45E+00 3.69E+01 8.00E+03\n", - "397500 7 360.6 -3.24E-05 6.45E+00 3.69E+01 8.00E+03\n", - "398000 10 240.4 -2.45E-04 6.45E+00 3.69E+01 8.00E+03\n", - "398500 8 309.09 -2.39E-04 6.45E+00 3.69E+01 8.00E+03\n", - "399000 8 309.09 -2.49E-02 6.45E+00 4.05E+01 8.00E+03\n", - "399500 6 432.72 -9.48E-05 6.45E+00 3.69E+01 8.00E+03\n", - "400000 7 360.6 -1.66E-05 6.45E+00 3.69E+01 8.00E+03\n", - "400500 11 216.36 -3.03E-03 6.45E+00 3.68E+01 8.00E+03\n", - "401000 10 240.4 -4.22E-02 6.45E+00 4.15E+01 8.00E+03\n", - "401500 7 360.6 -9.45E-05 6.45E+00 3.69E+01 8.00E+03\n", - "402000 9 270.45 -7.06E-04 6.45E+00 3.68E+01 8.00E+03\n", - "402500 12 196.69 -4.81E-03 6.45E+00 3.68E+01 8.00E+03\n", - "403000 9 270.45 -2.26E-04 6.45E+00 3.69E+01 8.00E+03\n", - "403500 8 309.09 -1.24E-04 6.45E+00 3.69E+01 8.00E+03\n", - "404000 10 240.4 -1.48E-02 6.45E+00 3.66E+01 8.00E+03\n", - "404500 6 432.72 -2.89E-04 6.45E+00 3.69E+01 8.00E+03\n", - "405000 8 309.09 -1.33E-03 6.45E+00 3.68E+01 8.00E+03\n", - "405500 10 240.4 -4.94E-04 6.45E+00 3.69E+01 8.00E+03\n", - "406000 12 196.69 -1.80E-03 6.45E+00 3.68E+01 8.00E+03\n", - "406500 12 196.69 -2.35E-04 6.45E+00 3.69E+01 8.00E+03\n", - "407000 7 360.6 -6.55E-05 6.45E+00 3.69E+01 8.00E+03\n", - "407500 7 360.6 -1.27E-03 6.45E+00 3.68E+01 8.00E+03\n", - "408000 10 240.4 -9.74E-05 6.45E+00 3.69E+01 8.00E+03\n", - "408500 8 309.09 -2.84E-03 6.45E+00 3.68E+01 8.00E+03\n", - "409000 13 180.3 -5.82E-04 6.45E+00 3.68E+01 8.00E+03\n", - "409500 9 270.45 -5.64E-02 6.45E+00 3.61E+01 8.00E+03\n", - "410000 10 240.4 -2.54E-03 6.45E+00 3.68E+01 8.00E+03\n", - "410500 7 360.6 -3.25E-05 6.45E+00 3.69E+01 8.00E+03\n", - "411000 9 270.45 -2.54E-02 6.45E+00 3.65E+01 8.00E+03\n", - "411500 11 216.36 -2.87E-04 6.45E+00 3.69E+01 8.00E+03\n", - "412000 11 216.36 -6.06E-04 6.45E+00 3.69E+01 8.00E+03\n", - "412500 9 270.45 -3.19E-03 6.45E+00 3.68E+01 8.00E+03\n", - "413000 5 540.91 -8.78E-05 6.45E+00 3.69E+01 8.00E+03\n", - "413500 11 216.36 -3.24E-03 6.45E+00 3.68E+01 8.00E+03\n", - "414000 6 432.72 -1.89E-04 6.45E+00 3.69E+01 8.00E+03\n", - "414500 6 432.72 -8.75E-04 6.45E+00 3.68E+01 8.00E+03\n", - "415000 8 309.09 -4.58E-05 6.45E+00 3.69E+01 8.00E+03\n", - "415500 8 309.09 -3.01E-03 6.45E+00 3.68E+01 8.00E+03\n", - "416000 13 180.3 -9.49E-04 6.45E+00 3.69E+01 8.00E+03\n", - "416500 8 309.09 -6.29E-05 6.45E+00 3.69E+01 8.00E+03\n", - "417000 9 270.45 -1.80E-04 6.45E+00 3.69E+01 8.00E+03\n", - "417500 9 270.45 -6.83E-04 6.45E+00 3.68E+01 8.00E+03\n", - "418000 12 196.69 -5.58E-03 6.45E+00 3.78E+01 8.00E+03\n", - "418500 9 270.45 -1.60E-03 6.45E+00 3.68E+01 8.00E+03\n", - "419000 11 216.36 -2.26E-04 6.45E+00 3.69E+01 8.00E+03\n", - "419500 9 270.45 -7.95E-04 6.45E+00 3.68E+01 8.00E+03\n", - "420000 8 309.09 -5.73E-05 6.45E+00 3.69E+01 8.00E+03\n", - "420500 9 270.45 -2.01E-04 6.45E+00 3.69E+01 8.00E+03\n", - "421000 7 360.6 -9.35E-05 6.45E+00 3.69E+01 8.00E+03\n", - "421500 13 180.3 -3.64E-03 6.45E+00 3.68E+01 8.00E+03\n", - "422000 5 540.91 -1.71E-04 6.45E+00 3.69E+01 8.00E+03\n", - "422500 11 216.36 -1.87E-03 6.45E+00 3.68E+01 8.00E+03\n", - "423000 10 240.4 -3.90E-02 6.45E+00 4.17E+01 8.00E+03\n", - "423500 7 360.6 -5.82E-05 6.45E+00 3.69E+01 8.00E+03\n", - "424000 9 270.45 -1.37E-04 6.45E+00 3.69E+01 8.00E+03\n", - "424500 11 216.36 -9.17E-04 6.45E+00 3.68E+01 8.00E+03\n", - "425000 5 540.91 -1.08E-04 6.45E+00 3.69E+01 8.00E+03\n", - "425500 11 216.36 -4.44E-03 6.45E+00 3.68E+01 8.00E+03\n", - "426000 13 180.3 -1.32E-02 6.45E+00 3.66E+01 8.00E+03\n", - "426500 6 432.72 -1.07E-05 6.45E+00 3.69E+01 8.00E+03\n", - "427000 12 196.69 -1.01E-03 6.45E+00 3.68E+01 8.00E+03\n", - "427500 9 270.45 -5.84E-05 6.45E+00 3.69E+01 8.00E+03\n", - "428000 12 196.69 -9.52E-04 6.45E+00 3.68E+01 8.00E+03\n", - "428500 16 144.24 -1.64E-03 6.45E+00 3.69E+01 8.00E+03\n", - "429000 8 309.09 -2.62E-04 6.45E+00 3.69E+01 8.00E+03\n", - "429500 10 240.4 -9.08E-05 6.45E+00 3.69E+01 8.00E+03\n", - "430000 9 270.45 -4.61E-04 6.45E+00 3.69E+01 8.00E+03\n", - "430500 8 309.09 -1.05E-04 6.45E+00 3.69E+01 8.00E+03\n", - "431000 11 216.36 -1.15E-04 6.45E+00 3.69E+01 8.00E+03\n", - "431500 6 432.72 -7.44E-06 6.45E+00 3.69E+01 8.00E+03\n", - "432000 7 360.6 -4.55E-05 6.45E+00 3.69E+01 8.00E+03\n", - "432500 8 309.09 -5.95E-02 6.45E+00 4.05E+01 8.00E+03\n", - "433000 13 180.3 -1.98E-02 6.45E+00 3.65E+01 8.00E+03\n", - "433500 12 196.69 -1.99E-03 6.45E+00 3.68E+01 8.00E+03\n", - "434000 10 240.4 -6.93E-04 6.45E+00 3.68E+01 8.00E+03\n", - "434500 7 360.6 -3.33E-03 6.45E+00 3.71E+01 8.00E+03\n", - "435000 2 2163.62 -5.07E-07 6.45E+00 3.69E+01 8.00E+03\n", - "435500 12 196.69 -2.41E-03 6.45E+00 3.69E+01 8.00E+03\n", - "436000 14 166.43 -4.43E-03 6.45E+00 3.68E+01 8.00E+03\n", - "436500 10 240.4 -3.90E-05 6.45E+00 3.69E+01 8.00E+03\n", - "437000 16 144.24 -9.91E-04 6.45E+00 3.68E+01 8.00E+03\n", - "437500 8 309.09 -3.57E-04 6.45E+00 3.69E+01 8.00E+03\n", - "438000 8 309.09 -9.16E-05 6.45E+00 3.69E+01 8.00E+03\n", - "438500 3 1081.81 -2.42E-06 6.45E+00 3.69E+01 8.00E+03\n", - "439000 10 240.4 -8.82E-04 6.45E+00 3.68E+01 8.00E+03\n", - "439500 6 432.72 -4.92E-05 6.45E+00 3.69E+01 8.00E+03\n", - "440000 6 432.72 -8.22E-05 6.45E+00 3.69E+01 8.00E+03\n", - "440500 10 240.4 -3.16E-04 6.45E+00 3.69E+01 8.00E+03\n", - "441000 10 240.4 -2.24E-03 6.45E+00 3.68E+01 8.00E+03\n", - "441500 8 309.09 -3.11E-02 6.45E+00 3.64E+01 8.00E+03\n", - "442000 7 360.6 -1.18E-03 6.45E+00 3.69E+01 8.00E+03\n", - "442500 6 432.72 -3.45E-04 6.45E+00 3.69E+01 8.00E+03\n", - "443000 18 127.27 -1.86E-03 6.45E+00 3.68E+01 8.00E+03\n", - "443500 11 216.36 -4.98E-04 6.45E+00 3.69E+01 8.00E+03\n", - "444000 12 196.69 -2.55E-02 6.45E+00 3.87E+01 8.00E+03\n", - "444500 5 540.91 -5.60E-05 6.45E+00 3.69E+01 8.00E+03\n", - "445000 6 432.72 -3.95E-05 6.45E+00 3.69E+01 8.00E+03\n", - "445500 8 309.09 -6.27E-04 6.45E+00 3.69E+01 8.00E+03\n", - "446000 11 216.36 -8.79E-04 6.45E+00 3.68E+01 8.00E+03\n", - "446500 9 270.45 -2.92E-03 6.45E+00 3.70E+01 8.00E+03\n", - "447000 10 240.4 -4.08E-04 6.45E+00 3.69E+01 8.00E+03\n", - "447500 10 240.4 -2.03E-04 6.45E+00 3.69E+01 8.00E+03\n", - "448000 8 309.09 -6.39E-05 6.45E+00 3.69E+01 8.00E+03\n", - "448500 9 270.45 -1.26E-04 6.45E+00 3.69E+01 8.00E+03\n", - "449000 12 196.69 -4.74E-04 6.45E+00 3.69E+01 8.00E+03\n", - "449500 9 270.45 -7.47E-04 6.45E+00 3.68E+01 8.00E+03\n", - "450000 6 432.72 -3.57E-05 6.45E+00 3.69E+01 8.00E+03\n", - "450500 4 721.21 -5.28E-05 6.45E+00 3.69E+01 8.00E+03\n", - "451000 4 721.21 -4.50E-06 6.45E+00 3.69E+01 8.00E+03\n", - "451500 11 216.36 -2.57E-02 6.45E+00 3.64E+01 8.00E+03\n", - "452000 8 309.09 -8.20E-04 6.45E+00 3.69E+01 8.00E+03\n", - "452500 5 540.91 -3.96E-05 6.45E+00 3.69E+01 8.00E+03\n", - "453000 12 196.69 -2.35E-03 6.45E+00 3.68E+01 8.00E+03\n", - "453500 7 360.6 -6.98E-04 6.45E+00 3.68E+01 8.00E+03\n", - "454000 10 240.4 -1.81E-04 6.45E+00 3.69E+01 8.00E+03\n", - "454500 13 180.3 -1.24E-02 6.45E+00 3.66E+01 8.00E+03\n", - "455000 9 270.45 -1.47E-04 6.45E+00 3.69E+01 8.00E+03\n", - "455500 11 216.36 -1.57E-02 6.45E+00 3.66E+01 8.00E+03\n", - "456000 6 432.72 -1.76E-05 6.45E+00 3.69E+01 8.00E+03\n", - "456500 7 360.6 -5.15E-04 6.45E+00 3.68E+01 8.00E+03\n", - "457000 8 309.09 -5.97E-03 6.45E+00 3.68E+01 8.00E+03\n", - "457500 9 270.45 -1.20E-02 6.45E+00 3.69E+01 8.00E+03\n", - "458000 11 216.36 -6.01E-04 6.45E+00 3.69E+01 8.00E+03\n", - "458500 11 216.36 -2.06E-04 6.45E+00 3.69E+01 8.00E+03\n", - "459000 14 166.43 -1.20E-02 6.45E+00 3.67E+01 8.00E+03\n", - "459500 12 196.69 -7.34E-04 6.45E+00 3.68E+01 8.00E+03\n", - "460000 10 240.4 -1.92E-04 6.45E+00 3.69E+01 8.00E+03\n", - "460500 8 309.09 -2.25E-03 6.45E+00 3.71E+01 8.00E+03\n", - "461000 9 270.45 -4.93E-02 6.45E+00 3.61E+01 8.00E+03\n", - "461500 15 154.54 -1.13E-03 6.45E+00 3.68E+01 8.00E+03\n", - "462000 6 432.72 -2.07E-02 6.45E+00 3.65E+01 8.00E+03\n", - "462500 11 216.36 -2.53E-04 6.45E+00 3.69E+01 8.00E+03\n", - "463000 10 240.4 -6.51E-03 6.45E+00 3.67E+01 8.00E+03\n", - "463500 12 196.69 -1.76E-02 6.45E+00 3.66E+01 8.00E+03\n", - "464000 7 360.6 -9.53E-04 6.45E+00 3.69E+01 8.00E+03\n", - "464500 13 180.3 -3.13E-04 6.45E+00 3.69E+01 8.00E+03\n", - "465000 11 216.36 -1.18E-02 6.45E+00 3.66E+01 8.00E+03\n", - "465500 10 240.4 -1.48E-04 6.45E+00 3.69E+01 8.00E+03\n", - "466000 5 540.91 -1.45E-04 6.45E+00 3.69E+01 8.00E+03\n", - "466500 12 196.69 -3.77E-04 6.45E+00 3.69E+01 8.00E+03\n", - "467000 10 240.4 -4.71E-02 6.45E+00 3.62E+01 8.00E+03\n", - "467500 12 196.69 -1.28E-03 6.45E+00 3.68E+01 8.00E+03\n", - "468000 10 240.4 -4.15E-04 6.45E+00 3.69E+01 8.00E+03\n", - "468500 11 216.36 -1.12E-02 6.45E+00 3.68E+01 8.00E+03\n", - "469000 10 240.4 -3.16E-02 6.45E+00 3.64E+01 8.00E+03\n", - "469500 11 216.36 -3.84E-03 6.45E+00 3.68E+01 8.00E+03\n", - "470000 9 270.45 -1.10E-03 6.45E+00 3.68E+01 8.00E+03\n", - "470500 13 180.3 -1.02E-03 6.45E+00 3.68E+01 8.00E+03\n", - "471000 5 540.91 -1.20E-05 6.45E+00 3.69E+01 8.00E+03\n", - "471500 9 270.45 -1.58E-04 6.45E+00 3.69E+01 8.00E+03\n", - "472000 7 360.6 -2.14E-02 6.45E+00 3.65E+01 8.00E+03\n", - "472500 8 309.09 -1.08E-04 6.45E+00 3.69E+01 8.00E+03\n", - "473000 14 166.43 -4.44E-03 6.45E+00 3.68E+01 8.00E+03\n", - "473500 8 309.09 -1.56E-03 6.45E+00 3.68E+01 8.00E+03\n", - "474000 11 216.36 -2.44E-04 6.45E+00 3.69E+01 8.00E+03\n", - "474500 15 154.54 -5.15E-04 6.45E+00 3.69E+01 8.00E+03\n", - "475000 10 240.4 -3.49E-04 6.45E+00 3.69E+01 8.00E+03\n", - "475500 8 309.09 -5.08E-05 6.45E+00 3.69E+01 8.00E+03\n", - "476000 15 154.54 -1.89E-03 6.45E+00 3.69E+01 8.00E+03\n", - "476500 14 166.43 -7.80E-02 6.45E+00 3.99E+01 8.00E+03\n", - "477000 5 540.91 -2.97E-04 6.45E+00 3.69E+01 8.00E+03\n", - "477500 9 270.45 -3.83E-04 6.45E+00 3.69E+01 8.00E+03\n", - "478000 6 432.72 -5.89E-05 6.45E+00 3.69E+01 8.00E+03\n", - "478500 11 216.36 -4.27E-04 6.45E+00 3.69E+01 8.00E+03\n", - "479000 9 270.45 -1.72E-02 6.45E+00 3.93E+01 8.00E+03\n", - "479500 11 216.36 -1.42E-03 6.45E+00 3.69E+01 8.00E+03\n", - "480000 12 196.69 -9.43E-04 6.45E+00 3.68E+01 8.00E+03\n", - "480500 12 196.69 -3.76E-03 6.45E+00 3.68E+01 8.00E+03\n", - "481000 9 270.45 -9.85E-04 6.45E+00 3.68E+01 8.00E+03\n", - "481500 9 270.45 -2.56E-02 6.45E+00 3.65E+01 8.00E+03\n", - "482000 13 180.3 -9.30E-02 6.45E+00 3.83E+01 8.00E+03\n", - "482500 11 216.36 -1.61E-01 6.45E+00 3.79E+01 8.00E+03\n", - "483000 12 196.69 -8.31E-02 6.45E+00 3.89E+01 8.00E+03\n", - "483500 12 196.69 -5.02E-04 6.45E+00 3.69E+01 8.00E+03\n", - "484000 11 216.36 -8.29E-04 6.45E+00 3.68E+01 8.00E+03\n", - "484500 3 1081.81 -5.79E-07 6.45E+00 3.69E+01 8.00E+03\n", - "485000 5 540.91 -2.32E-04 6.45E+00 3.69E+01 8.00E+03\n", - "485500 13 180.3 -1.84E-03 6.45E+00 3.68E+01 8.00E+03\n", - "486000 15 154.54 -7.44E-02 6.45E+00 4.85E+01 8.00E+03\n", - "486500 14 166.43 -2.30E-02 6.45E+00 3.65E+01 8.00E+03\n", - "487000 7 360.6 -6.98E-05 6.45E+00 3.69E+01 8.00E+03\n", - "487500 13 180.3 -3.72E-03 6.45E+00 3.68E+01 8.00E+03\n", - "488000 11 216.36 -2.30E-04 6.45E+00 3.69E+01 8.00E+03\n", - "488500 8 309.09 -7.39E-04 6.45E+00 3.69E+01 8.00E+03\n", - "489000 7 360.6 -1.18E-04 6.45E+00 3.69E+01 8.00E+03\n", - "489500 8 309.09 -4.36E-03 6.45E+00 3.68E+01 8.00E+03\n", - "490000 14 166.43 -1.11E-01 6.45E+00 3.71E+01 8.00E+03\n", - "490500 11 216.36 -6.20E-03 6.45E+00 3.68E+01 8.00E+03\n", - "491000 17 135.23 -1.61E-02 6.45E+00 3.66E+01 8.00E+03\n", - "491500 9 270.45 -1.66E-03 6.45E+00 3.68E+01 8.00E+03\n", - "492000 7 360.6 -2.40E-05 6.45E+00 3.69E+01 8.00E+03\n", - "492500 6 432.72 -3.67E-05 6.45E+00 3.69E+01 8.00E+03\n", - "493000 16 144.24 -2.56E-03 6.45E+00 3.68E+01 8.00E+03\n", - "493500 6 432.72 -1.53E-04 6.45E+00 3.69E+01 8.00E+03\n", - "494000 9 270.45 -4.25E-04 6.45E+00 3.69E+01 8.00E+03\n", - "494500 9 270.45 -1.31E-03 6.45E+00 3.69E+01 8.00E+03\n", - "495000 10 240.4 -2.35E-03 6.45E+00 3.68E+01 8.00E+03\n", - "495500 5 540.91 -8.11E-05 6.45E+00 3.69E+01 8.00E+03\n", - "496000 15 154.54 -3.27E-02 6.45E+00 3.64E+01 8.00E+03\n", - "496500 12 196.69 1.30E-01 6.45E+00 5.00E+01 8.00E+03\n", - "497000 14 166.43 -1.16E-03 6.45E+00 3.69E+01 8.00E+03\n", - "497500 8 309.09 -1.04E-04 6.45E+00 3.69E+01 8.00E+03\n", - "498000 10 240.4 -9.15E-04 6.45E+00 3.68E+01 8.00E+03\n", - "498500 13 180.3 -8.03E-04 6.45E+00 3.68E+01 8.00E+03\n", - "499000 12 196.69 -5.87E-04 6.45E+00 3.69E+01 8.00E+03\n", - "499500 17 135.23 -6.50E-04 6.45E+00 3.69E+01 8.00E+03\n", - "500000 9 270.45 -2.23E-03 6.45E+00 3.68E+01 8.00E+03\n", - "500500 14 166.43 1.60E-01 6.45E+00 -2.28E+02 8.00E+03\n", - "501000 13 180.3 -1.50E-04 6.45E+00 3.69E+01 8.00E+03\n", - "501500 6 432.72 -1.43E-04 6.45E+00 3.69E+01 8.00E+03\n", - "502000 10 240.4 -2.65E-03 6.45E+00 3.68E+01 8.00E+03\n", - "502500 10 240.4 -4.10E-04 6.45E+00 3.69E+01 8.00E+03\n", - "503000 13 180.3 -1.50E-03 6.45E+00 3.69E+01 8.00E+03\n", - "503500 11 216.36 -6.61E-04 6.45E+00 3.69E+01 8.00E+03\n", - "504000 7 360.6 -4.20E-03 6.45E+00 3.68E+01 8.00E+03\n", - "504500 15 154.54 5.73E-02 6.45E+00 4.66E+01 8.00E+03\n", - "505000 9 270.45 -2.48E-03 6.45E+00 3.69E+01 8.00E+03\n", - "505500 11 216.36 -7.07E-04 6.45E+00 3.69E+01 8.00E+03\n", - "506000 7 360.6 -5.29E-05 6.45E+00 3.69E+01 8.00E+03\n", - "506500 10 240.4 -3.02E-04 6.45E+00 3.69E+01 8.00E+03\n", - "507000 6 432.72 -5.12E-03 6.45E+00 3.68E+01 8.00E+03\n", - "507500 6 432.72 -1.63E-05 6.45E+00 3.69E+01 8.00E+03\n", - "508000 10 240.4 -7.46E-03 6.45E+00 3.67E+01 8.00E+03\n", - "508500 8 309.09 -2.16E-04 6.45E+00 3.69E+01 8.00E+03\n", - "509000 7 360.6 -9.21E-03 6.45E+00 3.67E+01 8.00E+03\n", - "509500 5 540.91 -6.26E-05 6.45E+00 3.69E+01 8.00E+03\n", - "510000 8 309.09 -2.90E-03 6.45E+00 3.68E+01 8.00E+03\n", - "510500 14 166.43 -3.41E-02 6.45E+00 3.63E+01 8.00E+03\n", - "511000 7 360.6 -3.03E-05 6.45E+00 3.69E+01 8.00E+03\n", - "511500 13 180.3 -4.23E-03 6.45E+00 3.68E+01 8.00E+03\n", - "512000 8 309.09 -1.62E-03 6.45E+00 3.68E+01 8.00E+03\n", - "512500 5 540.91 -2.36E-05 6.45E+00 3.69E+01 8.00E+03\n", - "513000 5 540.91 -1.51E-05 6.45E+00 3.69E+01 8.00E+03\n", - "513500 13 180.3 -1.45E-03 6.45E+00 3.69E+01 8.00E+03\n", - "514000 7 360.6 -3.42E-05 6.45E+00 3.69E+01 8.00E+03\n", - "514500 10 240.4 -2.89E-03 6.45E+00 3.68E+01 8.00E+03\n", - "515000 13 180.3 -1.39E-04 6.45E+00 3.69E+01 8.00E+03\n", - "515500 14 166.43 -1.06E-03 6.45E+00 3.68E+01 8.00E+03\n", - "516000 9 270.45 -1.81E-04 6.45E+00 3.69E+01 8.00E+03\n", - "516500 12 196.69 -4.96E-02 6.45E+00 3.61E+01 8.00E+03\n", - "517000 10 240.4 -3.82E-02 6.45E+00 4.17E+01 8.00E+03\n", - "517500 6 432.72 -8.92E-05 6.45E+00 3.69E+01 8.00E+03\n", - "518000 6 432.72 -7.98E-03 6.45E+00 3.67E+01 8.00E+03\n", - "518500 11 216.36 -1.16E-01 6.45E+00 4.32E+01 8.00E+03\n", - "519000 4 721.21 -1.67E-05 6.45E+00 3.69E+01 8.00E+03\n", - "519500 9 270.45 -2.10E-03 6.45E+00 3.68E+01 8.00E+03\n", - "520000 10 240.4 -2.27E-03 6.45E+00 3.69E+01 8.00E+03\n", - "520500 8 309.09 -2.10E-04 6.45E+00 3.69E+01 8.00E+03\n", - "521000 6 432.72 -2.20E-04 6.45E+00 3.69E+01 8.00E+03\n", - "521500 18 127.27 -1.03E-01 6.45E+00 3.65E+01 8.00E+03\n", - "522000 13 180.3 -1.08E-02 6.45E+00 3.67E+01 8.00E+03\n", - "522500 9 270.45 -4.10E-04 6.45E+00 3.69E+01 8.00E+03\n", - "523000 11 216.36 -1.11E-03 6.45E+00 3.68E+01 8.00E+03\n", - "523500 14 166.43 -4.94E-02 6.45E+00 3.61E+01 8.00E+03\n", - "524000 7 360.6 -3.01E-04 6.45E+00 3.69E+01 8.00E+03\n", - "524500 12 196.69 -4.62E-02 6.45E+00 4.24E+01 8.00E+03\n", - "525000 8 309.09 -2.21E-04 6.45E+00 3.69E+01 8.00E+03\n", - "525500 9 270.45 -2.14E-03 6.45E+00 3.68E+01 8.00E+03\n", - "526000 13 180.3 -8.11E-03 6.45E+00 3.67E+01 8.00E+03\n", - "526500 8 309.09 -1.96E-04 6.45E+00 3.69E+01 8.00E+03\n", - "527000 11 216.36 -7.58E-04 6.45E+00 3.69E+01 8.00E+03\n", - "527500 5 540.91 -1.86E-05 6.45E+00 3.69E+01 8.00E+03\n", - "528000 10 240.4 -8.51E-04 6.45E+00 3.68E+01 8.00E+03\n", - "528500 9 270.45 -1.55E-04 6.45E+00 3.69E+01 8.00E+03\n", - "529000 3 1081.81 -3.63E-06 6.45E+00 3.69E+01 8.00E+03\n", - "529500 9 270.45 7.75E-02 6.45E+00 5.02E+01 8.00E+03\n", - "530000 6 432.72 -3.20E-04 6.45E+00 3.69E+01 8.00E+03\n", - "530500 12 196.69 -5.49E-04 6.45E+00 3.69E+01 8.00E+03\n", - "531000 7 360.6 -1.22E-04 6.45E+00 3.69E+01 8.00E+03\n", - "531500 18 127.27 -5.77E-02 6.45E+00 3.60E+01 8.00E+03\n", - "532000 7 360.6 -1.69E-04 6.45E+00 3.69E+01 8.00E+03\n", - "532500 15 154.54 -3.65E-02 6.45E+00 3.63E+01 8.00E+03\n", - "533000 10 240.4 -3.97E-03 6.45E+00 3.68E+01 8.00E+03\n", - "533500 10 240.4 -5.48E-04 6.45E+00 3.68E+01 8.00E+03\n", - "534000 21 108.18 -8.96E-02 6.45E+00 3.86E+01 8.00E+03\n", - "534500 15 154.54 -8.56E-03 6.45E+00 3.73E+01 8.00E+03\n", - "535000 8 309.09 -6.00E-04 6.45E+00 3.68E+01 8.00E+03\n", - "535500 10 240.4 -2.15E-03 6.45E+00 3.68E+01 8.00E+03\n", - "536000 10 240.4 -1.07E-03 6.45E+00 3.68E+01 8.00E+03\n", - "536500 12 196.69 -1.17E-03 6.45E+00 3.68E+01 8.00E+03\n", - "537000 6 432.72 -3.31E-04 6.45E+00 3.69E+01 8.00E+03\n", - "537500 11 216.36 -1.69E-03 6.45E+00 3.68E+01 8.00E+03\n", - "538000 14 166.43 -6.71E-03 6.45E+00 3.69E+01 8.00E+03\n", - "538500 9 270.45 -2.09E-04 6.45E+00 3.69E+01 8.00E+03\n", - "539000 7 360.6 -7.13E-04 6.45E+00 3.68E+01 8.00E+03\n", - "539500 17 135.23 -9.05E-03 6.45E+00 3.69E+01 8.00E+03\n", - "540000 8 309.09 -2.84E-04 6.45E+00 3.69E+01 8.00E+03\n", - "540500 14 166.43 -5.45E-04 6.45E+00 3.69E+01 8.00E+03\n", - "541000 9 270.45 -1.25E-03 6.45E+00 3.68E+01 8.00E+03\n", - "541500 5 540.91 -2.93E-05 6.45E+00 3.69E+01 8.00E+03\n", - "542000 8 309.09 -4.26E-04 6.45E+00 3.69E+01 8.00E+03\n", - "542500 7 360.6 -5.83E-05 6.45E+00 3.69E+01 8.00E+03\n", - "543000 14 166.43 -7.26E-02 6.45E+00 3.59E+01 8.00E+03\n", - "543500 14 166.43 -5.11E-03 6.45E+00 3.73E+01 8.00E+03\n", - "544000 8 309.09 -4.00E-03 6.45E+00 3.70E+01 8.00E+03\n", - "544500 9 270.45 -1.47E-04 6.45E+00 3.69E+01 8.00E+03\n", - "545000 15 154.54 -1.46E-03 6.45E+00 3.69E+01 8.00E+03\n", - "545500 11 216.36 -4.68E-04 6.45E+00 3.69E+01 8.00E+03\n", - "546000 9 270.45 -3.04E-04 6.45E+00 3.69E+01 8.00E+03\n", - "546500 5 540.91 -3.05E-05 6.45E+00 3.69E+01 8.00E+03\n", - "547000 9 270.45 -5.11E-04 6.45E+00 3.69E+01 8.00E+03\n", - "547500 11 216.36 -1.85E-03 6.45E+00 3.69E+01 8.00E+03\n", - "548000 10 240.4 -3.76E-04 6.45E+00 3.69E+01 8.00E+03\n", - "548500 7 360.6 -4.33E-05 6.45E+00 3.69E+01 8.00E+03\n", - "549000 9 270.45 -9.40E-03 6.45E+00 3.67E+01 8.00E+03\n", - "549500 8 309.09 -1.92E-03 6.45E+00 3.68E+01 8.00E+03\n", - "550000 7 360.6 -3.00E-04 6.45E+00 3.69E+01 8.00E+03\n", - "550500 8 309.09 -1.10E-02 6.45E+00 3.67E+01 8.00E+03\n", - "551000 8 309.09 -5.36E-05 6.45E+00 3.69E+01 8.00E+03\n", - "551500 8 309.09 -2.44E-04 6.45E+00 3.69E+01 8.00E+03\n", - "552000 10 240.4 -8.04E-03 6.45E+00 3.67E+01 8.00E+03\n", - "552500 3 1081.81 -1.22E-06 6.45E+00 3.69E+01 8.00E+03\n", - "553000 5 540.91 -5.10E-04 6.45E+00 3.68E+01 8.00E+03\n", - "553500 7 360.6 -2.10E-03 6.45E+00 3.68E+01 8.00E+03\n", - "554000 9 270.45 -5.52E-05 6.45E+00 3.69E+01 8.00E+03\n", - "554500 6 432.72 -8.83E-06 6.45E+00 3.69E+01 8.00E+03\n", - "555000 11 216.36 -5.36E-04 6.45E+00 3.68E+01 8.00E+03\n", - "555500 8 309.09 -3.36E-04 6.45E+00 3.69E+01 8.00E+03\n", - "556000 8 309.09 -1.38E-04 6.45E+00 3.69E+01 8.00E+03\n", - "556500 6 432.72 -6.87E-04 6.45E+00 3.68E+01 8.00E+03\n", - "557000 10 240.4 -9.21E-03 6.45E+00 3.67E+01 8.00E+03\n", - "557500 8 309.09 -3.17E-04 6.45E+00 3.69E+01 8.00E+03\n", - "558000 7 360.6 -5.32E-05 6.45E+00 3.69E+01 8.00E+03\n", - "558500 12 196.69 -3.11E-02 6.45E+00 3.86E+01 8.00E+03\n", - "559000 14 166.43 -2.41E-03 6.45E+00 3.68E+01 8.00E+03\n", - "559500 12 196.69 -7.75E-04 6.45E+00 3.68E+01 8.00E+03\n", - "560000 11 216.36 -1.21E-03 6.45E+00 3.68E+01 8.00E+03\n", - "560500 8 309.09 -6.15E-05 6.45E+00 3.69E+01 8.00E+03\n", - "561000 11 216.36 -8.75E-04 6.45E+00 3.68E+01 8.00E+03\n", - "561500 13 180.3 -5.01E-02 6.45E+00 4.10E+01 8.00E+03\n", - "562000 7 360.6 -5.77E-04 6.45E+00 3.69E+01 8.00E+03\n", - "562500 11 216.36 -1.02E-01 6.45E+00 3.75E+01 8.00E+03\n", - "563000 7 360.6 -5.91E-05 6.45E+00 3.69E+01 8.00E+03\n", - "563500 13 180.3 -3.56E-04 6.45E+00 3.69E+01 8.00E+03\n", - "564000 6 432.72 -5.43E-05 6.45E+00 3.69E+01 8.00E+03\n", - "564500 7 360.6 -1.55E-04 6.45E+00 3.69E+01 8.00E+03\n", - "565000 10 240.4 -2.21E-04 6.45E+00 3.69E+01 8.00E+03\n", - "565500 9 270.45 -2.09E-04 6.45E+00 3.69E+01 8.00E+03\n", - "566000 8 309.09 -1.33E-04 6.45E+00 3.69E+01 8.00E+03\n", - "566500 5 540.91 -1.20E-05 6.45E+00 3.69E+01 8.00E+03\n", - "567000 8 309.09 -3.15E-03 6.45E+00 3.68E+01 8.00E+03\n", - "567500 5 540.91 -4.55E-03 6.45E+00 3.68E+01 8.00E+03\n", - "568000 12 196.69 -1.55E-03 6.45E+00 3.70E+01 8.00E+03\n", - "568500 12 196.69 -3.76E-03 6.45E+00 3.68E+01 8.00E+03\n", - "569000 16 144.24 -1.83E-02 6.45E+00 3.65E+01 8.00E+03\n", - "569500 8 309.09 -1.12E-03 6.45E+00 3.68E+01 8.00E+03\n", - "570000 13 180.3 -6.34E-04 6.45E+00 3.69E+01 8.00E+03\n", - "570500 15 154.54 -8.80E-04 6.45E+00 3.69E+01 8.00E+03\n", - "571000 11 216.36 -8.98E-04 6.45E+00 3.69E+01 8.00E+03\n", - "571500 11 216.36 -2.18E-03 6.45E+00 3.68E+01 8.00E+03\n", - "572000 9 270.45 -2.82E-03 6.45E+00 3.68E+01 8.00E+03\n", - "572500 9 270.45 -1.70E-04 6.45E+00 3.69E+01 8.00E+03\n", - "573000 9 270.45 -2.18E-03 6.45E+00 3.68E+01 8.00E+03\n", - "573500 9 270.45 -5.70E-04 6.45E+00 3.68E+01 8.00E+03\n", - "574000 7 360.6 -2.47E-03 6.45E+00 3.68E+01 8.00E+03\n", - "574500 8 309.09 -5.70E-04 6.45E+00 3.68E+01 8.00E+03\n", - "575000 15 154.54 -3.70E-03 6.45E+00 3.68E+01 8.00E+03\n", - "575500 13 180.3 -1.38E-03 6.45E+00 3.68E+01 8.00E+03\n", - "576000 20 113.87 -2.11E-03 6.45E+00 3.68E+01 8.00E+03\n", - "576500 20 113.87 -7.10E-04 6.45E+00 3.69E+01 8.00E+03\n", - "577000 6 432.72 -8.02E-05 6.45E+00 3.69E+01 8.00E+03\n", - "577500 10 240.4 -7.76E-03 6.45E+00 3.69E+01 8.00E+03\n", - "578000 6 432.72 -1.63E-05 6.45E+00 3.69E+01 8.00E+03\n", - "578500 14 166.43 -1.41E-02 6.45E+00 3.76E+01 8.00E+03\n", - "579000 10 240.4 -3.46E-04 6.45E+00 3.69E+01 8.00E+03\n", - "579500 13 180.3 -3.80E-03 6.45E+00 3.68E+01 8.00E+03\n", - "580000 10 240.4 -2.70E-02 6.45E+00 3.71E+01 8.00E+03\n", - "580500 7 360.6 -1.08E-04 6.45E+00 3.69E+01 8.00E+03\n", - "581000 6 432.72 -3.55E-05 6.45E+00 3.69E+01 8.00E+03\n", - "581500 9 270.45 -2.79E-02 6.45E+00 3.64E+01 8.00E+03\n", - "582000 9 270.45 -5.45E-04 6.45E+00 3.68E+01 8.00E+03\n", - "582500 10 240.4 -4.38E-03 6.45E+00 3.74E+01 8.00E+03\n", - "583000 11 216.36 -3.41E-04 6.45E+00 3.69E+01 8.00E+03\n", - "583500 8 309.09 -1.09E-04 6.45E+00 3.69E+01 8.00E+03\n", - "584000 10 240.4 -1.56E-04 6.45E+00 3.69E+01 8.00E+03\n", - "584500 8 309.09 -4.25E-05 6.45E+00 3.69E+01 8.00E+03\n", - "585000 8 309.09 -1.13E-04 6.45E+00 3.69E+01 8.00E+03\n", - "585500 8 309.09 -3.27E-03 6.45E+00 3.72E+01 8.00E+03\n", - "586000 12 196.69 -2.26E-02 6.45E+00 3.65E+01 8.00E+03\n", - "586500 9 270.45 -8.96E-05 6.45E+00 3.69E+01 8.00E+03\n", - "587000 6 432.72 -2.51E-04 6.45E+00 3.69E+01 8.00E+03\n", - "587500 12 196.69 -5.40E-03 6.45E+00 3.74E+01 8.00E+03\n", - "588000 7 360.6 -6.49E-04 6.45E+00 3.68E+01 8.00E+03\n", - "588500 8 309.09 -2.38E-05 6.45E+00 3.69E+01 8.00E+03\n", - "589000 8 309.09 -1.42E-04 6.45E+00 3.69E+01 8.00E+03\n", - "589500 6 432.72 -3.45E-05 6.45E+00 3.69E+01 8.00E+03\n", - "590000 8 309.09 -3.96E-05 6.45E+00 3.69E+01 8.00E+03\n", - "590500 14 166.43 -2.59E-03 6.45E+00 3.68E+01 8.00E+03\n", - "591000 7 360.6 -7.01E-05 6.45E+00 3.69E+01 8.00E+03\n", - "591500 11 216.36 -7.04E-02 6.45E+00 3.98E+01 8.00E+03\n", - "592000 9 270.45 -1.46E-03 6.45E+00 3.68E+01 8.00E+03\n", - "592500 8 309.09 -2.14E-04 6.45E+00 3.69E+01 8.00E+03\n", - "593000 8 309.09 -1.12E-03 6.45E+00 3.69E+01 8.00E+03\n", - "593500 7 360.6 -3.01E-05 6.45E+00 3.69E+01 8.00E+03\n", - "594000 4 721.21 -5.70E-06 6.45E+00 3.69E+01 8.00E+03\n", - "594500 11 216.36 -1.57E-04 6.45E+00 3.69E+01 8.00E+03\n", - "595000 8 309.09 -6.82E-04 6.45E+00 3.68E+01 8.00E+03\n", - "595500 9 270.45 -4.96E-04 6.45E+00 3.69E+01 8.00E+03\n", - "596000 7 360.6 -4.20E-03 6.45E+00 3.68E+01 8.00E+03\n" - ] - }, - { - "ename": "KeyboardInterrupt", - "evalue": "", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[4], line 14\u001b[0m\n\u001b[1;32m 2\u001b[0m sys\u001b[39m.\u001b[39mpath\u001b[39m.\u001b[39mappend(\u001b[39m\"\u001b[39m\u001b[39m../../molecular-simulation/\u001b[39m\u001b[39m\"\u001b[39m)\n\u001b[1;32m 3\u001b[0m \u001b[39mfrom\u001b[39;00m \u001b[39mmain\u001b[39;00m \u001b[39mimport\u001b[39;00m MonteCarlo\n\u001b[1;32m 5\u001b[0m MonteCarlo(number_atoms\u001b[39m=\u001b[39;49m\u001b[39m25\u001b[39;49m,\n\u001b[1;32m 6\u001b[0m Lx\u001b[39m=\u001b[39;49m\u001b[39m20\u001b[39;49m,\n\u001b[1;32m 7\u001b[0m maximum_steps\u001b[39m=\u001b[39;49m\u001b[39m2000000\u001b[39;49m,\n\u001b[1;32m 8\u001b[0m dimensions\u001b[39m=\u001b[39;49m \u001b[39m3\u001b[39;49m,\n\u001b[1;32m 9\u001b[0m desired_temperature\u001b[39m=\u001b[39;49m\u001b[39m300\u001b[39;49m,\n\u001b[1;32m 10\u001b[0m seed\u001b[39m=\u001b[39;49m\u001b[39m41982\u001b[39;49m,\n\u001b[1;32m 11\u001b[0m thermo\u001b[39m=\u001b[39;49m\u001b[39m500\u001b[39;49m,\n\u001b[1;32m 12\u001b[0m dump\u001b[39m=\u001b[39;49m\u001b[39m500\u001b[39;49m,\n\u001b[1;32m 13\u001b[0m mu\u001b[39m=\u001b[39;49m\u001b[39m-\u001b[39;49m\u001b[39m4\u001b[39;49m,\n\u001b[0;32m---> 14\u001b[0m )\u001b[39m.\u001b[39;49mrun()\n", - "File \u001b[0;32m~/Git/Personal/mdcourse.github.io/benchmark/python_mu2_1.7nm3_300K_GCMC/../../molecular-simulation/main.py:396\u001b[0m, in \u001b[0;36mMonteCarlo.run\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 394\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mmu \u001b[39mis\u001b[39;00m \u001b[39mnot\u001b[39;00m \u001b[39mNone\u001b[39;00m:\n\u001b[1;32m 395\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mmonte_carlo_insert_delete()\n\u001b[0;32m--> 396\u001b[0m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mwrap_in_box()\n\u001b[1;32m 397\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mupdate_log()\n\u001b[1;32m 398\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mupdate_dump(velocity\u001b[39m=\u001b[39m\u001b[39mFalse\u001b[39;00m)\n", - "File \u001b[0;32m~/Git/Personal/mdcourse.github.io/benchmark/python_mu2_1.7nm3_300K_GCMC/../../molecular-simulation/main.py:111\u001b[0m, in \u001b[0;36mInitializeSimulation.wrap_in_box\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 109\u001b[0m \u001b[39mfor\u001b[39;00m dim \u001b[39min\u001b[39;00m np\u001b[39m.\u001b[39marange(\u001b[39mself\u001b[39m\u001b[39m.\u001b[39mdimensions):\n\u001b[1;32m 110\u001b[0m out_ids \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39matoms_positions[:, dim] \u001b[39m>\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mbox_boundaries[dim][\u001b[39m1\u001b[39m]\n\u001b[0;32m--> 111\u001b[0m \u001b[39mif\u001b[39;00m np\u001b[39m.\u001b[39;49msum(out_ids) \u001b[39m>\u001b[39m \u001b[39m0\u001b[39m:\n\u001b[1;32m 112\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39matoms_positions[:, dim][out_ids] \u001b[39m-\u001b[39m\u001b[39m=\u001b[39m np\u001b[39m.\u001b[39mdiff(\u001b[39mself\u001b[39m\u001b[39m.\u001b[39mbox_boundaries[dim])[\u001b[39m0\u001b[39m]\n\u001b[1;32m 113\u001b[0m out_ids \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39matoms_positions[:, dim] \u001b[39m<\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mbox_boundaries[dim][\u001b[39m0\u001b[39m]\n", - "File \u001b[0;32m<__array_function__ internals>:180\u001b[0m, in \u001b[0;36msum\u001b[0;34m(*args, **kwargs)\u001b[0m\n", - "File \u001b[0;32m~/.local/lib/python3.10/site-packages/numpy/core/fromnumeric.py:2183\u001b[0m, in \u001b[0;36m_sum_dispatcher\u001b[0;34m(a, axis, dtype, out, keepdims, initial, where)\u001b[0m\n\u001b[1;32m 2113\u001b[0m \u001b[39m \u001b[39m\u001b[39m\"\"\"\u001b[39;00m\n\u001b[1;32m 2114\u001b[0m \u001b[39m Clip (limit) the values in an array.\u001b[39;00m\n\u001b[1;32m 2115\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 2178\u001b[0m \n\u001b[1;32m 2179\u001b[0m \u001b[39m \"\"\"\u001b[39;00m\n\u001b[1;32m 2180\u001b[0m \u001b[39mreturn\u001b[39;00m _wrapfunc(a, \u001b[39m'\u001b[39m\u001b[39mclip\u001b[39m\u001b[39m'\u001b[39m, a_min, a_max, out\u001b[39m=\u001b[39mout, \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mkwargs)\n\u001b[0;32m-> 2183\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39m_sum_dispatcher\u001b[39m(a, axis\u001b[39m=\u001b[39m\u001b[39mNone\u001b[39;00m, dtype\u001b[39m=\u001b[39m\u001b[39mNone\u001b[39;00m, out\u001b[39m=\u001b[39m\u001b[39mNone\u001b[39;00m, keepdims\u001b[39m=\u001b[39m\u001b[39mNone\u001b[39;00m,\n\u001b[1;32m 2184\u001b[0m initial\u001b[39m=\u001b[39m\u001b[39mNone\u001b[39;00m, where\u001b[39m=\u001b[39m\u001b[39mNone\u001b[39;00m):\n\u001b[1;32m 2185\u001b[0m \u001b[39mreturn\u001b[39;00m (a, out)\n\u001b[1;32m 2188\u001b[0m \u001b[39m@array_function_dispatch\u001b[39m(_sum_dispatcher)\n\u001b[1;32m 2189\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39msum\u001b[39m(a, axis\u001b[39m=\u001b[39m\u001b[39mNone\u001b[39;00m, dtype\u001b[39m=\u001b[39m\u001b[39mNone\u001b[39;00m, out\u001b[39m=\u001b[39m\u001b[39mNone\u001b[39;00m, keepdims\u001b[39m=\u001b[39mnp\u001b[39m.\u001b[39m_NoValue,\n\u001b[1;32m 2190\u001b[0m initial\u001b[39m=\u001b[39mnp\u001b[39m.\u001b[39m_NoValue, where\u001b[39m=\u001b[39mnp\u001b[39m.\u001b[39m_NoValue):\n", - "\u001b[0;31mKeyboardInterrupt\u001b[0m: " - ] - } - ], - "source": [ - "import sys\n", - "sys.path.append(\"../../molecular-simulation/\")\n", - "from main import MonteCarlo\n", - "\n", - "MonteCarlo(number_atoms=25,\n", - " Lx=20,\n", - " maximum_steps=2000000,\n", - " dimensions= 3,\n", - " desired_temperature=300,\n", - " seed=41982,\n", - " thermo=500,\n", - " dump=500,\n", - " mu=-4,\n", - " ).run()" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.7" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/benchmark/utilities.py b/benchmark/utilities.py deleted file mode 100644 index fe293d3..0000000 --- a/benchmark/utilities.py +++ /dev/null @@ -1,75 +0,0 @@ - -import matplotlib.transforms as mtransforms -from matplotlib.ticker import AutoMinorLocator -from matplotlib import pyplot as plt -import numpy as np - -fontsize = 35 -fontlegende = 35 -font = {'family': 'sans', 'color': 'black', 'weight': 'normal', 'size': fontsize} -plt.rcParams.update({"text.usetex": True, "font.family": "serif", "font.serif": ["Palatino"]}) - -def complete_panel(ax, xlabel, ylabel, gray=[1, 1, 1], cancel_x=False, cancel_y=False, font=font, fontsize=fontsize, linewidth=2, tickwidth1=2.5, tickwidth2=2, legend=True, ncol=1, locator_x = 2, locator_y = 2, title=None): - - if xlabel is not None: - ax.set_xlabel(xlabel, fontdict=font) - if cancel_x: - ax.set_xticklabels([]) - else: - ax.set_xticklabels([]) - - if ylabel is not None: - ax.set_ylabel(ylabel, fontdict=font) - if cancel_y: - ax.set_yticklabels([]) - else: - ax.set_yticklabels([]) - - if title is not None: - ax.set_title(title, fontdict=font) - - plt.xticks(fontsize=fontsize) - plt.yticks(fontsize=fontsize) - ax.yaxis.offsetText.set_fontsize(20) - ax.minorticks_on() - - ax.tick_params('both', length=10, width=tickwidth1, which='major', direction='in', color=gray) - ax.tick_params('both', length=6, width=tickwidth2, which='minor', direction='in', color=gray) - ax.xaxis.set_ticks_position('both') - ax.yaxis.set_ticks_position('both') - ax.xaxis.label.set_color(gray) - ax.yaxis.label.set_color(gray) - - ax.spines['left'].set_color(gray) - ax.spines['top'].set_color(gray) - ax.spines['bottom'].set_color(gray) - ax.spines['right'].set_color(gray) - - ax.spines["top"].set_linewidth(linewidth) - ax.spines["bottom"].set_linewidth(linewidth) - ax.spines["left"].set_linewidth(linewidth) - ax.spines["right"].set_linewidth(linewidth) - - ax.tick_params(axis='y', which='both', colors=gray) - ax.tick_params(axis='x', which='both', colors=gray) - - minor_locator_x = AutoMinorLocator(locator_x) - ax.xaxis.set_minor_locator(minor_locator_x) - minor_locator_y = AutoMinorLocator(locator_y) - ax.yaxis.set_minor_locator(minor_locator_y) - - if legend: - leg = ax.legend(frameon=False, fontsize=fontlegende, - loc='best', handletextpad=0.5, ncol=ncol, - handlelength = 0.86, borderpad = 0.3, - labelspacing=0.3) - - for text in leg.get_texts(): - text.set_color(gray) - -myblue = np.array([20, 100, 255])/255 -myred = np.array([255, 20, 20])/255 -mygray = np.array([50, 50, 50])/255 -myorange = np.array([255, 165, 0])/255 -lightgray = [0.1, 0.1, 0.1] -darkgray = [0.9, 0.9, 0.9] \ No newline at end of file diff --git a/benchmark/velocity_distribution_300K.png b/benchmark/velocity_distribution_300K.png deleted file mode 100644 index af35c2a..0000000 Binary files a/benchmark/velocity_distribution_300K.png and /dev/null differ diff --git a/illustration/Equation-of-state/WriteLAMMPSfiles.py b/illustration/Equation-of-state/WriteLAMMPSfiles.py deleted file mode 100644 index bcfb39c..0000000 --- a/illustration/Equation-of-state/WriteLAMMPSfiles.py +++ /dev/null @@ -1,120 +0,0 @@ -import numpy as np -from scipy import constants as cst - - -def write_topology_file(dictionary, - filename="lammps.data", - velocities=None, - atom_style="atomic"): - """Write a LAMMPS data file containing atoms positions and velocities. - - The charge of the atoms is assumed to be 0, and the same - molecule id is used for all atoms. - """ - box_boundaries = dictionary.box_boundaries\ - * dictionary.reference_distance - atoms_types = dictionary.atoms_type - atoms_positions = dictionary.atoms_positions\ - * dictionary.reference_distance - if velocities is not None: - atoms_velocities = dictionary.atoms_velocities\ - * dictionary.reference_distance/dictionary.reference_time - f = open(filename, "w") - f.write('# LAMMPS data file\n\n') - f.write("%d %s" % (dictionary.total_number_atoms, 'atoms\n')) - f.write("%d %s" % (np.max(dictionary.atoms_type), 'atom types\n\n')) - for l0, dim in zip(box_boundaries, ["x", "y", "z"]): - characters = "%.3f %.3f %s %s" - f.write(characters % (l0[0], l0[1], dim+'lo', dim+'hi\n')) - f.write('\nAtoms\n\n') - cpt = 1 - for type, xyz in zip(atoms_types, atoms_positions): - if atom_style == "atomic": - characters = "%d %d %.3f %.3f %.3f %s" - v = [cpt, type, xyz[0], xyz[1], xyz[2]] - f.write(characters % (v[0], v[1], v[2], v[3], v[4], '\n')) - elif atom_style == "molecular": - q, mol = 0, cpt - characters = "%d %d %d %.3f %.3f %.3f %.3f %s" - v = [cpt, mol, type, q, xyz[0], xyz[1], xyz[2]] - f.write(characters % (v[0], v[1], v[2], v[3], v[4], v[5], v[6], '\n')) - cpt += 1 - if velocities is not None: - f.write('\nVelocities\n\n') - cpt = 1 - for vxyz in atoms_velocities: - characters = "%d %.3f %.3f %.3f %s" - v = [cpt, vxyz[0], vxyz[1], vxyz[2]] - f.write(characters % (cpt, v[0], v[1], v[2], '\n')) - cpt += 1 - f.close() - - -def write_lammps_parameters(dictionary, - filename="PARM.lammps"): - """Write a LAMMPS-format parameter file""" - f = open(filename, "w") - f.write('# LAMMPS parameter file \n\n') - for type, mass in zip(np.unique(dictionary.atoms_type), - dictionary.atom_mass): - mass *= dictionary.reference_mass - f.write("mass "+str(type)+" "+str(mass)+"\n") - f.write('\n') - for type, epsilon, sigma in zip(np.unique(dictionary.atoms_type), - dictionary.epsilon, - dictionary.sigma): - epsilon *= dictionary.reference_energy - sigma *= dictionary.reference_distance - f.write("pair_coeff " + str(type) + " " + str(type) + " " + - str(epsilon) + " " + str(sigma) + "\n") - f.write('\n') - f.close() - - -def write_lammps_variables(self, filename="variable.lammps"): - """Write a LAMMPS-format variable file""" - f = open(filename, "w") - f.write('# LAMMPS variable file \n\n') - f.write('variable neighbor equal ' - + str(self.neighbor) + '\n') - f.write('variable thermo equal ' - + str(self.thermo_period) + '\n') - f.write('variable dump equal ' - + str(self.dumping_period) + '\n') - f.write('variable cut_off equal ' - + str(self.cut_off*self.reference_distance) + '\n') - try: - f.write('variable displace_mc equal ' - + str(self.displace_mc*self.reference_distance) + '\n') - except: - pass - try: - f.write('variable time_step equal ' - + str(self.time_step*self.reference_time) + '\n') - except: - pass - # f.write('variable minimization_steps equal ' - # + str(self.minimization_steps) + '\n') - f.write('variable maximum_steps equal ' - + str(self.maximum_steps) + '\n') - kB = cst.Boltzmann*cst.Avogadro/cst.calorie/cst.kilo # kCal/mol/K - f.write('variable temp equal ' - + str(self.desired_temperature*self.reference_energy/kB) + '\n') - try: - f.write('variable tau_temp equal ' - + str(self.tau_temp*self.reference_time) + '\n') - except: - pass - try: - if self.tau_press is not None: - f.write('variable press equal ' - + str(self.desired_pressure * self.reference_pressure) + '\n') - f.write('variable tau_press equal ' - + str(self.tau_press*self.reference_time) + '\n') - f.write('variable pber equal 1') - else: - f.write('variable pber equal 0') - except: - pass - f.write('\n') - f.close() diff --git a/illustration/Equation-of-state/energy-vs-density-dm.png b/illustration/Equation-of-state/energy-vs-density-dm.png deleted file mode 100644 index 612200c..0000000 Binary files a/illustration/Equation-of-state/energy-vs-density-dm.png and /dev/null differ diff --git a/illustration/Equation-of-state/energy-vs-density-pyplot.ipynb b/illustration/Equation-of-state/energy-vs-density-pyplot.ipynb deleted file mode 100644 index 158f5f8..0000000 --- a/illustration/Equation-of-state/energy-vs-density-pyplot.ipynb +++ /dev/null @@ -1,175 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "id": "15134151", - "metadata": {}, - "outputs": [], - "source": [ - "import warnings\n", - "warnings.filterwarnings(\"ignore\")\n", - "\n", - "import numpy as np\n", - "import sys, os, git\n", - "from scipy import constants as cst\n", - "from pint import UnitRegistry\n", - "ureg = UnitRegistry()\n", - "ureg = UnitRegistry(autoconvert_offset_to_baseunit = True)" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "id": "11014d02", - "metadata": {}, - "outputs": [], - "source": [ - "current_path = os.getcwd()\n", - "git_repo = git.Repo(current_path, search_parent_directories=True)\n", - "git_path = git_repo.git.rev_parse(\"--show-toplevel\")\n", - "path_in_folder = current_path[len(git_path)+1:]\n", - "sys.path.append(git_path + \"/pyplot-perso\")\n", - "from plttools import PltTools\n", - "path_figures = current_path[len(git_path):] + '/'" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "Wood1957 = np.loadtxt(\"literature-data/excess-energy.dat\")" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "id": "d51e3f62", - "metadata": {}, - "outputs": [], - "source": [ - "kB = cst.Boltzmann*ureg.J/ureg.kelvin # boltzman constant\n", - "Na = cst.Avogadro/ureg.mole # avogadro\n", - "R = kB*Na # gas constant" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "id": "2927574e", - "metadata": {}, - "outputs": [], - "source": [ - "jump = 10\n", - "N_atom = 200\n", - "T = (55 * ureg.degC).to(ureg.degK) # 55°C\n", - "Epot_vs_tau = []\n", - "for folder in [x[0] for x in os.walk(\"./\")]:\n", - " if \"outputs_tau\" in folder:\n", - " Epot = np.mean(np.loadtxt(folder+\"/Epot.dat\")[:,1][jump:]) # kcal/mol\n", - " Epot = (Epot*ureg.kcal/ureg.mol).to(ureg.joule/ureg.mol)\n", - " Enormalised = Epot / N_atom / R / T # no units\n", - " Epot_vs_tau.append([np.float32(folder.split(\"./outputs_tau\")[1]), Enormalised.magnitude])\n", - "Epot_vs_tau = np.array(Epot_vs_tau)" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "id": "0c2c7c3c", - "metadata": {}, - "outputs": [], - "source": [ - "jump = 10\n", - "N_atom = 200\n", - "T = (273.15+55)*ureg.kelvin # 55°C\n", - "Epot_vs_tau_lmp = []\n", - "for folder in [x[0] for x in os.walk(\"./\")]:\n", - " if \"lammps_tau\" in folder:\n", - " Epot = np.mean(np.loadtxt(folder+\"/Epot.dat\")[:,1][jump:]) # kcal/mol\n", - " Epot = (Epot*ureg.kcal/ureg.mol).to(ureg.joule/ureg.mol)\n", - " Enormalised = Epot / N_atom / R / T # no units\n", - " Epot_vs_tau_lmp.append([np.float32(folder.split(\"./lammps_tau\")[1]), Enormalised.magnitude])\n", - "Epot_vs_tau_lmp = np.array(Epot_vs_tau_lmp)" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "id": "19f9a92f", - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABv4AAAMWCAYAAAA53PFgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAACn/klEQVR4nOz9f2xc9Z33f7/sxFnbxD52i0OrwEyqLwpZxxOz3xIEJmPtPygGT5xvtUgkHbPXblviZJJoe7UXSYn7V8UEEiTUFfEQB3q1ezEmWQnRr4K9sbS3bsFMCBFhL8Uex6qqvUXO0KgtYRsfJ3EQppn7j1wz9XjG9sz4jOeHnw8p6pzjc97n7fEAxS/en09FLBaLCQAAAAAAAAAAAEBJqyx0AwAAAAAAAAAAAAAWj+APAAAAAAAAAAAAKAMEfwAAAAAAAAAAAEAZIPgDAAAAAAAAAAAAygDBHwAAAAAAAAAAAFAGCP4AAAAAAAAAAACAMkDwBwAAAAAAAAAAAJQBgj8AAAAAAAAAAACgDBD8AQAAAAAAAAAAAGWA4A8AAAAAAAAAAAAoAysL3QCyE4lENDIyItM0ZVmWDMNQY2OjWlpa1N7eXuj2AAAAAAAAAAAAUCAEfyUiEAjo2LFjsixr3uu8Xq/27t0rp9O5RJ0BAAAAAAAAAACgGFTEYrFYoZvA3EzT1M6dO2WaZlb39ff3y+Px5KkrAAAAAAAAAAAAFBuCvyIWiUT09NNPLzjlNxfCPwAAAAAAAAAAgOWjstANYG7hcDgp9PN6vRoeHtb4+LiuXLmi4eFh9ff3y+12p72/p6cn59AQAAAAAAAAAAAApYXgr4hdvnw58Xp4eFhHjx6Vy+WSYRiSJJfLJY/Ho1OnTqm/vz9xfqZjx44tVbsAAAAAAAAAAAAoIIK/IhaNRiVJR44ckcvlmvdaj8ejo0ePppwfGhrKS28AAAAAAAAAAAAoLgR/RSwajcowDHV3d2d0vcfjUWdnZ9I50zRZ7hMAAAAAAAAAAGAZIPgrYqZpasuWLVnd09XVlXIuPjkIAAAAAAAAAACA8kXwV6TiU3rpgrz5LLQkKAAAAAAAAAAAAMpTRSwWixW6CaRnWZYMw8j6vrVr1yYdj4+P51QHAAAAAAAAAAAApYOJvyKWS1iXbj8/Qj8AAAAAAAAAAIDyR/BXZkZGRpKOOzs7C9QJAAAAAAAAAAAAlhLBX5kZGxtLOt6/f3+BOgEAAAAAAAAAAMBSYo+/MtPc3JxY7tPtduvUqVMZ33vlyhX9+7//uyYmJjQxMaFvfOMbqq6uzvj+pqYmNTU1Zd0zAAAAAAAAAADAcnD16lVdvXo14+u/+OIL/eEPf1BDQ4MaGhr0+OOPa+3atXNev9KOJlEcBgcHk/b46+/vz+r+f//3f1dvb6/dbQEAAAAAAAAAAMAm//AP/zDn11jqs4wcPnw48frIkSMyDKOA3QAAAAAAAAAAAGApEfyVCb/fL9M0JUler1fd3d0F7ggAAAAAAAAAAABLiaU+y0AkElEgEJB0Z1+/o0eP5lTH6XQmHT/77LNat25dxvezx9/8vv/97+tPf/qTvva1r+kXv/hFodsperxff7Fc3ovx8fGk5Yb9fr+am5sL2BEAoJgsl38eAqWCvyZRLPgsLl/87IsXP5v84b3NDu/XHcvpfSiV3y9mu8ff5cuX9frrryeOZ2c5sxH8lTjLsvT0009Lklwul06dOpVzrbvuuivp+Mknn9TDDz+8qP7wF6tWrUr8L+/rwni//mK5vhfNzc3L6vsFAMxvuf7zEChW/DWJYsFncfniZ1+8+NnkD+9tdni/7ljO70O5/H7xo48+Sgr+Zmc5s7HUZ4l7+umnZVmWnE6n/vVf/7XQ7QAAAAAAAAAAAKBACP5K2K5duxSJRGQYhs6cOSPDMArdEgAAAAAAAAAAAAqE4K9EHThwQENDQ4R+AAAAAAAAAAAAkETwV5L8fr8GBgYSod9CGzkCAAAAAAAAAACg/K0sdAPITjAYVCAQkCT967/+K6FfCdm1a5du3Lih1atXF7qVksD79Re8FwAA8M9DoNjw1ySKBZ/F5YufffHiZ5M/vLfZ4f26g/dh+amIxWKxQjeBzASDQR08eFCSdPLkSbW3t9ta/6OPPtJ3vvOdxPGvf/1rPfzww7Y+AwDmwt+DAAAAAAAAAOSqXH+/mO33xVKfJWJwcDCvoR8AAAAAAAAAAABKG8FfCQiFQurp6ZEk9ff3E/oBAAAAAAAAAAAgBXv8FblIJKKdO3dKko4cOSKPx5PxvZZlaWJiQpI0OTkpl8uVjxYBAAAAAAAAAABQBAj+iphpmnr66acTx8FgUMFgUJOTk4lz8WBPuhP0zcUwDI2Pj+elTwAAAAAAAAAAABQewV+RMk1TTzzxRFKYF4lECtgRAOTX2rVr9aMf/SjpGAAAAAAAAAAywe8X7yD4K0KWZaWEfgBQ7tauXasf//jHhW4DAAAAAAAAQAni94t3EPwVoWg0mlXoZxhG2vMzaxAiAgAAAAAAAAAAlDeCvyLkcrl05cqVQrcBAAAAAAAAAACAElJZ6AYAAAAAAAAAAAAALB7BHwAAAAAAAAAAAFAGCP4AAAAAAAAAAACAMkDwBwAAAAAAAAAAAJQBgj8AAAAAAAAAAACgDBD8AQAAAAAAAAAAAGWA4A8AAAAAAAAAAAAoAwR/AAAAAAAAAAAAQBkg+AMAAAAAAAAAAADKAMEfAAAAAAAAAAAAUAYI/gAAAAAAAAAAAIAyQPAHAAAAAAAAAAAAlAGCPwAAAAAAAAAAAKAMEPwBAAAAAAAAAAAAZYDgDwAAAAAAAAAAACgDBH8AAAAAAAAAAABAGSD4AwAAAAAAAAAAAMoAwR8AAAAAAAAAAABQBgj+AAAAAAAAAAAACsCyrEK3gDKzstANAAAAAAAAAACAzAwODioUCskwjMS5xsbGxOtr165J+kugtHfvXjmdzoxq79ixQ+FwWOPj40n1s+kn3ku8j3gv2fRR7iKRiE6fPq2hoSGZpqmTJ0+qvb290G2hTBD8AQAAAAAAAABQIkZGRjQwMJDRtYZhaO/evRlda1mWwuGwJCkcDsvj8WTcz+Dg4LyTa4Zh6JlnnsmoXjmKRCJ69dVXNTY2JtM08/IMy7J07NgxDQwM6MMPP8w4uF2oZjgcVjQa1bVr1+R0OtXQ0JDxZ2N2rXfffVcNDQ2qr69PCqslqb6+PvF6cnIy8fratWuJY5fLlRIem6apyclJ1dfXq6GhQZKy+t7jn9uJiYnEsx0Ohy3vX6EQ/AEAAAAAAAAAUCJ6e3vV29urSCSinp6elCDJMAydOXMm6+m6d999N/H69OnTGYc78X4kpfTk9XrV29tb0iGKHUzTVDQaVX19vQzDsHV5T9M01dfXlxQGT0xMLOo9D4VCOnz4sCKRyJzXdHZ2qre3N+PP2cjIiA4ePJhzT9Kdz5rP50s698QTT9i+XGp/f39O4WaxYI8/AAAAAAAAAABKjMvl0ksvvZRy3uPx5LSk5uDgYOL10NBQzj1t2bJF0p0A8ujRo8s+9JPu/EyGh4c1PDys8fFxW5Y8jUQi2rVrl9ra2jKeAM3Erl27tHPnTkUiEbndbp08eVLj4+O6cuWKzp07lwhyh4aG1NbWpmAwaNuzi4XL5Sp0C4tC8AcAAAAAAAAAQAmya1+4mct8xs0MArNx9uxZSUoEgEjV0tKS032WZSkQCKitrU0dHR05B7Rz1Z5Zs7e3V6dOnVJ7e3sivHU6nfL5fDpz5kzi3MGDBwsa/sWX97SL1+st+b0oWeoTAAAAAAAAAIAS5Xa7k0K7aDSadY10E2PZLPcZZ1lWYplPu0JJ3Hlfe3p6UsJZr9ervXv32rLcZU9PT2Jpz3RLas7kdDp1/Phx7dy5U9Kd8M/tds8bmM3c08/n86XsrScl7+03+2uS5HA45v0eDMNI7CGYjZlLmsaXrS1lBH8AAAAAAAAAAJQol8uVFAjNDocykW5iK5dpspnP3rZtW9b3Iz3DMBLvrWEY2rdvn7xeb2LqrqGhYVHBXzAYTKo/X+gX197eLpfLlQjNenp6NDw8vOB9hmHYGq7FQz6v16ujR49mfb9pmmpra5OkstmPkqU+AQAAAAAAAADLwo0bN7R//37t379fN27cKHQ7tnC73Snn4lN3mTBNc87rs13uMxQKSbozEVYOAUox6ezs1JEjRzQ+Pi6fz5f0/mY74Tbb4cOHE6/37duX8X3d3d2J15FIJGlybi52L80Zl2uY6Pf7JWUeeJYCgj8AAAAAAAAAQNkbGRnR1q1b9c477+idd97R1q1bNTIyUui2Fq21tTXlXCYBTFx82s/lcqWEdadPn86qF/b3y58TJ04kBW12GRwcTJoWzGb/wdlTnW+++aZtfWVqcnJShmHkFDSbppmYbM1lWrBYEfwBAAAAAAAAAMpWLBbTa6+9pu3bt+vy5cuJ85cvX9b27dv12muvKRaLFa7BRTIMI2VvtfjkXSbi+/t1d3en7OmXzXKfM/f3y3ZvQBTO7HB3vn36ZpsduGUyIbrY6cR0Nm3alNN98Wk/l8tVVp9Zgj8AAAAAAAAAQFm6evWqvF6vXnjhBU1PT6d8fXp6Wi+88IK8Xq+uXr1agA7tMXtKa3R0NKP7QqFQYtqru7tbzzzzTMo1mS73OXN/v/b29ozuQeGNjY0lHWcT/EmSw+FIvLYsa8G9Bu1e6nNiYiKph0xFIpFEsP3yyy/b2lOhEfwBAAAAAAAAAMrOe++9p8cff1zvv//+gte+//77evzxx/Xee+/lv7E8mB20ZbrUZ3yZz87OTkmLW+4zPmXocrkyuh7FIZv9INOZHbrNtXzutWvXFvWcuXg8npyC5ueee07Snc9+uX1mVxa6AQAAAAAAAAAA7DI9Pa0XX3xRJ06cyGoJz6tXr6q7u1u7du3S888/r6qqqjx2aa+59vlbKNCITzzN3DvO6/UqEAikXLOQ+P5+XV1dGV0f318tFAopGo0mAiin0ymHw6H29nZ1dnZmPYFWqOfERSIRvfnmmzp79qxM05RhGHI4HHK73erq6ir6kCmTz81Mk5OT8x7PZvdSn7nszTc4OJgIx3t7e23tpxgQ/AEAAAAAAAAAysInn3yivXv3zjl1tJBYLKb+/n6dP39efX19+ta3vmVzh/mRLqgZGRmZN8CJT/sZhpE0MdXd3Z0U/El3gpL59kCbub+f2+2et1fTNOX3+xOBosvlUktLi7Zs2aJoNKpwOCzTNBUOh+X3++V2u3XkyJGsg7mlek5cJBKR3+9PWvJUuvPeRCIRRSIRBQIB2wLGfDFNM6vgb/ayshMTE/NeP3OpT9M0FQwGFQ6HFY1GZVlWIijt6uqyNZCd6cCBA5Ikn89X9D+PXBD8AQAAAAAAAABK3ttvv61Dhw7p5s2bi641MjKirVu36vDhw3rqqads6C7/XC5X0hKfoVAoaZJvtnjw5/V6k847nU45nc6kJSCDweC8wd+7776b1MdcBgcH1dPTk7iuv78/JXixLEt+v18DAwOS7uwd2NbWpv7+/nl7KMRzpOSA0el0yufzqbW1VfX19YkJw6GhocT7udilNe1mGEbSvnyhUCir73/2nn4LTfxJd96DgwcPpoSk8XrxoNTv98vr9eY01TcXv9+fCBj37dtnW91iwh5/AAAAAAAAAICS19fXZ0voF3fz5k319fXZVi/fZk/ajY2NzXmtaZqJkDBdODj7XDgcTgl4Zorv7xffKzCdYDCYFMYNDw+nnbYyDENHjx7VkSNHks739PQkwsr5LNVzJCkQCKitrU1DQ0Py+Xw6d+6cent7E/vOdXd3q7e3V+fOnUsbPhaDLVu2JB0PDAzM+7OeafZkqJS6519cPBAcHBxUW1tb2tAvnYGBAXV0dGTc03xM00z0vG/fvpT9LMsFwR8AAAAAAAAAoORlM6WUqW3bttleM19m7/NnmuacYUk82HK5XGnDqHQB3nxBTXx/v5lLhs4UiUR08ODBxHF/f/+cteK6u7vl8/mSzh08eDBpqrFQz5GkXbt2ye/3S7qzZORCe8V5PB6dO3cuZcKy0NLtyXjs2LGM7k133UJ7+MU/ky6XS729verv79fJkyfV398vr9ebNoyLRCKJMHcx4p+N+GRmuSL4AwAAAAAAAACUvHwEf/momS/p9taba6/D+L53cy0F6nQ6U5bsnGsKbmbAONf+fjNDm2z2bevt7U0Jgp577rk5r1+q5wSDwcR7aBjGgqHfTEePHs1qD71883g8Kd97IBDQ4ODgnPdYlqUdO3akDZbnes9n7v135MgRDQ8Py+fzJaYjPR6Pjh49qvHx8bShXDgczngSM534XoKSdOjQoZzrlAKCPwAAAAAAAABAyXvggQe0fv162+qtX7/e1nr5ZhhGSoCTbrnPUCiU2Gduvj0AM13uMx6mxPcGnC0YDCbtazffM9OZHdJEIpHE0qKFeI5lWUlThbnsEzfXcpiFcvz48ZRzPT09OnDgQMqehIODg3r00UcVDofTBnQNDQ1zPscwDA0PDy/4s+nt7U0bph4+fHje++ZiWVbiXpfLVVKBfi4I/gAAAAAAAAAAZcHOX+iX0jKfcbP3a5srIJPm349PSv/9v/vuuynn4s+Y/ezZz4vLdp+7dH2km0ZbqucMDAwkHRfb0p25aG9vTxviDQwMqK2tTWvXrlVzc7PWrl2bmKocHh5OmfB0Op1z7pvX3d2t8fHxjKcdfT5fys/QsqyUIDITzz33XCK0fvnll7O+v9QQ/AEAAAAAAAAAyoKdwV8pTgU9+OCDScejo6Mp1yy0zGecYRgpwU66IGy+/f0sy0rZKy/bQC6TPpbqOZJ0+vTplPvKQW9vr44cOTLn1+PBmdPp1JkzZ+RyuRSNRpOuWShMztZLL72Ucm6+vSbTCYVCic98Z2dnUS2zmi8EfwAAAAAAAACAsmDXcp+ltsxn3OzgyrKspOU540GWYRhpg7rZZoefs5f7XGh/v7n2GMzW7LBm9pKjS/Wc2QFjtuFisYtP5fX29srlciVCTafTKbfbrSNHjujcuXOJ73v2RGlXV5et/bS3t6e8x9lO/P3kJz9JvM5mL8ZSRvAHAAAAAAAAACgbdkzqleIyn1JqcCUlT0jFl8PMdHnKdFOBM5f7jNeeGRLNNHsiLNfpuNbW1pRzM0O5Qj2n2Pbqs4NhGPL5fBoeHtb4+LiuXLmic+fO6dSpUymfh/i0Z/y+fEzTtbS05Hyv3+9PBIVer7fsgtq5EPwBAAAAAAAAAMqGHcFfKS7zGTc7fIlPw5mmmQjqFlrmc6bZyzfOXP4y/jrdtJ8kTU5OZvyc+dTX18/79aV6zrVr15KOJyYmbHluKYpEIkmh6L59+/LynNlhXabhnWmaCgQCiePlMu0nEfwBAAAAAAAAAMrIYpf7LNVlPuM2bdqUdBwP++L7nLlcrqwmn2Yv3zhzuc/4HoJzBX+zzV46M1ONjY0p5+ab6svXc2YHjHYFjqXI7/cnXjudTvl8vrw8Z/bPJNMpy56ensRrr9dbNnsxZmJloRtA8fr+97+vVatWpZzftWtX0l80AAAAAAAAAFBMPB6PXnnllZzuLdVlPuPa29s1MDCQOI7vSRdf5jObaT8p/fTju+++q9bW1kTANtd+gelCGtM0s15ycfa+brNDnKV6zmL3mysXkUgkaQnZQ4cO5e1Zs6csM9mbMhgMJu3FWCrTfv39/Tpx4kTK+S+//DKrOkz8YU5/+tOf9Ic//CHlz40bNwrdGgAAAAAAAADMaTFLdZbyMp9S+n3+gsFgIqTKJdicvdxnMBhMBD/zTfulC95mBjKZmr233uyf0VI9J91SoKFQKOvnlPqk4HPPPZd47Xa78/rXzMzpzdmfw7muP3jwYOK4lKb9bty4kTaT+dOf/pRVHSb+MKevfe1raSf+Vq9eXYBuAAAAAAAAACAzDzzwgK5cuVLoNgrC6XTKMIykwOTw4cOS7gQnuYQg3d3diaVCpeRQbb4JrHQh5OnTp7MOimZPfc2+f6mek+69DQQCGU2hzRRfIrUUHThwIPHzdzqd6u/vn/Na0zS1c+dOnTlzJufw7ezZs4nX+/fvX/D6maGkJO3duzen5xbC6tWr9Y1vfCPl/JdffplV+MfEH+b0i1/8Qv/xH/+R8odlPgEAAAAAAACgeM3e5y8eVGW7zGdce3t7SnATD38WmsKaPRE4M0DM1MxlJZ1OZ9qgbames2XLlpR7spkuHBwczHkPwkILBoOJZWSdTueCgV5DQ4NM00zaDzAbpmkmJlW9Xm/agHemUCiU9HN3u91ZL/daSD09PWkzmV/84hdZ1SH4AwAAAAAAAACgjKQLrAzDyHoybaZ003OGYSwYrKTbXy2bICgSiSQFa3PtJ7dUz+nq6sr5OZZl6cCBAxn3lKmlWDo0EAgkltA0DEMnT55ccIrPMAx1dnZqYGAgp/0Q489zOp0Z7dO3e/fupGOfz5f1M8sBwR8AAAAAAAAAAGWkpaUl5ZzX611UzXTB3+zpt3RcLlfKNF4gEMg4CHr11VcTr71e75zLdy7VczweT8rkWTgcXjD8M01TTzzxhCzLSulzscHdxMSErfVmsixLu3btSnx/LpdLZ86cyXiSLj5lOnPfvUwEAgGFw2EZhpHRUqF+vz9pknKuic3lgOAPAAAAAAAAAIAyki7wyHWZz5k1Z4cv6abf0unv70+5d+fOnQsueTlz6Ua3262jR48WxXNefvnllHOBQEA7duxIGzQGg0E98cQTkqRz586lBIcjIyPzPm8+oVAo5ft78803c6430+DgoB599NHEe+P1ejU8PJzV8pnxz00m4Wic3++X3+/PaDlR6c60ZiAQSDq32M97KVtZ6AYAAAAAAAAAAIC9nE5nIoRyOp227HW2ZcuWlD3UMhGf2tq5c2eiJ9M09eijj+ro0aNpp+uCwWBiSszn82W01ONSPcflcunkyZPauXNn0vlwOKy2tjY5nU45HA5NTEwklg91uVz613/9VxmGkRLUxScTnU6nGhsb5fV604ZdkUhE4XBY165dk2VZikajSfsSxg0MDOjs2bNqaWlJ1Gxpacl4Ai4YDCZNS7rdbh05ciTnz5DH49HAwIACgYAGBgbk9XqT9t+bnJyUaZoKhUKJPRC9Xu+CAWzcc889l3JusROupYzgDwAAAAAAAACAMrNly5ZEcNPZ2WlLza6urkTw53Q6F5zEmik+veX3+zUwMCDpzjKSPT09MgxDW7ZsUUNDgyYmJnT27NnEkpi9vb0pE3LF8Jz29nYNDw+rp6cnZcrPNM2kc52dnTpx4kTiePbSnJJSAtV0vWQzNZeuh/mCv8HBQZ0+fTqpD6/Xq7179y46NH7mmWeSfhaBQCBlQi8u25/F7L0Z431n89ksNxWxWCxW6CZQHD766CN95zvfSRz/+te/1sMPP1zAjgAAAAAAAAAAuZg5yTY8PJxVqDWftWvXSlJWE1mzmaapoaEhnT59WtFoVJZlyTAMNTQ0yOFwqL29XZ2dnYsOnJbqOfFJtdHR0cRzpDshZHd3t3w+36LqL4V4ULplyxZ1dXXNucdhrizL0sDAgEKhkKLRqCYmJmRZVmI60q6fRTnKNrsh+EMCwR8AAAAAAAAAAEDxyDa7qVyKpgAAAAAAAAAAAADkF8EfAAAAAAAAAAAAUAYI/gAAAAAAAAAAAIAyQPAHAAAAAAAAAAAAlAGCPwAAAAAAAAAAAKAMEPwBAAAAAAAAAAAAZYDgDwAAAAAAAAAAACgDBH8AAAAAAAAAAABAGSD4AwAAAAAAAAAAAMoAwR8AAAAAAAAAAABQBgj+AAAAAAAAAAAAgDJA8AcAAAAAAAAAAACUAYI/AAAAAAAAAAAAoAwQ/AEAAAAAAAAAAABlgOAPAAAAAAAAAAAAKAMEfwAAAAAAAAAAAEAZIPgDAAAAAAAAAAAAygDBHwAAAAAAAAAAAFAGCP4AAAAAAAAAAACAMkDwBwAAAAAAAAAAAJQBgj8AAAAAAAAAAACgDBD8AQAAAAAAAAAAAGWA4A8AAAAAAAAAAAAoAwR/AAAAAAAAAAAAQBkg+AMAAAAAAAAAAADKwMpCNwAAAAAAAAAAAMqX3+9XIBBQf3+/PB5PodtBCYpEIgqHwwqFQopGozJNU5LkdDrlcDjkcDi0adMmud1uOZ3OAndbWAR/AAAAAAAAAACUiLVr10qSDMOQJDU0NMx57cTEhCzLksvl0vDw8FK0l9bAwIAk6dixY7YEf5FIRB0dHWnfg/j37HQ6de7cuUU/az5tbW0yTVOGYaT0IEmWZWl4eFgul6ske25ubpZlWZL+8nmb3ftM8RrxOnGGYWjTpk1yuVzq7u7OKpgbHBzUsWPHFIlE0n7dNM1ECBj/nLlcLnV1dcnr9Sb1vVwQ/AEAAAAAAAAAUCJ6e3t17do1WZal0dHROQMRt9utLVu2yDAMtba2LnGXfzE4OJgIgSKRiCKRiFwu16JqOhyOxPtgmqaGhoZSrjFNU4ODg3mbMAyFQonAybKspKCrs7NTTqdTjY2NcjgcJdvzoUOHZJqmLMvS2bNnk+5NJx7ozQwA49eHw2GFw2EFAgG53W4dOXJk3gDQsiw999xziffJMAzt27cv0ad05/2anJzU6dOnNTAwkPI5u3z5so4ePZrt21TyKmKxWKzQTaA4fPTRR/rOd76TOP71r3+thx9+uIAdAQAAAAAAAADms2PHDoXD4aRzPp9Pvb29Beoo2ez+vF6v7WFMfJputnxO0HV0dKQNXU+ePKn29vYF7y/FntPdf+TIEW3bti3tZF084Dx27FjasHCu51qWpSeeeCIRNHZ2durll19ecHovGAzq4MGDSb11d3cv+H0Vu2yzm8qlaAoAAAAAAAAAANgvXXDidrsL0Ekq0zRTQsmZk1l2cblccwZPoVDI1mdJf5koSyeTAE0qzZ67urpSzrnd7jkDOafTKZ/Pp/HxcXm93pSv79y5M+1n4emnn04K/U6cOJHRkp3d3d3q7+9PHMcnF5cbgj8AAAAAAAAAAEpUunAjmz3U8qmvry/t+fhebHaaa9+5w4cP2/4sv9+f9ny2+8mVWs+LCdKOHj2adonX5557Luk4GAwmAkrDMPTyyy9n9RyPx5P4norlr4OlRvAHAAAAAAAAAABsFw/4ZodLwWDQ9mfV19enPR+JRGydoEs3xRg3V5A3l1LseTFmTuPFzd7rcGbouW/fvqzDVEnatGmTpKX93orJykI3AAAAAAAAAADAYt0+nbpfmh0qu4bzUrfcxcM9l8ulffv2qaenJ/G1+HKWmS4xmY3Ozs6UMCkQCNj2rJmTc06nM7Ek5WKUYs+5cDqdcrvdKSGkaZpyOp0aHBxMWvoz1yVr44FqLqFhOWDiDwAAAAAAAAAA2CoQCEi6s+/azOUX4/Ix9Sfd2a9u9pKS4XB4zv3tsmFZViKgc7vd2rJly6JrSqXZc67SLfc5OTkpSSlTjrkuLZru/VxOCP4AAAAAAAAAAIBtQqFQYqqsu7tbkuT1epOuGRoaSprusktDQ4P27duXcv7VV19ddO2Zk3O9vb2LrhdXij3nqrGxMeVcPOCLRqNJ5ycmJnJ6Rnd3t4aHl++kLsEfAAAAAAAAAACwTXyab2bYFw8AZzp27Fhenu/xeOR0OpPODQ0NLWqJS8uyEnsWut1u2yfKSrHnXFy7di3lXHwadHbwZ8fE43JE8FeiLMuS3+9Xc3NzXv6rCAAAAAAAAAAAsjVzacm9e/cmzsf3d5spHkrlg8/nSznX19eXc72ZIWW+JudKsedszQ4yOzs7E6/je/PFzV76E5kh+CsxpmnqwIEDam5uViAQkGVZOY+7AgAAAAAAAABgp3jY5HK5UibYZgdblmVpcHAwL310d3en7Cs4MDCQ8yBNPKR0uVx5m5wrxZ6zdfbs2aTjmZOgmzZtSvrawMAA4V8OCP5KRCQS0a5du9TW1pbX/woCAAAAAAAAAIBcxX9/nW7Puvb29pRgK74saD6k6yGX5UWDwWAifDt06NCi+5pPKfacqfgwU5zb7VZ7e3vieN26dSn37Ny5U36/n5UPs0DwV8Qsy1IgEFBbW5s6OjoS49EAAAAAAAAAABSbeNhkGIY8Hk/aa2YHW+FweFH72M1n5h6DcbPDp0wcPnxY0p3JuZlBVT6UYs+ZME1Tfr8/cex0OtXf3590TbrvXbrz/Tc3N2vXrl0KBoOKRCIEgfMg+CtClmVpx44dam5ult/vT/xNz+v16ty5cyn/RQQAAAAAAAAAAIUWCAQkzR3gzPW1xexjNx/DMNLum5fNqnqDg4OJkCndNJ7dSrHnhYRCIT3xxBOJY6fTqZMnT6ZkHYZhzLsX4dDQkA4ePKiOjg41NzerublZHR0dOnDggILBYN4C5FJD8FeEDMNQOBxOvO7t7dX4+LiOHj0qp9OphoaGwjYIAAAAAAAAAMAMkUgkEbzMFzYZhqHOzs6kc/nc3mqxS2fGJ+ecTuecU4x2K8WeLctSKBRKBI7x4127dmnnzp2J852dnTpz5kzK/o9xPp9v3vBv9jMjkYgGBgZ08OBBtbW1qbm5OacJyXJC8FekOjs7deTIEY2Pj8vn8yUl3/X19QXsDAAAAAAAAACAZK+++qqkO/u2LbRqXXd3d8q5fO31ZxhGypShZVkZPS8UCiXCzHRTePlSqj3v3LlTzc3NWrt2rZqbm7Vz587EFmadnZ0aHh7WiRMnFvx8+Hw+DQ8PpwTEmbAsS36/X48++qgikUhO30upW1noBpDeiRMnCt0CAAAAAAAAAAALsiwrEfBkEja1t7fL6XQmLc0YDAbTBoJ22Lt3b8pUYSAQWPB58ck5wzDy1ttcSrHnkydPamxsTNeuXVNjY6Pq6+vV2toql8uVdS2Xy6UTJ07IsiyFw2GFQiGNjo4qGo1mNM1nWZY6Ojo0PDyc0/NLGcEfAAAAAAAAAADIWXwZSqfTqfb29ozu6e7ult/vTxxHIhFFIpG8hDROp1NutzuxxZYkmaapwcHBOZfCjPcjFWafvFLsub29PeOff6YMw5DH40n6ni3L0sjIiMbGxnTx4kWdPXt2zjCwp6dH586ds7WnYsdSnwAAAAAAAAAAIGfxybRsJsxmL2Up/WW50HxIt29cfDounXgoaRjGki6ZOVMp9rwUDMNQe3u7fD6fTpw4ofHxcfX396ddQtQ0zWW35CfBHwAAAAAAAAAAyEkwGExMW/n9fq1duzajP83NzSm1hoaGMlrGMRculytlmtA0TYVCoZRrTdNMTNqlCyiXSin2XCgej0cffvihnE5nytdGRkYK0FHhEPwBAAAAAAAAAICcBIPBxGvDMLL+M9vsfe3sdOjQoZRz6SboZi5BWoglM2cqxZ4LxTAM9ff3p5yfuZfkcsAefwAAAAAAAAAAIGsz95QbHh7OaX++jo6OpKUYg8Fg3papbG9vl9PpTAqCZu8taFmWhoaGJN2ZnEsXTi6lUuy5kFwulzo7OxPvh6S8TZEWKyb+AAAAAAAAAABA1uJ78qVbkjJTs6fT5lrK0i7pQsWZ03LHjh1LvE63x14hlGLPhfTggw8mHa9bt64gfRQKwR8AAAAAAAAAAEjIZEJq5pRZd3d3zs/yeDwpE2qBQCDnegvp7u5OeV44HJZpmrIsK/HsYpqcK8Wec2XHspwOh2Pe43LHUp+Y0/j4eFbXxzdlBQAAAAAAAACUJsuy1NzcrN7e3nmX3Jw5ZbaY4E+6E/7N3NsvHA7Lsqy8hVj79u1LmpiT7kzQzZwU27t3b16enatS7DlbkUhEHR0dOnnypNrb23OuMzExkXTs8XgW2Zm9rly5oitXrmR8fbZZDcEf5pTtSPCPfvQj/fjHP85TNwAAAAAAAACAfAuHw5IWnpKKB3Ver3fRz9y7d29S8CfdCRbztWylz+dLCdGGhoZ09uxZSVJnZ6ecTmdenp2rUuw5V9FodFH3j46OJl53dnYuth3bnTp1Sq+88kre6rPUJwAAAAAAAAAAkKTE/nr19fVzXjM4OJhYDvSZZ55Z9DOdTmfKHoGzg8BMzZ72mku6acb497R///6cnp2rUuw5nxa73Ofg4GDi9XLc85CJPwAAAAAAAABAyavsGi50C2UhPkE23/RYfJlPwzBSArtcdXd36+DBg4ljy7IUDAYzXkZ0cnIyq+ft27cv7V6Cbrc74+9pdmCXaYAXV4o959O1a9ck/WXqNBd+vz8Rhvp8vrKZgswGwR/m5Pf71dzcnPH17O9Xei5OTenCzZu69MUXmrp9W7WVldpYXa3Nd92lB2trC90eAAAAAAAAgAWMjIzYVss0zcS01VyByeDgoCKRiCRpy5Yttj1727ZtScGfJB0+fDjj4C8eYGUaphmGIa/XmzJZON++hrPNflY8cMpUqfWcbgnObMPLTEQikaxC37hgMJgIRt1ud9FO++3YsUNutzvj68fHx7P6Xgj+MKfm5mY9/PDDhW4DNvtzLKbXP/9cxz77TJe++GLO6zZWV2vfmjV69u67taKiYgk7BAAAAAAAAJCpoaGhlHPhcFgNDQ0yDGPO+yzL0sTEhCYnJ3Xt2jVFo1EFg0FJmvM+y7J04MABexqfxTAMGYaRFERZliW/379g6BGJRBL3nT59OuMgbPbegk6nU+3t7Rnda1lW0l5ycaFQKKMapdhzfBnYmU6fPm3b1OfMYPHgwYMKhUJ6+eWX5/0cS3cC64MHDyYmBd1ut06dOmVLT/mwdu3avA5SEfwBy8j4rVv6b5cv6+OpqQWvvfTFF9oTjeoXn3+uf1m3Ts01NUvQIQAAAAAAAIBMxMOOdPuhHTx4MGV6LhsOhyPpOUNDQ7p8+XLS3n7SndCxo6NDmzZt0rp167JaclK6M6FlmqYsy9LZs2fTTp8FAgFFIhG5XC51dXXJ5XLJsiwNDAzo2rVrif7iIpFIUk8Oh0Mejyft851Opzo7OxP3LzRhFgqFNDY2posXL87Z786dO9XZ2Smn06nGxsbEe1KKPQeDQU1OTury5csaHR1NTHrONPPn09jYOG/vC5n9WR4aGtLQ0JDcbrc8Ho8cDoecTqcaGho0MTGhSCSiUCiUFIQeOXIk60nBckPwBywToevX5fnP/9T127ezuu/jqSk98pvfaPD++9VeV5en7gAAAAAAAABko62tLW+1N23alHhtmqb8fn/KNfEprGg0mgiEent7swr+5gsnZ055hcPhxDSXy+VSNBpN21P8vpk9OZ3OeYOo/fv3J0I0r9c7b7+Dg4Mpy2yme/7Zs2cTNX0+X8n2nEl4bBiGRkdHNTo6Ksuy5HK5cg7+uru7ZVlWSsA88+c/Vw9er1f79u1bcDpwOaiIxWKxQjeB7HR0dCQl6+fOnbNlg8qPPvpI3/nOdxLHv/71r1nqs0xcunVLj/zmN7qRZeg3U11lpc5v2MDkHwAAAAAAAFAETNNccDnP+aSb/FquocmOHTtUX1+vEydOFLqVjJViz9mIRCI6ffq0TNNUNBpVNBqVZVkyDEMNDQ2qr6+X2+2W2+3OeKnTUpVtdsPEH1DmvorF9A+XLy8q9JOk67dv6x8uX9aHGzaw5x8AAAAAAABQYIsdBlmuIV86xbwf3FxKsedsuFwu2/YOXG4qC90AgPx64/PPM9rTLxMXpqb0xuef21ILAAAAAAAAAADYi+APKGO3T3fo1f/fBVtr2l0PAAAAAAAAAADYg+APKGMXq76p8ap7bK15qeoejdg0QQgAAAAAAAAAAOxD8FeCJicnC90CSsSFqrX5qUvwBwAAAAAAAABA0SH4K0ETExNJxwSBmMt41Zq81B27dSsvdQEAAAAAAAAAQO4I/kpMKBSSZVlJ5958880CdYNiN1WxKi91b92+nZe6AAAAAAAAAAAgdysL3QDmFolEFA6Hde3aNVmWpWg0qnA4nHLdwMCAzp49q5aWFjmdTjU2NqqlpUXt7e0F6BrFpDb2ZV7q1lTy3wwAAAAAAAAAAFBsCP6KWDgclt/vz+ha0zRlmmbiuLOzk+APap7+LC91W2pq8lIXAAAAAAAAAADkjuCviPl8Pvl8vkK3gRK2efpKfurW1ualLgAAAAAAAAAAyB3r9QFl7MHp32vj9B9trdky/Qe1EvwBAAAAAAAAAFB0CP6AMue7cb6o6wEAAAAAAAAAAHsQ/AFl7tmpC3roy9/ZUmvzl7/TD6Y+tqUWAAAAAAAAAACwF8EfUOZWKKZfXntbdbe/WFSduttf6H9ee1srFLOpMwAAAAAAAAAAYCeCP2AZaP7qqk7/15s5h391t7/Q6f96U81fXbW5MwAAAAAAAAAAYBeCP2CZaP/yss5dPZ71sp+bv/ydzl09rvYvL+enMQAAAAAAAAAAYAuCP2AZaf7qqs5dPa7Atf9XG6f/OO+1G6f/qMC1/1cfXD3OpB8AAAAAAAAAACVgZaEbALC0ViimnqkL6pm6oJGV39CFVffqUtUa3aqoUk1sWhunP9PmL3+n1q/+UOhWAQAAAAAAAABAFgj+gGWs9as/EPABAAAAAAAAAFAmWOoTAAAAAAAAAAAAKAMEfwAAAAAAAAAAAEAZIPgDAAAAAAAAAAAAygDBHwAAAAAAAAAAAFAGCP4AAAAAAAAAAACAMrCy0A0AyJ/KruFCtwAAAAAAAAAAAJYIE38AAAAAAAAAAABAGWDiDwAAAAAAAAAAFJ1QKKSxsTFdvHhRY2NjmpiYkGVZkiTDMORwONTQ0CCHwyHDMOR2u9Xa2irDMArcOVA4BH8AAAAAAAAAAJSISCSijo6ORLjV0NCQ+Fo8GHM6nTp37lxe+2hra5NpmjIMI6UHSbIsS8PDw3K5XFnVDYVCCgaDGhoamvc6y7IUiUSSzgUCAUmS0+lUZ2en3G632tvbs3o+UOoI/gAAAAAAAAAAKBEOh0O9vb26du2aTNNMG5CZpqnBwUF5PJ689BAKhWSapqQ7AVx8Ck+SOjs75XQ61djYKIfDkVXNw4cPJ4V5hmHI4/HI4/HI6XSqoaFBhmHIsixNTEzINE2NjY3p9OnTSfeZpqlAIKBAIKDx8XEmALGsEPwBAAAAAAAAAFAiDMOQz+dLHMcnAGc7fPhw3oK/w4cPpz1/8uTJnCbsDhw4oIGBgcSx0+nUSy+9NGctwzBkGIacTqfa29vl8/lkWZYGBgZ07NixpOVACf2w3FQWugEAAAAAAAAAAJAbl8uVNtwyTVOhUMj250UikZQlNuOyDf0sy1JHR0dS6Nfb26tz585lXSseiH744YdyOp2SpE2bNmVVAygHBH8AAAAAAAAAAJSwmXvszTTXZN5i+P3+tOeznayLRCJ69NFHk0LE/v7+pGnGXBiGoZdeekmSslpqFCgXBH8AAAAAAAAAAJSw+vr6tOcjkYitU3+maSocDqf92lzhYzqWZenpp59O2hvwyJEjti1NGp/4W7dunS31gFJC8AcAAAAAAAAAKHsXp6b0+tWr+uGnn2qXaeqHn36q169e1cWpqUK3ZpvOzs6Uc4FAwLb6M6f94uFaLnp6epJCv87OTnV3dy+qt3TmCkSBcray0A0AAAAAAAAAAJAPf47F9Prnn+vYZ5/p0hdfzHndxupq7VuzRs/efbdWVFQsYYf2am9vVzQaTVo+MxwOKxKJyOVyLaq2ZVkaGhqSJLndbjkcDpmmmXUdv9+fMjX48ssvL6q3uWQzhQiUCyb+AAAAAAAAAABlZ/zWLT3ym99oTzQ6b+gnSZe++EJ7olE98pvfaPzWrSXq0H4NDQ3at29fyvlXX3110bVnTvv19vbmVMM0zZQJRJ/Pl/X+gAtxOp0aHh6W2+22tS5QCgj+AAAAAAAAAABlJXT9uh75zW/0cZbLeH48NaVHfvMbha5fz1Nn+efxeFKW4RwaGsppOi/OsiwNDAxIujPtl+v0YF9fX8q5dEGlHVwul+2BIlAKCP4AAAAAAAAAAGXj0q1b6vzP/9T127dzuv/67dvy/Od/lvTkn8/nSzmXLnTL1LFjxxKvc532k5QID+OcTifhHGAzgj8AAAAAAAAAQFn4KhbTP1y+rBs5hn5x12/f1j9cvqw/x2I2dba0uru7UwK1gYEBWZaVU714YOdyuXKe9guFQinntmzZklOtQrAsS8FgUB0dHUnLnkp3ljDdtWuX2tratHbtWjU3Nyeum+89tyxLBw4cUEdHh9auXau1a9eqra1twfsyFV9adceOHYne4s/YsWOHAoHAoiZBC8GyLPn9/qTvqbm5OfH92PG+lbqVhW4AAAAAAAAAAAA7vPH551kv7zmXC1NTeuPzz9XT1GRLvaW2b9++lIDq2LFjWU/sBYPBRJhy6NChnPsJh8Mp59rb23Oul2+maSoSiSgUCml0dFSRSCTxtU2bNiVe+/3+lH0LLctSJBJRJBJRIBDQyZMnU77XYDCogwcPpn1uIBDQwMCAjh8/ntN7ZJqm/H6/hoaGJN0JbFtaWrRlyxZFo1GFw2GZpqlwOCy/3y+3260jR46kLBEbt2vXLo2NjUmS6uvr014zOTkpServ708JhwOBgILBYNr74/e99NJL836vs78nt9utLVu2yOFwKBwOJ/74/X719vamnXpdLgj+AAAAAAAAAABl4dXPPrO9XqkGf16vNyX4CwQC2rdvX1bLax4+fFjSnfBoMUHdzOAsbq6gqdBM01RbW9uC1x04cCBp+VLDMNJOnO3cuVPDw8OJQCwQCCT9bNLdZ1mWdu7cmTY0nM/g4KB6enok3fmZ9ff3p7zP8am5eO/hcFhtbW3q7++Xx+NJqdnV1aUHH3xQwWAw7c+xs7NTDz74oCTJ4XCkfN3tdkuSLl++nLLca/ze+T4LM98vr9er3t7elM/wzJ+F3+/XxYsXdeLEiTlrljOW+gQAAAAAAAAAlLyLU1Ma/+ILW2te+uILjdg0QbjUDMNIO/U0O3iZz+DgYCKQ2rdv36L6iUajKefmmh4rNKfTqStXrmh8fFznzp1LG0rt2rVLAwMDcrvdOnnypMbHxxN/0r3v8TDuwIED8vv9cjqd6u/vT7ov3TTmT37yk4z7DgaDSaHf8PBw2t4Nw9DRo0d15MiRlB7jk3kzeTwe+Xw+nTt3LiVwczqdOnHihHw+n3w+X9pQ2eVyyefz6ejRo0nvTW9vb+LeuYK/HTt2JEK/I0eO6OjRo2mfcfToUXV2diaOh4aGUoLv5YLgDwAAAAAAAABQ8i7cvJmfuiUa/Enpw7pjx45lfH982s/pdKadBMvGxMREyrmGhoZF1cw3wzDkdDrV3d2ddH5gYEBDQ0Pq7+/XqVOn1N7engijDMNQb29vSohnmqaam5s1MDCg3t5enTt3Th6PJ+k+n8+n/v7+lPsGBwcX7DUSiSQtHTq7Tjrd3d0pIeXBgwfTTvXFzf5MZbtHYDxIdjqdCy7HuWvXrsQSsW63O+XnMNvs93y57vlH8AcAAAAAAAAAKHmXbJ72ixu7dSsvdZeCYRjyer1J5yzLSjvVNVsoFEqEOnbsl1bKAUy6ycS5lsWMSzf9ZlnWgvvPeTyelD3yQqHQgj3GJ/2kO8tnZrqMarplM5977rk5r5/9ecq0v7jR0VFJC+8XGQwGE/v5xftciNPpTJr6k7ILussFwR8AAAAAAAAAoORN3b6dl7q38lR3qezduzflXCAQWPC++LSfYRgLTlplIt3yjOmW/yxGsycTXS5XRhOQs0OyuZZfnW32+73Q+xQMBpMm77L9ec0O4SKRyJxhnmEYKeFaJp8n6U7wGYlEMpognVnTMIyUMHQus/dDjE8MLicEfwAAAAAAAACAkldbmZ9fd9fkqe5ScTqdcrvdSecWWj4yEokklntc7N5+cQ6HI+XctWvXbKm91DZt2pTRda2trbbcl0nwN1Om035x27ZtSzk33+dj//79ScfhcDijJT/j+0suFH5GIpGkepm+b1Lq56xUwmU7lfbfsQAAAAAAAAAAkLSxujovdVtqavJSdymlWyYxPtGXjt/vl5T5hFom0u3nNzY2ZkvtYpVtABc3O7xKtz9iXHyKbjHPNQwjJRyeL/hzuVwpE3iZLB8bDAYzmiCdPaWXbqnVuTQ2NiYdl/ISs7laWegGAAAAAAAAAABYrM133ZWfurW1eam7lOJBzcyAyDRNhUKhlKURTdNMBC/p9nPLVbqJv1AoZFuwWE7SLYs6l5GREVue6XK5kgK3hQKzffv2Je0rODAwMO8+fPE9IzPZq+/y5ctJx0NDQ+ro6FBDQ0MiBJwdJMfD0eU44TcbwR8AAAAAAAAAoOQ9WFurjdXVuvTFF7bVbKmuVmsZBH/SnX3cdu7cmXTu8OHDKcFffNpPsm+ZT0nyeDyJpR7jluP+a3abHXRlExrONHt5UelO+DdXPY/HI8MwEgGhZVkaHBycc++++ERgJmFyugnH2VON6cR7dblccjgccjqdOU9dljKCPwAAAAAAAABAWdi3Zo322Djxs2/NGttqFVp7e7ucTmfS3mnxvfziyzZalqWhoSFJdwKaXEOkuZ6fznxhERY2OTlpS51sltOM83q9CgQCieNjx46l/VnGP1eZfqZmh5ler1dHjx7Nur/lij3+AAAAAAAAAABl4dm779ZDNk3oba6t1Q/uvtuWWsUi3bKaMyf8jh07lnidyZKM2Zq9j9zsZ2Lxct3TbvbeeNLC04OzJ0LjQfJs8UnPvXv3ZtTLXMt4IjMEfwAAAAAAAACAsrCiokL/sm6d6ioX96vvuspK/WrdOq2oqLCps+LQ3d2dEuaEw2GZpinLshLTW3ZP+8WlCxMjkYhCoZDtz1ou0u2dOHOqM1Oz78nk528Yhjo7O5POvfnmmynXHTt2TJ2dnRkvuzl7+pB9+7JD8AcAAAAAAAAAKBvNNTUavP/+nMO/uspKDd5/v5pramzurDik27fP7/cn7b+X6WRWtlwuV0pQJEm7d+/OeVJtuUsXpmWyH95ss8O1TJdf3b9/f9Lx7H0cBwcHZVlWynXzmf095fL9LGcEfwAAAAAAAACAstJeV6fzGzZkvezn5tpand+wQe11dXnqrPDSLfc5NDSUWHIzm8msXKSb+rMsSz09PXl7ZjmL78840+nTp7Ouc+3ataTjTIM/l8uV0kMwGEy8PnbsWNpr5tPa2ppybmZNzI/gDwAAAAAAAABQdppranR+wwYddzi0sbp63ms3VlfruMOhDzdsKOlJv0z3QksX/sUn7rKZzMqF0+lUf39/yvlwOKxdu3bl9dnlavbeiUNDQ1nXCIfDiddOp1Pt7e0Z3zt7ijS+ZGx8z790U6bzSRc6EvxljuAPc/r+97+vb3/72yl/0v1NGQAAAAAAAACKzYqKCvU0NWls40Zd/Ou/1utOp/5pzRrtuvtu/dOaNXrd6dTFv/5rjW3cqJ6mppLd029ycjKr6+cKYtxud8aTWbNDxkxDR+lOsJNu8m9oaEgdHR22LfsZ37uw3KV7L/1+f8b3xwO6uEOHDmX1fI/Hk7QnoGmaCoVCevXVV+V0OjOeHpxp9pKwkUgkESiWq/7+/rSZzPe///2s6hD8YU5/+tOf9Ic//CHlz40bNwrdGgAAAAAAAABkpbW2Vj+4+279/L771O906uf33acf3H23WrNcDrQYxUO3TANAwzDk9XpTzqebBJzL7GdlG7D5fL60z4tEInr00UcXFfJYliW/36+2traUvetysZiQ0477FuJyuVKm/gKBgEzTzOj+V199NfHa6/XmFNTN/jwdPnxYQ0NDWX2mZporzBwcHMy4ht/vL6n9AW/cuJE2k/nTn/6UVR2CP8zpa1/7mr7xjW+k/Fm9enWhWwMAAAAAAAAA6E5QFg/dstnbbe/evUnH2SzvaFmWRkdHU86HQqGMny/dCXdOnjyZNC0Wr+/3+9Xc3Cy/359x3VAopF27dqm5uVmBQCCrCcb5zP5eMw0TR0ZGcrpvNsuyFgxW+/v7U97HnTt3LnhfKBRKLA3qdrt19OjRnHqcPUUaD9y2bduWU725loTt6enRrl275g01g8Fg4jNQX1+f0/MLYfXq1Wkzma997WtZ1amIxWKxPPWIEvPRRx/pO9/5TuL417/+tR5++OECdgQAAAAAAAAAmMmyLA0MDOjatWsyTTNlPzeXy6VNmzZp3bp1cjgc805v7dq1K3F/b2/vvNNZoVBIY2Njunjxos6ePTtnoNTZ2Smn06nGxsaMg7d40DcwMDDvdS6XSw6HQw0NDTIMQ5ZlaWJiQmNjYylBkMvlUn9/v5xO54LPT9fPfO+x9JdlURsbGxPfs3Rn0u7atWuJGum+B7fbrcbGRrW0tMwZtq5duzbp2Ol0asuWLfP+XE3T1M6dO5PeC8MwdPTo0Tn3zTt48KCkOxOY6abssjHz8yTd+SycOHFiUTVn9jhb/PMQf+9N00z6bB45ckTd3d2Len4xyDa7IfhDAsEfAAAAAAAAABS3SCSijo6OtF+LT3zFgw+n06lz585lVGt8fDxlYmymAwcOLBjMzX5+tmGSZVk6duyYBgYGctqbzzAMbdmyRfv371/UpN9873H8OfF+JenkyZNqb2+XZVlqbm6e956Z980XjM0O/mY+c76f61whavy9aWho0MTERCIgc7vd6u3ttWUycvb7Fn9fFss0TR08eFDhcDij671er/bu3ZtT6FuMCP6QM4I/AAAAAAAAAFheduzYofr6+kVPZtnNNE2Fw2GFQiFFo1FNTk5qYmIiEZoZhiGHwyGHw6EHH3zQtmU9y0V8UvH06dOKRqOyLEuGYaihoUEOh0Pt7e1Jk4p26ejoUCQSkWEYGh8ft7W2aZoKBoMKh8OanJyUaZpJn4Ourq6c9icsdgR/yBnBHwAAAAAAAAAAQPHINrupXIqmAAAAAAAAAAAAAOQXwR8AAAAAAAAAAABQBgj+AAAAAAAAAAAAgDJA8AcAAAAAAAAAAACUAYI/AAAAAAAAAAAAoAwQ/AEAAAAAAAAAAABlgOAPAAAAAAAAAAAAKAMEfwAAAAAAAAAAAEAZIPgDAAAAAAAAAAAAygDBHwAAAAAAAAAAAFAGCP4AAAAAAAAAAACAMkDwBwAAAAAAAAAAAJQBgj8AAAAAAAAAAACgDBD8AQAAAAAAAAAAAGWA4A8AAAAAAAAAAAAoAwR/AAAAAAAAAAAAQBkg+AMAAAAAAAAAAADKAMEfAAAAAAAAAAAAUAYI/gAAAAAAAAAAAIAyQPAHAAAAAAAAAAAAlAGCPwAAAAAAAAAAAKAMEPwBAAAAAAAAAAAAZYDgDwAAAAAAAAAAACgDBH8AAAAAAAAAAABAGSD4AwAAAAAAAAAAAMoAwR8AAAAAAAAAAABQBgj+AAAAAAAAAAAAgDJA8AcAAAAAAAAAAACUAYI/AAAAAAAAAAAAoAwQ/AEAAAAAAAAAAABlgOAPAAAAAAAAAAAAKAMEfwAAAAAAAAAAAEAZIPgDAAAAAAAAAAAAygDBHwAAAAAAAAAAAFAGCP4AAAAAAAAAAACAMkDwBwAAAAAAAAAAAJQBgj8AAAAAAAAAAACgDBD8AQAAAAAAAAAAAGWA4A8AAAAAAAAAAAAoAwR/AAAAAAAAAAAAQBkg+AMAAAAAAAAAAADKAMEfAAAAAAAAAAAAUAZWFroBZCcUCmlwcFCjo6OKRqOyLEuGYcjhcKirq0ter1eGYRS6TQAAAAAAAAAAACwxJv5KRCQSUVtbm3bu3KmBgQFJ0qZNm+RyuWRZliKRiPx+v5qbmxUMBgvcLQAAAAAAAAAAAJYawV8JCAaD6ujokGma8nq9Gh8f1/DwsE6dOqXh4WGNj4+rs7Mzcf3Bgwfl9/sL2DEAAAAAAAAAAACWGsFfkQuFQjp48KAkyefz6ejRoylLeRqGoRMnTiSFf4FAQIODg0vaKwAAAAAAAAAAAAqH4K/I7d69W9KdcK+3t3fea19++eWk4wMHDuStLwAAAAAAAAAAABQXgr8iFggEZFmWJGnfvn0LXm8Yhnw+X+LYsiz2+wMAAAAAAAAAAFgmCP6K2LFjxxKvZy7jOZ+urq6kY5b7BAAAAAAAAAAAWB4I/orU4OBgYtrPMAw5nc6M7nO5XEnH4XDY9t4AAAAAAAAAAABQfAj+ilQoFEq83rRpU1b3zg7/ZtYCAAAAAAAAAABAeVqZ6YXf/e535XA4tGnTJjkcDrW2tqquri6fvS1rM5fodDgcWd27adMmRSKRxHE0GrWtLwAAAAAAAAAAABSnjIO/UCikiooKDQwMJM7V19fL6XSqq6tLu3fvzkuDy5FlWYllPqU7S31mY926dUnHpmna0RYAAAAAAAAAAACKWMbBX1wsFlNnZ6caGhokSRMTE7p8+bLNbS1vsyf0Mt3fL272hODM6T8AAAAAAAAAAACUp6yDv7179+r555/PRy/4P0ZGRpKO4yFrpurr623sBgAAAAAAAAAAAKUg4+DPMAxNTk6qtbU1n/1A0uTk5KLub2xsTDqemJjIqc74+HhW169du1Zr167N6VkAAAAAAAAAAADl7sqVK7py5UrG12eb1WQ98cc0Wf5du3ZtUffP/hnlGiT29vZmdf2PfvQj/fjHP87pWQAAAAAAAAAAAOXu1KlTeuWVV/JWvzLbG7JddhLZsywr6ZiwFQAAAAAAAAAAAAvJOvjD0lvs0p8EhwAAAAAAAAAAAOUv66U+UfxmT2XmOqXp9/vV3Nyc8fXs7wcAAAAAAAAAADC3HTt2yO12Z3z9+Ph4VluzZRz8NTQ0aHJyUoZhZFwchTExMWFLnebmZj388MO21AIAAAAAAAAAAFju1q5dm9dBKpb6LEKzw9XFBnks9QkAAAAAAAAAAFD+sg7+zp49q+vXr+ejl3kV4pmF0tjYmHSc7R5/s69/8MEHF9sSAAAAAAAAAAAAilzWwd+BAwfU3Nys++67T08++aR+8pOf6K233sprIDg0NJTVXnOlbvaE3uXLl7O6/9q1a0nHDodjsS0BAAAAAAAAAACgyGW8x19cLBZLvB4dHVUkEtHAwEDiXH19vZxOpzZt2qRNmzbJ4XCotbVVdXV1OTcZX+ry+vXri6pTKlpbW5OOs13qc/bEn9PpXGxLAAAAAAAAAAAAKHJZB39xFRUVidczw0DLsjIKBDdt2iSn05lRkJftUpelbvaE3tjYWFb3R6PRpGOXy7XongAAAAAAAAAAAFDcsg7+Ojs7NTk5qdHRUVmWlfL1XALB1tZWORyOOQPBixcvZttmSTMMQ4ZhJN5f0zSzun/m0qBut9vO1gAAAAAAAAAAAFCksg7+fvrTn+q+++6TdGcSLxqNamRkRKOjo4pGozkFguFwWJLSTghaliXTNFVRUbEslvmM27Jli4aGhhLHkUgk48m90dHRxOv29nbbewMAAAAAAAAAAEDxyTj4S7fPXH19vVpaWtTS0iKv15v0tbGxMY2MjMg0TUUiEUWj0bSTawtNCC5XXV1dScFfOBzOOPiLRCKJ17N/LgAAAAAAAAAAAChPOe/xt5B4IDjb2NiYTNPUyMhIToHgcuHxeJKOg8GgfD7fgvcNDg4mXnd2dsowDNt7AwAAAAAAAAAAQPHJW/A3l3gg2NnZmXQ+Go0qEokkpgTjAeFy1tvbK7/fL+nOPn+hUGjBpTuPHTuWdD8AAAAAAAAAAACWh6yDP8uyEnv82cnhcMjhcCQFgpOTkzp9+rR+8pOf2P68UuDz+RQMBhMB6E9+8hOdOXNmzim+YDCYWObzyJEjcjqdS9YrAAAAAAAAAAAACquy0A3Mp76+Xt3d3frud79b6FYKZmbQZ5qmnnjiiaQ9/OICgYAOHjwo6U5g2N3dvaR9AgAAAAAAAAAAoLAynvizLEsVFRWKRqNp9+7Lp29961tL+rxiYhiGPvzwQz333HMaGhqSaZrq6OiQ0+lUS0uLJicnNTo6KsuyJEn9/f0p+wMCAAAAAAAAAACg/GW91OfExEQe2phffX39kj+zmBiGoRMnTigSiejNN9/U2bNnNTExoaGhITmdTm3atEkej4cpPwAAAAAAAAAAgGUs6+AvGAyqq6tLq1evzkc/abW2tsrhcCzZ84qVy+XS0aNHC90GAAAAAAAAAAAAilDWe/xFIhH99V//tfbs2aO33npLn376aT76StLS0qIPPvgg788BAAAAAAAAAAAASlXGE39btmzRp59+KtM0JUnvvvuu3n33XVVUVMjtduutt97KW5MAAAAAAAAAAAAA5pdx8Hfq1Kmk42g0KtM0FY1G1dDQYHdfAAAAAAAAAAAAALKQ9R5/cQ6Hg333AAAAAAAAAAAAgCKR9R5/AAAAAAAAAAAAAIpPSQR/Q0NDuu+++wrdBgAAAAAAAAAAAFC0SiL4O336dKFbAAAAAAAAAAAAAIpaznv8ffrpp4pEIpqYmJDD4VBra6vq6urs7E2S9G//9m8aGhpSRUWF7bUBAAAAAAAAAACAcpF18Dc2Nqaenh5Fo9GUr7W3t8vn8+mxxx6zpbkXX3xRgUDAlloAAAAAAAAAAGDp3bhxQ88//7ykO7/3X716dYE7AspXVsHf2NiYnnjiCUlSLBZL+fr777+vUCgkn8+X+Is4FzPDxXTPAQAAAAAAAAAAhXf7dMeC19RK+ufH/8/B//cp3c6gbmXX8GLaApatrIK/5557TrFYTBUVFUlLb8bPxV8HAgFFo1G99tprWTcUn/KLB34VFRWEfwAAAAAAAAAAlKCLVd/Uhaq1Gq9ao6mKVaqNfanm6c+0efqKHpz+faHbA8pOxsFfOBxWJBJJCvgkyel0yuFwKBqNyjTNxNcGBwflcDgynvybPeU3+zmHDh3K/LsCAAAAAAAAAAAF8WdV6PXazQqsfkSXqu6Z87qN03+U78Z5PTt1QSvEABBgh4yDv2AwKOkvQVxvb6/27NmTdM3k5KROnz6tF198UZZlKRAIqKurSxs3bpy39nxTfp2dnXr55ZdVX1+f+XcFAAAAAAAAAACW3PjKJv1j41P6eNW9C157qeoe7W3crl/e9W398trbav7q6hJ0CJS3ykwvjEajku6Ecv39/SmhnyTV19eru7tb586dU0tLi2KxmA4cODBnzbGxMT322GOJ0C++hGgsFpPT6dTJkyfV399P6AcAAAAAAAAAQJELrVqntqbdGYV+M3286l61Ne1WaNW6/DQGLCMZB3+Tk5OqqKiQy+VSZ2fnvNcahqHh4WE5HA6Njo7q7NmzKde8+OKLeuKJJ2SaZiL0i8ViisVi2rt3rz744AO53e7svyMAAAAAAAAAALCkLq1co21f/3tdr6zO6f7rldXq+vozGl/ZZHNnwPKScfAX379v3759GRd/6aWXFIvFNDQ0lDg335Sfy+XSuXPnMt4XEAAAAAAAAAAAFNZXqtT3Gv9ONyr/alF1rldW63uNT+nPqrCpM2D5yTj4i3M4HBlf297erieffFKhUEiSdPjw4Tmn/Hp7e3XmzJms6gMAAAAAAAAAgMJ6o/ahrJf3nMuFVffqjdqHbKkFLEcrs73B6XRmdX13d7e++93v6rHHHlM0Gk0EfpISU379/f0EfgAAAAAAAACwhG6f7shL3cqu4bzURfHqW/2IzfUe1R5bKwLLR8YTf4ZhSJLq6uqyekB7e7skJYV+TPkBAAAAAAAAAFD6LlZ9U+NV99ha81LVPRqZmrK1JrBcZL3U5/Xr13N+2Oy9/PbsIbMHAAAAAAAAAKBUXaham5+6BH9ATrIO/kzTzPoh8WlBpvwAAAAAAAAAACgf41Vr8lJ37NatvNQFyl3GwV9DQ4Mk6dixYxobG8v6QQ6HQ8PDw0z5AQAAAAAAAABQJqYqVuWl7q3bt/NSFyh3K7O9YWhoSENDQ5Ikl8ulTZs2Jf60tLSkvefo0aPq7OzMucloNKp/+7d/0+7du3OuAQAAAAAAAADI3MWqb+pC1VqNV63RVMUq1ca+VPP0Z9o8fUUPTv++0O2hSNTGvsxL3ZrKrBcsBKAcgr9YLJZ4PTo6qkgkooGBgcS5+vp6tba2yuVyJf53MaGfJEUiEfn9foI/AAAAAAAAAMijP6tCr9duVmD1I7pUdc+c122c/qN8N87r2akLWqHYnNeh/DVPf5aXui01NXmpC5S7rIO/ioqKlHMzw0DLshQOhxUOh5OucTgccrlcevDBB9XS0iKn06n77rsvo2dGo9Fs2wQAAAAAAAAAZGF8ZZP+sfEpfbzq3gWvvVR1j/Y2btcv7/q2fnntbTV/dXUJOkQx2jx9JT91a2vzUhcodxkHfxMTE5LuhHxOp1MTExOyLCvlupnB4MxA0DRNRaPRxDKhcTOXC3U4HGptbVVdXV3SNZcvX860TQAAAAAAAABAlkKr1qnr68/oemV1Vvd9vOpetTXt1un/elPtX17OT3Moag9O/14bp/8474Rotlqm/6DW2m/bVg9YTrKe+BsfH1d9fb0kaXJyUtFoVCMjIzJNU5FIRKOjoymB4OwpwUyXC3U4HJqYmNDg4GDaSUMAAAAAAAAAy9ONGzf0/PPPS5JefPFFrV69usAdla5LK9do29f/Xjcq/yqn+69XVqvr68/o3NXjTP4tU74b57W3cbut9aTFbSEGLFdZBX8ulysR+kl3ArqWlha1tLQkXTczEBwdHdXo6Kii0ei8gWC65UIBAAAAAAAAYLaRkRH5fL7ESmH/+3//bwUCAbW2tha2sRL0lSr1vca/yzn0i7teWa3vNT6lD64eV6VNvaF0PDt1Qb+869sZLRO7kM1f/k4/mPrYhq6A5Snj4M+yLDU0NGR07cxA0Ov1Js5PTk5qZGREY2NjunjxoqLRqCKRSMr9TPcBAAAAAAAAmC0Wi+n48eM6cuSIpqenE+cvX76s7du36+DBg9q9eze/X8zCG7UP2RLWSNKFVffqjdqHtMeWaiglKxTTL6+9rbam3VkvFztT3e0v9D+vva0Vii18MYC0spr4mzntl4v6+nq53W653e6k8/EAMBqN6uLFixobG5Npmot6FgAAAAAAAFCubp/uyEvdyq7hvNS1w9WrV/VP//RPev/999N+fXp6Wi+88ILC4bD++Z//WU1NTUvcYWnqW/2IzfUeJfhbppq/uqrT//VmTntFSndCv9P/9SbLxQKLlHHw97vf/S5vTTgcDjkcjpTzY2Nj+l//63/prbfeytuzAQAAAAAAABS39957Tz/84Q919erCgcD777+vxx9/XD//+c/1t3/7t/lvroRdrPqmxqvusbXmpap7NDI1pdbaWlvrojS0f3lZ564e1z82PpXVJOnmL3+n/3ntbUI/wAZZTfwttZaWFh09elQTExM6c+ZModsBAAAAAAAAsISmp6f14osv6sSJE4rFMl/67+rVq+ru7tauXbv0/PPPq6qqKo9dlq4LVWvzU5fgb1mZPSncIul8LKY3Pv9cr372mS598cWc926srtb+NWv0g7v/b62o2J7nToHloaiDv7i/+Zu/IfgDAAAAAAAAlpFPPvlEe/fu1cjISE73x2Ix9ff36/z58+rr69O3vvUtmzssfeNVa/JSd+zWrbzURelYUVGhnqYm9TQ1aWRqShempjR265Zu3b6tmspKtdTUaHNtLQExkAclEfwtdm9BAAAAAAAAAKXj7bff1qFDh3Tz5s1F1xoZGdHWrVt1+PBhPfXUUzZ0Vz6mKlblpe6t27fzUhelqZWAD1hSlYVuIBNut1t79rAlLAAAAAAAALAc9PX12RL6xd28eVN9fX221SsXtbEv81K3prIkfu0MAGWpJP4O7HA4dOjQoUK3AQAAAAAAAGAJeDwe22tu27bN9pqlrnn6s7zUbampyUtdAMDCSiL4AwAAAAAAALB85CP4y0fNUrd5+kp+6rKsIwAUDMEfAAAAAAAAgKLywAMPaP369bbVW79+va31ysWD07/Xxuk/2lqzZfoP7OcGAAVE8AcAAAAAAACUmYtV39TrtQ/pvxtPqqfh/9F/N57U67UP6WLVNwvdWsbsnNBjmc+5+W6cL+p6AIDsrCx0AwAAAAAAAAAW78+q0Ou1mxVY/YguVd0z53Ubp/8o343zenbqglYotoQdZsfj8eiVV16xrRZSVXYNqycW0y9/8xt9PDW16Hqba2u16//+mQ2dAQByxcQfAAAAAAAAUOLGVzaprWm39jZunzf0k6RLVfdob+N2tTXt1vjKpiXqMHt2LffJMp/zW1FRoX9Zt051lYv7VXFdZaV+tW6dVlRU2NQZACAXGf3d/NNPP813HwAAAAAAAAByEFq1Tm1Nu/Xxqnuzuu/jVfeqrWm3QqvW5acxG9gxqccynwtrrqnR4P335xz+1VVWavD++9VcU2NzZwCAbC34d/LJyUm1tbVpz549GhsbW4qeAAAAAAAAAGTg0so12vb1v9f1yuqc7r9eWa2urz9TtJN/dgR/LPOZmfa6Op3fsEEP1dZmdd/m2lqd37BB7XV1eeoMAJCNjP4TjlgspsHBQT3xxBN68skndebMmXz3BQAAAAAAAGAeX6lS32v8O92o/KtF1bleWa3vNT6lP6v4lmhc7HKfLPOZneaaGp3fsEHHHQ5trJ4/TN5YXa3jDoc+3LCBST8AKCIrF7qgvr5eW7Zs0dmzZyVJkUhEu3btUn19vfbv3y+v16s6/muOsvT9739fq1atSjm/a9cu9fT0FKAjAAAAAAAAxL1R+1DWy3vO5cKqe/VG7UPaY0s1e3k8Hr3yyis53csyn9lbUVGhnqYm9TQ1aWRqShempjR265Zu3b6tmspKtdTUaHNtrVqznAwEAMyvv79fJ06cSDn/5ZdfZlVnweBPkk6dOqVoNKpjx47prbfekiRZliW/3y+/36/u7m75fD7dd999WT0cxe1Pf/pT2vM3btxY4k4AAAAAACgvt0935KVuZddwXuqiOPWtfsTmeo+WXfDHMp+L00rABwBL5saNG/rDH/6w6DoZBX+S5HA4dPToUf30pz9VMBhUX1+fLMuSJAWDQQWDQbW3t8vn8+mxxx5bdGMovK997WtpJ/5Wr15dgG4AAAAAAAAQd7HqmxqvusfWmpeq7tHI1FTRBT0PPPCArly5Uug2AADIq9WrV+sb3/hGyvkvv/xyzkGtdCpisVgs1yYGBwfV19enSCRyp1jFnXXAHQ6H9u3bp507d+ZaGgXw0Ucf6Tvf+U7i+Ne//rUefvjhAnYEAAAAAEB5YuIPi9X///mpdjd+Z+ELs/S606kf3H237XUBAEBuss1uKhfzMI/HozNnzmh4eFhPPvmkYrGYYrGYotGoDhw4oI0bN+rFF1/U9evXF/MYAAAAAAAAADOMV63JS92xW7fyUhcAACyNRQV/cS0tLTpx4oTGx8e1Z8+eRABoWZYCgYCam5u1Z88ejY2N2fE4AAAAAAAAYFmbqkjdnsUOt27fzktdAACwNGwJ/uLq6+vV29ur3/3ud3rppZfkdDoTIeDg4KCeeOIJdXZ26oMPPrDzsQAAAAAAAMCyUhv7Mi91aypt/XUhAABYYnn7J3l3d7c++OADHT9+XC6XKxEAjo6OaseOHXrsscd08uTJfD0eAAAAAAAAKFstzTvzU7emJi91AQDA0sj7f8Kz0D6A9913n1588UV9+umn+W4FAAAAAACgoKanp/Wzn/2s0G2gDGy+66781K2tzUtdAACwNJZsdn/2PoD19fWJEDAQCKitrY19AAEAAAAAQNn65JNPtH37dvX39xe6FZSBB2trtbG62taaLdXVaiX4AwCgpC35ot3xfQAvXbo05z6ATz75pM6cObPUrQEAAAAAAOTF22+/ra1bt2pkZCSj6y9WfVOv1z6k/248qZ6G/0f/3XhSr9c+pItV38xzpygl+9asKep6AABg6a0s5MO7u7vV3d2tUCikQCCgs2fPSpIikYh27dql+vp67d+/X16vV3V1dYVsFQAAAAAAIGd9fX26efPmvNf8WRV6vXazAqsf0aWqe+a8buP0H+W7cV7PTl3QCsXsbhUl5Nm779YvPv9cH09NLbrW5tpa/eDuu23oCgAAFNKST/yl097erlOnTuncuXP67ne/m5gAtCxLfr9fzc3Nev7559kHEAAAAAAAlCSPxzPv18dXNqmtabf2Nm6fN/STpEtV92hv43a1Ne3W+MomO9tEiVlRUaF/WbdOdZWL+xVfXWWlfrVunVZUVNjUGQAAKJSiCP7iHA6Hjh49qvHxcR06dEiGYSRCwGAwqLa2Nnm9Xn3wwQeFbhUAAAAAACBj8wV/oVXr1Na0Wx+vujermh+vuldtTbsVWrVukd2hlDXX1Gjw/vtzDv/qKis1eP/9aq6psbkzAABQCEUV/MXV19fL5/Pp0qVLOn78uFwuVyIADIVC2rFjhx577DGdPHmy0K0CAAAAAAAs6IEHHtD69etTzl9auUbbvv73ul5ZnVPd65XV6vr6M0z+LXPtdXU6v2GDHqqtzeq+zbW1Or9hg9rZYgcAgLJRlMHfTB6PR2fOnNHw8LCefPLJRAAYjUZ14MABPf/884VuEQAAAAAAYEGzp/6+UqW+1/h3ulH5V4uqe72yWt9rfEp/Fss0LmfNNTU6v2GDjjsc2lg9f5C8sbpaxx0OfbhhA5N+AACUmZWFbiBTLS0tOnHihKLRqN5880299tprkqRYjE2sAQAAAABA8fN4PHrllVcSx2/UPpT18p5zubDqXr1R+5D22FINpWpFRYV6mprU09SkkakpXZia0titW7p1+7ZqKivVUlOjzbW1as1yMhAAAJSOkgn+4hwOh3p7e9Xb26vXXntNFWw6DAAAAAAASkB8uc/f/va3kqS+1Y/YWr9v9aMEf0hoJeADAGBZKvqlPuezZ88e7d69u9BtAAAAAAAAZCS+3OfFqm9qvOoeW2tfqrpHI1NTttYEAABAaSnp4A8AAAAAAKCUxIO/C1Vr81L/AsEfAADAslZyS30CAAAAAFBIt0935KVuZddwXuqiuMSX+xyvWpOX+mO3buWlLgAAAEoDE38AAAAAAABLyOPxaKpiVV5q37p9Oy91AQAAUBoI/gAAAAAAAJaQx+NRbezLvNSuqeRXPQAAAMsZS30CAAAAAAAsoQceeEAtX/uaFI3aXrulpsb2mgAAACgd/GdgAAAAAAAAS2zzXXflp25tbV7qAgAAoDQQ/AEAAAAAACyxB2trtbG62taaLdXVaiX4AwAAWNayDv6GhoZ033336YMPPkj52uHDh+VwOPTpp5/a0hwAAAAAAEC52rdmTVHXAwAAQOnJOvirr69XLBbTwYMHk85PTk4qEAgoFoupoaHBrv4AAAAAAADK0rN3362HbJrQ21xbqx/cfbcttQAAAFC6sg7+3G63vvvd78o0zaSpv2PHjkmSjhw5orq6Ovs6BAAAAAAAKEMrKir0L+vWqa5ycTux1FVW6lfr1mlFRYVNnQEAAKBU5fT/LI8ePar77rtPhw8fTpwLBALyeDz67ne/a1tzAAAAAAAA5ay5pkaD99+fc/hXV1mpwfvvV3NNjc2dAQAAoBStzPXG/v5+PfHEEzp79qwikYgMw9DLL79sZ28AAAAAAJSci1Xf1IWqtRqvWqOpilWqjX2p5unPtHn6ih6c/n2h20MRaq+r0/kNG/TfLl/Wx1NTGd+3ubZWv1q3jtAPAAAACRkFf9evX5dpmnI6nYllPF0ul3p7exUIBGSapvr7+5OW+Pz0009lWZZaWlry0zkAAAAAAEXiz6rQ67WbFVj9iC5V3TPndRun/yjfjfN6duqCVii2hB2i2DXX1Oj8hg164/PP9epnn+nSF1/Mee3G6mrtX7NGP7j7bpb3BAAAQJKMgr9HHnlEk5OTieP6+no1NDSovr5ekUhEFRUVOnz4sCzLUjQaTbq3s7NTx48ft7drAAAAAACKxPjKJv1j41P6eNW9C157qeoe7W3crl/e9W398trbav7q6hJ0iFKxoqJCPU1N6mlq0sjUlC5MTWns1i3dun1bNZWVaqmp0ebaWrXW1ha6VQAAABSpjIK/vXv3amRkRA0NDVq3bp3q6+vlcDgUjUYT+/wdOnRIlmVpYmJCpmkmXm/bti2v3wAAAAAAAIUSWrVOXV9/Rtcrq7O67+NV96qtabdO/9ebav/ycn6aQ0lrJeADAABADjIK/nw+X9rzjz32mA4dOqRQKKSBgQG99tprtjYHAAAAAECxurRyjbZ9/e91o/Kvcrr/emW1ur7+jM5dPc7kHwAAAABbVOZ648GDBzUxMSGv16t9+/bp3Xff1ZkzZ+zsDQAAAACwDNy4cUP79+/X/v37dePGjUK3k5GvVKnvNf5dzqFf3PXKan2v8Sn9WezTBgAAAGDxcgr+wuGw3nrrLe3fv1+S5HK5tGXLFv2P//E/SuZf0gAAAAAAhTcyMqKtW7fqnXfe0TvvvKOtW7dqZGSk0G0t6I3ahzLa0y8TF1bdqzdqH7KlFgAAAIDlLevgb3JyUrt375Ykeb3exPne3l5ZlqWnn37avu4AAAAAAGUpFovptdde0/bt23X58uXE+cuXL2v79u167bXXFIvFCtfgAvpWP2JzvUdtrQcAAABgeco6+BsYGJBlWfL5fKqrq0ucd7lcamlp0ejoqM6ePWtrkwAAAACA8nH16lV5vV698MILmp6eTvn69PS0XnjhBXm9Xl29Wnx7312s+qbGq+6xtealqns0MjVla00AAAAAy8/KbG+IT/l1d3enfO3EiRMaGhrSli1bFt8ZAAAAAKDsvPfee/rhD3+YUaD3/vvv6/HHH9fPf/5z/e3f/m3+m8vQhaq1+ak7NaXW2tq81AYAAACwPGQ98VdfX689e/YkTfvFORwO7dmzx5bGAAAAAADlY3p6Wj/72c/U3d2d1RTf1atX1d3drZ/97GdppwMLYbxqTV7qjt26lZe6AAAAAJaPrIM/AAAAAACy8cknn2j79u3q7+/Pad++WCym/v5+bd++XZ988kkeOszOVMWqvNS9dft2XuoCAAAAWD4I/gAAAAAAefP2229r69atGhkZWXStkZERbd26VW+//bYNneXurm915qVuTSX/ig4AAABgcbLe4w8AAAAAStHt0x15qVvZNZyXuuWir69PN2/etK3ezZs31dfXp6eeesq2mtnaWF2dl7otNTV5qQsAAABg+eA/JwQAAAAA5I3H47G95rZt22yvmY3Nd92Vn7q1tXmpCwAAAGD5yDj4+8lPfqIXX3xRZ8+e1aeffprPngAAAAAAZSIfwV8+ambjwdpa26f+Wqqr1UrwBwAAAGCRMg7+3n33XQUCAe3cuVNtbW267777dN999+mxxx7T2bNnbWlmbGxM169ft6UWAAAAAKDwHnjgAa1fv962euvXr7e1Xq72rVlT1PUAAAAALE8Z7/FnWZYqKioUi8XU2dmphoYGrVu3TvX19WptbbWlmeeee05jY2OJmg6HQ5s2bZLD4ZDT6dR9991ny3NKmWVZOnbsmAYGBvThhx/KMIxCtwQAAAAA8/J4PHrllVdsqVXoZT7jnr37bv3i88/18dTUomttrq3VD+6+24auAAAAACx3GQd/cT/96U+1e/fufPSiM2fOKBQKKRwO69/+7d8UCoVUUVEhSTIMQ2NjY3l5bikwTVN9fX0aGBhInJuYmCD4Q85u3Lih559/XpL04osvavXq1QXuCAAAAOXKzuCv0Mt8xq2oqNC/rFunR37zG12/fTvnOnWVlfrVunVa8X/+3RcAAAAAFiPjpT7jtmzZktX1Y2NjevLJJ3XmzJmMrm9vb1dvb68++OADvfXWW4rFYok/y1EkEtGuXbvU1taWFPoBizEyMqKtW7fqnXfe0TvvvKOtW7dqZGSk0G0BAACgTNm13GexLPMZ11xTo8H771ddZdb/ai3pTug3eP/9aq6psbkzAAAAAMtVxv92Ep8sczqdWT9kdHRUPT09+vTTT7O6r729XXv27JEkTU5OZv3cUmVZlgKBgNra2tTR0aGhoaFCt4QyEYvF9Nprr2n79u26fPly4vzly5e1fft2vfbaa8s2ZAcAAEB+2TGpVyzLfM7UXlen8xs26KHa2qzu21xbq/MbNqi9ri5PnQEAAABYjrL+zxLrsvyXkvr6ekl3AoeGhoZsH6f29vas7ylVlmVpx44dam5ult/vl2makiSv16tz586xrCcW5erVq/J6vXrhhRc0PT2d8vXp6Wm98MIL8nq9unr1agE6BAAAQDmzI/grlmU+Z2uuqdH5DRt03OHQxurqea/dWF2t4w6HPtywgUk/AAAAALbLeo+/pdbY2FjoFpaMYRgKh8OJ1/v27ZPX600Efg0NDbIsq5AtokS99957+uEPf5hRoPf+++/r8ccf189//nP97d/+bf6bAwAAwLIQX+7zt7/9bU73F9syn7OtqKhQT1OTepqaNDI1pQtTUxq7dUu3bt9WTWWlWmpqtLm2Vq1ZTgYCAAAAQDbyHvzNnPLLdlpQ+svE4HLR2dmp9vZ2dXd3p3xtub0XWLzp6Wm9+OKLOnHiRFZLeF69elXd3d3atWuXnn/+eVVVVeWxSwAAgOJwseqbulC1VuNVazRVsUq1sS/VPP2ZNk9f0YPTvy90e2XB4/HolVdeyeneYlzmcy6tBHwAAAAACqToJ/5yWR60lJ04caLQLaBMfPLJJ9q7d69GRkZyuj8Wi6m/v1/nz59XX1+fvvWtb9ncIQAAQOH9WRV6vXazAqsf0aWqe+a8buP0H+W7cV7PTl3QCrEncq4WE/wV6zKfAAAAAFBM8h78LXZKjSk3IHtvv/22Dh06pJs3by661sjIiLZu3arDhw/rqaeesqE7AACA4jC+skn/2PiUPl5174LXXqq6R3sbt+uXd31bv7z2tpq/Yk/kXDzwwAO6cuVKodsAAAAAgLJVmemF8cm769ev56sXADbp6+uzJfSLu3nzpvr6+myrBwAAUGihVevU1rQ7o9Bvpo9X3au2pt0KrVqXn8YAAAAAAFiEjIM/AKUjH8sgldKeKgAAAPO5tHKNtn3973W9sjqn+69XVqvr689ofGWTzZ0BAAAAALA4WQd/0Wg0H30siCU/gczlI/hjTxUAAFAOvlKlvtf4d7pR+VeLqnO9slrfa3xKf1aFTZ0BAAAAALB4We3xF4vF1NHRIZfLpU2bNiX+OJ1O1dXV5atHAFl64IEHtH79ev32t7+1pd769eu1fv16W2oBAAAU0hu1D2W9vOdcLqy6V2/UPqQ9tlQDAAAAAGDxsgr+KioqFIvFNDo6qkgkooGBgcTX6uvr1draKpfLlfjf++67b9ENTk5OLroGsBx5PB698sorttRimU8AAFAu+lY/YnO9Rwn+AAAAAABFI6vgT7oT/sXFYrHEa8uyFA6HFQ6Hk653OByJ1x988IE2bdqU1XTgxMREti0CkL3BH8t8AgCAcnCx6psar7rH1pqXqu7RyNSUWmtrba0LAAAAAEAusl7qcy5zBYKmaSbO7dixI3E+vlzounXr1NLSotbW1rSBYHzir6GhIZtWYYPx8fGsrl+7dq3Wrl2bp26QLbuW+2SZTwAAUC4uVOXn/6teIPgDAAAAAGToypUrunLlSsbXZ5vVZBz8TUxMaNOmTTp+/LgaGhoUjUZlmqai0aguXryosbGxRMg301yBYHy50NlmBoIOh0PRaDSrbwj26e3tzer6H/3oR/rxj3+cp26QCzum/urq6jQ9Pa2qqiqbugIAACiM8ao1eak7dutWXuoCAAAAAMrPqVOnbFutL52sJv66uroSS3e2tLSopaUl5ZpoNKpIJKKRkRGZpmlbIAgge3/zN3+z6Br/8R//oe3bt6uvr0/f+ta3bOgKAACgMKYqVuWl7q3bt/NSFwAAAACAbGUc/FmWpfr6+gWvczgccjgc6uzsTDofDwBHRkYUiUQ0Ojoqy7JS7p8rEGSvPyA7b7/9tg4dOmRLrZGREW3dulWHDx/WU089ZUtNAACApXbXtzqlzz6zvW5NZaXtNQEAAAAAyEVWE3+L2WcvPiGYLhCMTwfOFwhi6fn9fjU3N2d8Pfv7FZe+vj7dvHnTtno3b95UX18fwR8AAChZG6ur81K3paYmL3UBAAAAAOVnx44dcrvdGV8/Pj6e1dZsGQd/586dW1TwN5d0S4ZOTk4qGo1qZGREoVBIQ0NDtj93x44dCofDttedj9vt1qlTp5b0mYvR3Nyshx9+uNBtIEd27O8327Zt22ytBwAAsJQ233VXfurW1ualLgAAAACg/Kxduzavg1QZr0njcDgyWurTDvX19WppaZHX61V/f7+2bNmiyclJ25+x1ArxTCxfHo+nJGoCAAAslQdra22f+muprlYrwR8AAAAAoEhktdRnoXg8Hn3wwQe21jxx4oSt9YBi88ADD2j9+vX67W9/a0u99evXa/369bbUAgAAKJR9a9ZoTzRqaz0AAAAAAIpFSexC39XVpUOHDhW6DaDk2DmhxzKfAACgHDx79916yKYJvc21tfrB3XfbUgsAAAAAADuURPBXX1+vPXv2FLoNoOTYGfyxzCcAACgHKyoq9C/r1qmucnH/KlRXWalfrVunFRUVNnUGAAAAAMDilUTwByA38eU+F4tlPgEAQDlprqnR4P335xz+1VVWavD++9VcU2NzZwAAAAAALE5J7PEHIHcej0evvPLKomqwzCcAoJBun+7IS93KruG81M2HGzdu6Pnnn5ckvfjii1q9enWBOyp97XV1Or9hg/7b5cv6eGoq4/s219bqV+vWEfoBAAAAAIoSE39AmbNjiU6W+QQAoHBGRka0detWvfPOO3rnnXe0detWjYyMFLqtstBcU6PzGzbouMOhjdXV8167sbpaxx0OfbhhA6EfAAAAAKBoMfFXQiYnJwvdAkpQfLnP3/72tzndzzKfAAAURiwW0/Hjx3XkyBFNT08nzl++fFnbt2/XwYMHtXv3blWwx9yirKioUE9Tk3qamjQyNaULU1Mau3VLt27fVk1lpVpqarS5tlattbWFbhUAAAAAgAUR/JWQiYmJpGOCQGRqMct9sswnAABL7+rVq/qnf/onvf/++2m/Pj09rRdeeEHhcFj//M//rKampiXusDy1EvABAAAAAEocS32WiFAoJMuyks69+eabBeoGpWYxS3WyzCcAAEvrvffe0+OPPz5n6DfT+++/r8cff1zvvfde/hsDAAAAAABFj4m/IhSJRBQOh3Xt2jVZlqVoNKpwOJxy3cDAgM6ePauWlhY5nU41NjaqpaVF7e3tBegaxeyBBx7QlStXCt0GAACYx/T0tF588UWdOHFCsVgs4/uuXr2q7u5u7dq1S88//7yqqqry2CUAAAAAAChmBH9FKBwOy+/3Z3StaZoyTTNx3NnZSfAHAACWlYtV39SFqrUar1qjqYpVqo19qebpz7R5+ooenP59odvLyCeffKK9e/dqZGQkp/tjsZj6+/t1/vx59fX16Vvf+pbNHQIAAAAAgFJA8FeEfD6ffD5fodsAAAAoWn9WhV6v3azA6kd0qeqeOa/bOP1H+W6c17NTF7RCmU/RLaW3335bhw4d0s2bNxdda2RkRFu3btXhw4f11FNP2dAdAAAAAAAoJezxBwAAgJIyvrJJbU27tbdx+7yhnyRdqrpHexu3q61pt8ZXNi1Rh9np6+uzJfSLu3nzpvr6+myrBwAAAAAASgfBHwAAAEpGaNU6tTXt1ser7s3qvo9X3au2pt0KrVqXn8YWwePx2F5z27ZtttcEAAAAAADFj+APAAAAJeHSyjXa9vW/1/XK6pzuv15Zra6vP1N0k3/5CP7yURMAAAAAABQ/gj8AAAAUva9Uqe81/p1uVP7Voupcr6zW9xqf0p9VYVNni/fAAw9o/fr1ttVbv369rfUAAAAAAEDpWFnoBgAAxe326Y681K3sGs5LXQDl6Y3ah7Je3nMuF1bdqzdqH9IeW6rZw+Px6JVXXrGlFst8AgAAAACwfDHxBwAAgKLXt/oRm+s9amu9xbJzaU6W+QQAAAAAYPli4g8AsCgXq76pC1VrNV61RlMVq1Qb+1LN059p8/QVPTj9+0K3B6AMXKz6psar7rG15qWqezQyNaXW2lpb6+Yqvtznb3/720XVYZlPAAAAAACWN4I/AEDW/qwKvV67WYHVj+jSPL+M3zj9R/lunNezUxe0QrEl7BBAOblQtTY/dYso+JPsWe6TZT4BAAAAAFjeWOoTAJCV8ZVNamvarb2N2+cN/aQ7EzV7G7errWm3xlc2LVGHAMrNeNWavNQdu3UrL3VzZccSnSzzCQAAAADA8kbwBwDIWGjVOrU17dbHq+7N6r6PV92rtqbdCq1al5/GAJS1qYpVeal76/btvNTNVXy5z1yxzCcAAAAAACD4AwBk5NLKNdr29b/X9crqnO6/Xlmtrq8/w+QfgKzVxr7MS92ayuL7v8KLmdhjmU8AAAAAAFB8v+0AABSdr1Sp7zX+nW5U/tWi6lyvrNb3Gp/Sn1VhU2cAloPm6c/yUrelpiYvdRdjMcEfy3wCAAAAAICVhW4AAFD83qh9KOvlPedyYdW9eqP2Ie2xpRqA5WDz9JX81K2tzUvdxXjggQd05Up+vl8AAAAAAFD+mPgDACyob/UjNtd71NZ6AMrbg9O/18bpP9pas2X6D2otwuAPAAAAAABgMQj+AADzulj1TY1X3WNrzUtV92hkasrWmgDKV2XXsPb9X5ttrbnv/3rY1noAAAAAAADFgOAPADCvC1Vr81OX4A9AFp69+249ZNOE3ubaWv3g7rttqQUAAAAAAFBMCP4AAPMar1qTl7pjt27lpS6A8rSiokL/sm6d6ioX939f6yor9at167SiosKmzgAAAAAAAIoHwR8AYF5TFavyUvfW7dt5qQugfDXX1Gjw/vtzDv/qKis1eP/9aq6psbkzAAAAAACA4kDwBwCYV23sy7zUrVnk1A6A5am9rk7nN2zIetnPzbW1Or9hg9rr6vLUGQAAAAAAQOHxW1cAwLyapz/LS90WJm4A5Ki5pkbnN2zQcYdDG6ur5712Y3W1jjsc+nDDBib9AAAAAABA2VtZ6AYAAMVt8/SV/NTNcloHAGZaUVGhnqYm9TQ1aWRqShempjR265Zu3b6tmspKtdTUaHNtrVr5ew0AAAAAAFhGCP4AAPN6cPr32jj9R12quse2mi3Tf1Br7bdtqwdgeWsl4AMAAAAAAJDEUp8AgAz4bpwv6noAAAAAAAAAAII/AEAGnp26oIe+/J0ttTZ/+Tv9YOpjW2oBAAAAAAAAAP6CpT4BAAtaoZh+ee1ttTXt1vXK6pzr1N3+Qv/z2ttaoZiN3aGY3T7dkZe6lV3DeakLAAAAAAAAlDIm/gAAGWn+6qpO/9ebqrv9RU73193+Qqf/6001f3XV5s4AAAAAAAAAABITfwCABcycrPpbSedv3dJ/u3xZH09NZVxjc22tfrWuWc01j9nfIAAAAAAAAABAEsEfACBLzTU1Or9hg974/HO9+tlnuvTF3BOAG6urtX/NGv3g7ru1oqJiCbtEqbhY9U1dqFqr8ao1mqpYpdrYl2qe/kybp6/owenfF7o9AAAAAAAAoKQQ/AEAsraiokI9TU3qaWrSyNSULkxNaezWLd26fVs1lZVqqanR5tpatdbWFrpVFKE/q0Kv125WYPUjulR1z5zXbZz+o3w3zuvZqQvsCwkAAAAAAABkgOAPALAorQR8yML4yib9Y+NT+njVvQtee6nqHu1t3K5f3vVt/fLa2+wPCQAAAAAAACygstANAACA5SG0ap3amnZnFPrN9PGqe9XWtFuhVevy01ie3bhxQ/v379f+/ft148aNQrcDAAAAAACAMkbwBwAA8u7SyjXa9vW/1/XK6pzuv15Zra6vP6PxlU02d5ZfIyMj2rp1q9555x2988472rp1q0ZGRgrdFgAAAAAAAMoUwR8AAMirr1Sp7zX+nW5U/tWi6lyvrNb3Gp/Sn1VhU2f5E4vF9Nprr2n79u26fPly4vzly5e1fft2vfbaa4rF2LcQAAAAAAAA9iL4AwAAefVG7UNZL+85lwur7tUbtQ/ZUitfrl69Kq/XqxdeeEHT09MpX5+entYLL7wgr9erq1fZtxAAAAAAAAD2IfgDACRhPzLYrW/1IzbXe9TWenZ677339Pjjj+v9999f8Nr3339fjz/+uN577738NwYAAAAAAIBlgeAPQEEQLhUn9iOD3S7+/9u7w9C47jtf+D9n02wbUo8TNr15MHgCC3ZXzTj74m6gJtI7YwUpFoVAHEYvCr3XCkpMod3YbfQuRMnagcASa5LRffo8C5GwAyYLu9LGsG8SKWSX3oel8uTqRblgj7jiybO+1Dpeu9uNoXpeGE0tWbI1mjOamaPPB0rPOZrzP7+ZkTzhfOf/+3/j/4j5b/ynVMf8H9/4TzH329+mOmajbt26FW+88UYMDg7WNYvv6tWrMTg4GG+88ca6swMBAAAAoB6CP2DbCZfaj/XIaJb//o29zRm3jYK/y5cvx8DAQJTL5S39nSwvL0e5XI6BgYG4fPlyEyoEAAAAYKcQ/AHbRrjUnqxHRjPNf+M7TRn3y3//96aMW68LFy6k9uWFlS9FXLhwIYXKAAAAANiJBH/AthAutSfrkdFsv931UFPG/fff/74p49ZrbGwsbt68mdp4N2/ejLGxsdTGAwAAAGBnEfwBTSdcaj/WI2O7PLz8dVPG/dYD7fGfMP39/amP+fzzz6c+JgAAAAA7Q3vcNQMySbjUnqxHxnbquvWvTRn3qW99qynj1qsZwV8zxgQAAABgZxD8AU0hXGpP1iNju/3FrcXmjPvww00Zt14HDhyI/fv3pzbe/v37Ux0PAAAAgJ1F8AekTrjUvqxHxnb781v/b3zv1v+X6phP3foqnm6T4C8i3Rl62nwCAAAA0AjBH5A64VL7sh4ZrTB845/berxGpfl3pc0nAAAAAI0Q/AGpEy61L+uR0Qr/9bf/Pf7z1/8rlbH+4uv/Ff/lt/9PKmOlJa12n9p8AgAAANCoB1tdAO3rRz/6UTz00EN3HT9+/HgMDQ21oCI6RX9/f7z77rupj0njVgKKX//616mMl3ZQcePGjfj5z38eERFvv/12PPLII6mNTX3SfC/+KJbj/752IQ49/nL82wPf3PI43/797+L/unYh/ijqXze02dL4d88XHAAAAAB2rnK5HOPj43cd//rrr+saR/DHhn7zm9+se/zGjRvbXAmdplKpxK5du2J5OZ2b87t27YpLly6ZCZOSNIPZNIOKubm5GB4ejitXrkRExL/8y79EqVSKp59+OrVrsDlpvhcPHL0YERFPRcTUv/1b9P/P/xn/9vvf1z3Otx94IKb2H4yn/uLDus/dDmn8XfmCAwAAAMDOdePGjfjqq68aHkerTzb02GOPxRNPPHHX/8zA4X7GxsZSC/0iIpaXl63xl6J2W49seXk53n///RgYGKgFTRERV65ciYGBgXj//fdT/X1iY81+L3q+/e345+9+N/7zww/Xdd5fPPxw/PN3vxs93/72lq/dbI22+9TmEwAAAGBne+SRR9bNZB577LG6xjHjjw394he/iGeeeabVZdCBmtHqUwu89KTV7jONoOLq1avx4x//OD777LN1f37r1q148803Y3Z2Nv76r/86Hn/88Yaux8a2673o+ta34p+/+934P//3/473/vVf43/87ncbPvZ73/xmnPjOd+K//MmfxB/t2rWl622nRv7t828cAAAAwM42NDS07jJrv/zlL+MHP/jBpscx4w9IXTPa1WmBl640Xs9Gg4pPP/00Dh8+vGHQdKfPPvssDh8+HJ9++mlD12R92/1e/NGuXTH0+OPx5fe+F7/6sz+L/5bPx4+/8504/id/Ej/+znfiv+Xz8as/+7P48nvfi6HHH++I0C+isb8r/8YBAAAAkAYz/oDUpTWjbIUWeOlr5Xpkt27dirfffjvGx8fraht59erVGBwcjOPHj8fPf/7z+MY3vrGl6/MH7fBePP3ww/F0na0/29WBAwdicXGx1WUAAAAAsIOZ8Qc0RZqzV7TAS1+r1iO7fPlyDAwMRLlc3tJaccvLy1Eul2NgYCAuX75c9/n8gfcCAAAAALJH8Ac0RZrBnxZ4zdHI67qVMPbChQtx5MiRmJub2/J1V8zNzcWRI0fiwoULDY+1E3kvAAAAACCbBH9AUzQ6o2yFNp/Ns93rkY2NjcXNmze3fM21bt68GWNjY6mNt5N4LwAAAAAgm6zxBzRNGuvIafPZPNu9Hlkavw9r+f3YGu8FAAAAAGSTGX9A06TRolObz+xoxnvp92NrvBcAAAAAkE2CP6BpGm33qc1ntjz00EPxx3/8x6mN5/dj69JqxbvCewEAAAAA7UHwBzRVI7OAtA7MjgsXLsSRI0fiP/7jP1Ib80//9E9TG2snSnOGnr9VAAAAAGgPgj+gqRoJF7QOzI6xsbG4efNmqmPOz8+nOt5Ok+bfl79VAAAAAGgPD7a6ACDbDhw4EIuLi60ugxbr7++Pd999N9UxX3jhhVTH22lW2n3++te/bmgcbT4BAAAAoH2Y8QdA0zVjRphZZo1L4zXU5hMAAAAA2ofgD4CmW5ldlpZ8Pm+WWQrSCP4EsAAAAADQPgR/AGyLNAMibT7T0Wggq80nAAAAALQXwR/AOm7cuBEnTpyIEydOxI0bN1pdTiakGfyZZZaeRl5LbT4BAAAAoL0I/gDWmJubiyNHjsTHH38cH3/8cRw5ciTm5uZaXVbHS6vdpzaf6Wok+BPAAgAAAEB7ebDVBQC0i+Xl5fjggw/i9OnTcevWrdrxK1euxMDAQJw6dSpefvnl2LVrVwur7Gz9/f3x7rvvNjSGNp/pOnDgQCwuLra6DAAAAAAgBWb8AUTE1atXo1gsxptvvrkq9Ftx69atePPNN6NYLMbVq1dbUGE2pDFDzCwzAAAAAID1Cf6AHe/TTz+Nw4cPx2effXbfx3722Wdx+PDh+PTTT5tfWAY12u5z//792nwCAAAAAGxA8AfsWLdu3Yo33ngjBgcH65rFd/Xq1RgcHIw33nhj3dmB3FsjM/aef/75FCsBAAAAAMgWwR+wI12+fDkGBgaiXC7H8vJy3ecvLy9HuVyOgYGBuHz5chMqzK5Ggj9tPgEAAAAANvZgqwsA2G4XLlyI119/PW7evNnwWHNzc3HkyJF466234oUXXkihuuw7cOBALC4utroMAAAAAIDMMeMP2HHGxsZSCf1W3Lx5M8bGxlIbDwAAAAAAtkLwB+w4Tz31VOpjWnsOAAAAAIBW0+oT2DFu3boVb7/9dvzt3/5t6mNbew4AAAAAgFYT/AE7wuXLl+OVV16Jubm51Mfev39/7N+/P/VxAQAAAACgHlp9Apl34cKFOHLkSFNCvwhtPgEAAAAAaA+CPyDzxsbG4ubNm00bX5tPAAAAAADageAPyLxmBnPafAIAAAAA0C4Ef0DmNTP40+YTAAAAAIB2IfgDMu/AgQNNm5WnzScAAAAAAO1C8AfsCM0I6NJs83njxo04ceJEnDhxIm7cuJHKmAAAAAAA7CyCP2BHaEbwl1abz7m5uThy5Eh8/PHH8fHHH8eRI0dibm4ulbEBAAAAANg5BH/AjtCMdp+NhonLy8vx/vvvx8DAQFy5cqV2/MqVKzEwMBDvv/9+LC8vN1glAAAAAAA7heAP2DHSmPX305/+NBYXF2NxcbGhIPHq1atRLBbjzTffjFu3bt3181u3bsWbb74ZxWIxrl692kjJAAAAAADsEII/YMdII/hLY4xPP/00Dh8+HJ999tl9H/vZZ5/F4cOH49NPP234ugAAAAAAZJvgD9gxGm33uX///obOv3XrVrzxxhsxODhY1yy+q1evxuDgYLzxxhvrzg4EAAAAAIAIwR+wwzQyY+/555/f8rmXL1+OgYGBKJfLW1q3b3l5OcrlcgwMDMTly5e3XAcAAAAAANkl+AN2lEaCv62ee+HChThy5EjMzc1t+dor5ubm4siRI3HhwoWGxwIAAAAAIFsebHUBANvpwIEDsbi4uK3XHBsbi5s3b6Y23s2bN2NsbCxeeOGF1MYEAAAAAKDzmfEH0GSNzDLcSCNtRwEAAAAAyCbBH0CTNSP46+3tTX1MAAAAAAA6m+APoMkOHDgQ+/fvT3XMv/zLv4zLly+nOiYAAAAAAJ1N8AewDdKe9Tc3NxdHjhyJCxcupDouAAAAAACd68FWF8C9VSqVmJubi2q1GkmSRC6Xi0cffTSeeuqp6OnpaXV5wCb19/fHu+++m+qYN2/ejLGxsXjhhRdSHRcAAAAAgM4k+GtTpVIpzp49G0mS3PNxxWIxXnnllcjn89tUGbAVBw4ciMceeyx+85vfpDru888/n+p4AAAAAAB0Lq0+20y1Wo1Dhw7F6OjofUO/iIjJyck4dOhQTE1NbUN1QCPSbvfZrDEBAAAAAOhMgr82UqlU4rnnnotqtVr3uUNDQ8I/aHM//OEPUx1v//79sX///lTHBAAAAACgcwn+2sjs7OyqWX7FYjEuXrwY8/Pzsbi4GBcvXoxyuRzd3d3rnj80NLSpWYJAa6y0+0yLNp8AAAAAANxJ8NdGrly5Utu+ePFinDlzJgqFQuRyuYiIKBQK0d/fH+fPn49yuVw7fqezZ89uV7nAFqTZmlObTwAAAAAA7iT4ayMLCwsREXH69OkoFAr3fGx/f3+cOXPmruPT09NNqQ1IR1rtPrX5BAAAAABgLcFfG1lYWIhcLheDg4Obenx/f3/09fWtOlatVrX7hDZ24MCB+MlPftLwONp8AgAAAACwluCvjVSr1Xj22WfrOufo0aN3HVuZOQi0pzRadGrzCQAAAADAWoK/NrEyS2+9IO9e7tcSFGg/Bw4caKhNpzafAAAAAACsR/DXJnK5XMzPz9c9iyefz991bN++fWmVBTRJIzP2tPkEAAAAAGA9gr82ksvl6j5nvfX8tjIOsL0aCf60+QQAAAAAYD0PtroAGjM3N7dqv6+vr0WVAPU4cOBALC4utroMAAAAAAAyxIy/Dvfll1+u2j9x4kSLKgEAAAAAAKCVzPjrcGfPnq1td3d3R6FQSG3s+fn5uh6/d+/e2Lt3b2rXBwAAAAAAyJLFxcW6usHVm9UI/jrY1NTUqjX+yuVyquOPjIzU9fif/OQn8dOf/jTVGgAAAAAAALLi/Pnz8e677zZtfK0+O9hbb71V2z59+nTkcrkWVgMAAAAAAEArCf461OjoaFSr1YiIKBaLMTg42OKKAAAAAAAAaCWtPjtQpVKJUqkUEbfX9Ttz5kxTrjM6OhpdXV2bfrz1/QAAAAAAADZ27Nix6O7u3vTj5+fn61qaTfDXYZIkiRdffDEiIgqFQpw/f75p1+rq6opnnnmmaeMDAAAAAADsJHv37m3qRKodG/wdO3YsZmdnt/Wa3d3dDQd1L774YiRJEvl8Pj766KOUKgMAAAAAAKDT7dg1/nbv3t1x1zx+/HhUKpXI5XLxySefRC6XS6kyAAAAAAAAOt2OnfE3Pj7e6hLqcvLkyZienhb6AQAAAAAAsK4dO+Ovk4yOjsbk5GQt9Mvn860uCQAAAAAAgDYj+GtzExMTUSqVIiLio48+EvoBAAAAAACwLsFfG5uYmIhTp05FRMS5c+eiUCi0uCIAAAAAAADaleCvTU1NTa0K/Xp6elpcEQAAAAAAAO1M8NeGZmZmYmhoKCIiyuWy0A8AAAAAAID7erDVBbBapVKJl156KSIiTp8+Hf39/Zs+N0mSWFpaioiI69evaw0KAAAAAACwgwj+2ki1Wo0XX3yxtj8xMRETExNx/fr12rGVYC/idtC3kVwuF/Pz802pEwAAAAAAgPYj+GsT1Wo1nnvuuVVhXqVSaWFFAAAAAAAAdBJr/LWBJEnuCv0AAAAAAACgHmb8tYGFhYW6Qr9cLrfu8TvHECICAAAAAADsLIK/NlAoFGJxcbHVZQAAAAAAANDBtPoEAAAAAACADBD8AQAAAAAAQAYI/gAAAAAAACADBH8AAAAAAACQAYI/AAAAAAAAyADBHwAAAAAAAGSA4A8AAAAAAAAyQPAHAAAAAAAAGSD4AwAAAAAAgAwQ/AEAAAAAAEAGCP4AAAAAAAAgAwR/AAAAAAAAkAGCPwAAAAAAAMgAwR8AAAAAAABkgOAPAAAAAAAAMkDwBwAAAAAAABkg+AMAAAAAAIAMEPwBAAAAAABABgj+AAAAAAAAIAMEfwAAAAAAAJABgj8AAAAAAADIAMEfAAAAAAAAZIDgDwAAAAAAADJA8AcAAAAAAAAZIPgDAAAAAACADBD8AQAAAAAAQAYI/gAAAAAAACADBH8AAAAAAACQAYI/AAAAAAAAyADBHwAAAAAAAGSA4A8AAAAAAAAyQPAHAAAAAAAAGSD4AwAAAAAAgAwQ/AEAAAAAAEAGCP4AAAAAAAAgAwR/AAAAAAAAkAGCPwAAAAAAAMgAwR8AAAAAAABkgOAPAAAAAAAAMkDwBwAAAAAAABkg+AMAAAAAAIAMEPwBAAAAAABABgj+AAAAAAAAIAMEfwAAAAAAAJABD7a6ANrXj370o3jooYfuOn78+PEYGhpqQUUAAAAAAADZUy6XY3x8/K7jX3/9dV3jCP7Y0G9+85t1j9+4cWObKwEAAAAAAMiuGzduxFdffdXwOII/NvTYY4+tO+PvkUceaUE1AAAAAAAA2fTII4/EE088cdfxr7/+esOJWusR/LGhX/ziF/HMM8+0ugwAAAAAAIBMGxoaWneZtV/+8pfxgx/8YNPjPJBmUQAAAAAAAEBrCP4AAAAAAAAgAwR/AAAAAAAAkAGCPwAAAAAAAMgAwR8AAAAAAABkgOAPAAAAAAAAMkDwBwAAAAAAABkg+AMAAAAAAIAMEPwBAAAAAABABgj+AAAAAAAAIAMEfwAAAAAAAJABgj8AAAAAAADIAMEfAAAAAAAAZIDgDwAAAAAAADJA8AcAAAAAAAAZIPgDAAAAAACADBD8AQAAAAAAQAYI/gAAAAAAACADBH8AAAAAAACQAYI/AAAAAAAAyADBHwAAAAAAAGSA4A8AAAAAAAAyQPAHAAAAAAAAGSD4AwAAAAAAgAwQ/AEAAAAAAEAGCP4AAAAAAAAgAwR/AAAAAAAAkAGCPwAAAAAAAMgAwR8AAAAAAABkgOAPAAAAAAAAMkDwBwAAAAAAABkg+AMAAAAAAIAMEPwBAAAAAABABgj+AAAAAAAAIAMEfwAAAAAAAJABgj8AAAAAAADIAMEfAAAAAAAAZIDgDwAAAAAAADJA8AcAAAAAAAAZIPgDAAAAAACADBD8AQAAAAAAQAYI/gAAAAAAACADBH8AAAAAAACQAYI/AAAAAAAAyADBXwdJkqTVJQAAAAAAANCmHmx1AWysUqnEhx9+GFNTU6tCv1wuF/v27YuDBw/GK6+8Evl8voVVAgAAAAAA0A4Ef20oSZJ47bXXYnp6esOfVyqVqFQqMTk5GcViMUZGRiKXy21zpQDpWVxcjPPnz9f2jx07Fnv37m1hRQAAAABAp3B/8TbBX5upVqvx0ksvRbVa3fQ5k5OT8fnnn8cnn3wi/AM61uLiYrz77ru1/e7u7h35wQwAAAAA1M/9xdus8ddmTp06tSr0KxaLce7cuZifn4/5+fk4d+5cDA8P33VetVqNoaGh7SwVAAAAAACANmLGX5uZnZ2NiNtJdLlcvmsGX09PT/T09MTRo0fjxRdfXLX23+zsbFQqlSgUCttaMwAAAAAAAK1nxl8bqVQqERFRKBTi/Pnz92zbWSgU4oMPPrjr+EpwCAAAAAAAwM4i+GsjK6HdO++8s6nH9/T0RF9f36pjV65cSbssAAAAAAAAOoBWn23kV7/6VeRyubpadfb09MT09HRt/16zBGmtcrkcN27ciEceecR6jJvg9foDrwUA+DyEduNvknbhd3Hn8t63L+9N83ht6+P1us3rsPMI/trIwsJCFIvFus7Zt2/fqv18Pp9mSaRofHw8vvrqq3jiiSf8A7sJXq8/8FoAgM9DaDf+JmkXfhd3Lu99+/LeNI/Xtj5er9u8DjuP4K+NXLx4se5zFhYWVu0///zzaZUDAAAAAABAB7HGX4e7dOlSbXt4eFirTwAAAAAAgB1K8NfBkiSJqampiIgoFAoxMjLS4ooAAAAAAABoFcFfB3vttdciSZLI5/Px0UcftbocAAAAAAAAWsgafx3q5MmTMT09HYVCIT766KNUWnzevHlz1f4//MM/xPz8/KbPf/zxx+Pxxx9vuI6s+vrrr2v//8tf/rLF1bQ/r9cf7JTXYu2/N/X8+wNA9u2Uz0PoFP4maRd+F3cu73378t40j9e2Pl6v23bS69Ap9xevXr0aV69e3fTjr1y5smp/bZaz1q7l5eXlrRTG9kiSJCIicrlcJEkSs7Oz8dZbb0W1Wo18Ph+ffPJJauv6/c3f/I12oQAAAAAAAG1qdHQ0fvjDH274czP+2txrr70W09PT6/6sWq1GV1dXFAqFOHr0aAwPD29zdQAAAAAAALQLa/y1uc8//zwiIvL5fHR3d0dfX1/k8/lVj6lUKjE6OhpdXV0xMzPTijIBAAAAAABoMa0+21ypVIpisbhuO8/R0dEolUp3HT937lz09PTUfa3FxcX4x3/8x1haWoqlpaV44okn4pvf/Oamz7fGHwAAAAAAwMbqXePvd7/7XXz11VexZ8+e2LNnTxw+fDj27t274eMFfx1uZmYmXnrppVXHcrlc2y5aCQAAAAAAQHPs2ODv2LFjMTs7u63X7O7ujvPnz6c+7vHjx+9aB7BcLkd/f3/q1wIAAAAAAKA97dg1/nbv3p2Za77zzjt3HbPWHwAAAAAAwM7yYKsLaJXx8fFWl5CaXC4XuVwukiSpHVtaWmpdQQAAAAAAAGy7HTvjL2v27du3an/Pnj2tKQQAAAAAAICWEPxlxNqg78knn2xJHQAAAAAAALSG4K9NTE1NNXT+2tae3d3dDY0HAAAAAABAZxH8tYFqtRpDQ0MNhX8LCwu17UKhEIVCIY3SAAAAAAAA6BCCvzaQz+ejUCjE2bNnt3R+pVKJJElq+++8805apQEAAAAAANAhBH9toru7OyqVypZm/b322mu17eHhYbP9AAAAAAAAdiDBX5s4evRoREQMDQ1FtVrd9HkTExNRqVQiIqJYLMbIyEhT6gPodNVq9a4Z0gAAAAAAWSL4axN3ztJ77rnnNjXzr1QqxalTpyLi9ky/M2fONK0+gE5UqVTi2LFjsXfv3jh06FD09vZGV1dXdHV1xejoaKvLAwAAAAA6RLVajePHj8fx48dbXco9Cf7aSC6Xi4iIJEliaGgoent7Y2Zm5q7ZKTMzM9Hb2xujo6ORz+fj3LlzZvoBrDE6Ohq9vb2xe/fuuHjxYiwuLsb8/HyMjIxEkiRRKpXi0KFDZgACAAAAABtamVxw6NChmJ6ejuvXr7e6pHvatby8vNzqIrjt+PHjMT09vanH5nK5ePXVV2N4eLjJVQF0nomJiTh16lT09fXF+Pj4XT+fmpqKoaGhiLi9xur58+e3u0QAAAAAoE0lSRKTk5MxMTFx1/Js7X4/UfDXZpIkidnZ2fi7v/u7WFhYiIWFhUiSJHK5XOzbty8OHjwY/f390dPT0+pSAdpStVqNQ4cORUTE/Px8bTb1WseOHYvZ2dmIiLh48eKqlssAAAAAwM508uTJmJycjIiIfD5fm4C1svRauwd/D7a6AFbL5XLR398f/f39rS4FoCONjY1FxO0P4I1Cv4iIwcHBWvD33nvvrTszEAAAAADYWRYWFqJQKMTrr79em4Q1MzPT4qo2T/AHQKasfBvnfjP4uru7a9uff/55U2sCAAAAADpDO8/m24wHWl0AAKTlzm/ePP300/d8bC6Xq80ITJLkrl7dAAAAAACdRvAHQGastO6MuN1/+34OHjxY265UKk2pCQAAAABguwj+AMiMO2ft7d69+76P37dvX217YWGhKTUBAAAAAGwXwR8AdUuSJEZHR6OrqyuSJGl1OTV3hnd79uy57+NXWn1GRFy7dq0ZJQEAAAAAa7Tr/cUseLDVBQDQOarVaoyNjcXk5GTt2NLS0qoAbatmZmZiamoqLl26FAsLC5EkSeRyudi3b18cPXo0isXifa9z/fr12vZmanr00UcbrhsAAAAA2Jx2v7+YBYI/AO6rUqnEe++9F9PT000Ze2hoqNams1AoxMGDB2NpaSkqlUrtf6Ojo3H69OkYHBzccKylpaUt1+GbRQAAAADQHJ1yfzELBH8ArCtJkpicnIyJiYlVa+elaWJiIk6dOhUREcViMUZGRlZ96yZJknjttddq/0Fw6tSpqFarMTIysmHN9bhzHcCd8G0fAAAAANgunXh/MQus8QfAKkmSxLFjx6KrqytGR0drH8rFYjG++OKL1AKymZmZ2ofy8PBwnDlz5q6xc7lcjI+PR19fX+1YqVSKqampdcdc+6FeD20/AQAAAKBxnXx/MQsEfwCsksvlYnZ2trY9MjIS8/PzcebMmcjn87Fnz55UrvPyyy+vusa9vPPOO6v2T548mUoNd64JeOfsPwAAAABga3bS/cV2JPgD4C59fX1x+vTpmJ+fj+Hh4VXflEkjICuVSrUZea+++up9H5/L5WJ4eLi2nyRJTExM3PW4O/+jod71/vbt21fX4wEAAACA9XXq/cUsEPwBcJfx8fGmLnJ79uzZ2vad0+zv5ejRo6v215uOf2d4t5m+4deuXatt5/P5TdUBAAAAANxbp95fzALBHwDbampqqvZtnFwut+nArVAorNpfaRdwpzuDv4WFhfuOeWc4KPgDAAAAgPbXzPuLWSD4A2BbzczM1LYPHjxY17lrP5zvHGvteJuZ8bcSDnZ3d9dVBwAAAADQGs28v5gFgj8AttWdU+jrXVdv7Qf52ll9dwZ4m/nGTqVSiYiInp6euuoAAAAAAFqjmfcXs0DwB8C2SZKkNg0/IlYt6rsZTz755Kr9tbP68vl8bWp/pVJZda217vw2T7FYrKsOAAAAAGD7Nfv+YhYI/gDYNmu/QVPvunprv8GzMmPvTq+//npt+85FfteamJiIiIjh4eG6/wMBAAAAANh+23F/sdMJ/gDYNnNzc6v29+zZU9f5u3fvvu9j+vv7ay0/S6XSuh/eMzMzMT09HYVCIUZGRuqqAQAAAABoje24v7ieOwPHdm8P+mCrCwBg57h+/XpD5z/66KOr9peWltZ93Pnz5+PYsWMxOzsbvb29MTw8XAsDp6amYnJyMgqFQnz00UcN1QMAAAAAbJ/tur8Ycbut6MLCQlSr1SiVSrXj1Wo1RkdH4+jRo7F79+7Ys2dPW3UUE/wBsG2uXbvW0Plrv5Fzrw/68+fPx8zMTJRKpZicnIxSqRS5XC4OHjwY5XI5+vv7G6oFAAAAANhe23V/8eTJkzE5ObnhOKVSqRYG5nK5mJ+fb6iuNAn+ANg2dy68G7H1qfWb1dPTEz09PU29BgAAAACwPbbr/uKZM2fizJkzTRm72azxB0DLNDo1v9nBIQAAAADQvtxfvJvgD4COsXax3noX7wUAAAAAdq6dcH9R8AdAx7jXYrsAAAAAAPeyE+4vCv4A2Da5XG7VfqMftFmcig8AAAAArM/9xfsT/AGwbR599NFV+/X24F77+D//8z9vtCQAAAAAoEO4v3h/gj8Ats3ab9BcuXKlrvOvXbu2an/fvn2NlgQAAAAAdAj3F+9P8AfAtnn66adX7dc7FX/tN3Ly+XyjJQEAAAAAHcL9xfsT/AGwbdZ+g+bLL7+s6/yFhYVV+4VCoeGaAAAAAIDO4P7i/Qn+ANg2uVxu1QK81Wq1rvPvnLrf3d2dVlkAAAAAQAdwf/H+BH8AbKtnn3121X6lUtn0uZcuXapt9/T0pFYTAAAAANAZ3F+8N8EfANvq6NGjq/ZnZ2c3fe6dH+LFYjG1mgAAAACAzuD+4r0J/gCoy9oFcOvV39+/an9iYmJT501NTdW2+/r6Vk3pBwAAAAA6g/uLzSX4A6AuS0tLq/a38kE9MjJS265WqzEzM3Pfc86ePbvu+QAAAABA53B/sbkEfwBs2szMTCRJsurYhx9+WPc4w8PDkc/na/s/+9nP7hr3ThMTE7Vp+KdPn151LgAAAADQGdxfbL5dy8vLy60uAoD2U6lUYnZ2Nq5duxZJksTCwsKG/bLz+Xw89dRTkc/n49FHH42nnnrqvovjJkkS3//+92sfyPl8PsrlchQKhVWPK5VKMTo6GhG3P9Cz/G0cAAAAAMgK9xdbQ/AHwLru/ECsV19fX4yPj9/3cUmSxGuvvRbT09O1Yysf8tevX49Lly7VPrjL5fJd/bsBAAAAgPbk/mJrCP4AaLlKpRIffvhhfP7557G0tBRJkkQ+n499+/ZFf39/DA4OtrpEAAAAAKBNub/4B4I/AAAAAAAAyIAHWl0AAAAAAAAA0DjBHwAAAAAAAGSA4A8AAAAAAAAyQPAHAAAAAAAAGSD4AwAAAAAAgAwQ/AEAAAAAAEAGCP4AAAAAAAAgAwR/AAAAAAAAkAGCPwAAAAAAAMgAwR8AAAAAAABkgOAPAAAAAAAAMkDwBwAAAAAAABkg+AMAAAAAAIAMEPwBAAAAAABABgj+AAAAAAAAIAMEfwAAAGROkiSRJEmrywAAANhWgj8AAAAy5dixY9HV1RVdXV1RrVZbXc66SqVSdHV1CScBAIBUCf4AAADIjGq1GrOzsxER0dfXF/l8vsUVre9Xv/pVJEkSCwsLrS4FAADIEMEfAAAAmTE2NlbbPnHiRAsrubc9e/ZERMS+fftaWwgAAJApgj8AAAAyIUmSmJycjIiIQqEQhUKhxRXdrqlUKt3V0vPJJ5+MiIhcLrfq+MzMTExNTW1XeQAAQMYI/gAAAMiEldAvIuLVV19tYSV/MDk5GaOjo/H9738/ZmZmasd37959V+h38uTJeOmll2JoaGi7ywQAADJC8AcAAEAmnD17NiJuz6Lr7+9vcTW3FYvFGB4ejiRJ4qWXXoqTJ09GxO0WnyvtPiuVShw6dCgmJycjn8/HuXPnWlgxAADQyQR/AAAAdLypqalaO812me0XcTuEHBkZifn5+RgZGYmpqak4dOhQLCwsxO7du6NUKkVvb2/s3r07zp07F1988UX09PS0umwAAKBD7VpeXl5udREAAADQiN7e3qhUKhERMT8/f1cbzXYyMTERb731ViRJEt3d3TE8PCzsAwAAUmHGHwAAAB2tUqnUQr9isdjWoV+lUlm11t/CwkJ8+eWXLawIAADIEsEfAAAAHe29996rbb/yyistrGRjlUoljh07Fr29vRER8cEHH0ShUIi/+qu/irNnz8bevXtjdHS01q4UAABgKwR/AAAAdKwkSWJ6ejoiIrq7uyOfz7e4otWq1Wr09vZGb29vXLp0KcrlcoyPj8f169fj+vXr0dPTE//0T/8UfX19USqVoqurK0ZHR1tdNgAA0KEebHUBAAAAdIaZmZmYmJiIPXv2RC6Xi0cffTR2794d169fj2vXrsX09HScO3duVfiWJEkMDQ3F7Oxs9PX1xfj4eKo1nT17trY9PDy85XGa9dymp6ejUqlEoVCIjz76qNaGdGlpKarVakRE5HK5GB8fj4mJiTh16lSUSqUYGRnZ8nMBAAB2rl3Ly8vLrS4CAACA9lWpVGJoaKgWVG0kn8/HF198UduvVqvx3HPPrWpfWSwW48yZM6nVtnfv3nWvvVnb8dxmZmaip6dn1bHR0dEolUqxuLi46niSJLG0tNR2MxcBAIDOoNUnAAAA9zQ6OnrfYCwiolwu17bXC8YiIiYnJ1Ora2Jiora91dl+2/Hc1oZ+EVE7d+21c7mc0A8AANgyrT4BAADYUJIkMTs7GxERhUIhDh48GEtLS7Wf79mzJy5duhRHjx6NQqGw6vizzz4bPT09MTExEZVKpfazldaXjSqVShFxOywbHBys+/xWPreV61y/fr3uugEAADYi+AMAAGBDf//3fx8RERcvXlw30KpWqzE0NHTXjLuVdesiIgYHB2stOVfOaTT4m5qaqs2WKxaLWxqjlc/t6NGjERGpBKAAAAArtPoEAABgQzMzM1EsFtcNqJIkieeeey7eeeed+47T3d1d275zVt1WnT17trb96quvbmmMVj63/v7+WngIAACQFjP+AAAA2NCXX34Z586dW/dnL774Yhw8eHBTs9b27du37vZWVCqVWnvNvr6+yOVyWxqnHZ8bAABAIwR/AAAAbOiLL75Y9/jJkyejUqnExYsXNzXOnTPh8vl8QzW99957te0TJ05seZx2fG4AAACN0OoTAACAuszMzMTk5GT09fVteo26hYWF2nYj4ViSJDE9PR0Rt9fHS3uNvFY+NwAAgEYJ/gAAAKjLyy+/HBERg4ODmz7n+vXrEXG7NWcj7lzb7/XXX29orPW08rkBAAA0SvAHAADApo2OjkaSJBER0dPTs6lzkiSJarUaERFHjx5t6PqTk5MRcXtm3Wavv1mtfm4AAACNEvwBAACwaaVSKSLqm902NzdX2+7v79/ytScmJmrB3PDw8JbH2UgrnxsAAEAaBH8AAABsytTUVG27ntltK+c12gpzJZiLqK8V52a0+rkBAACkQfAHAADApkxMTNS28/n8ps9bCcdGRka2fO2ZmZlaS81mzPZr5XMDAABIi+APAACATZmdna1t7969e1PnzMzMRJIkUSwW6wrU1mrmbL+I1j43AACAtAj+AAAAuK+V2XYrNht0vfXWWxHR2Iy4arVaC+b6+vpSD9la+dwAAADSJPgDAADgvtaGY5sxMzMTlUolRkZGIpfLbfnaY2Njte0TJ05seZyNtPK5AQAApEnwBwAAwH0tLCys2k+S5L7n/OxnP4t8Pt/QmnxJksTk5GRERBQKhSgUClseayOtem4AAABpE/wBAABwX3v27Fm1vzYsW+vkyZNRrVbj3LlzDV13JfSLiHj11VcbGmsjrXpuAAAAaRP8AQAAcF9rZ9q99957Gz52YmIiJicn49y5cw2vx3f27NmIiMjlctHf39/QWBtp1XMDAABIm+APAACA+8rn86vWspueno6ZmZm7Hjc6OhqnTp2KcrkcPT09DV1zamqq1nazWbP9Ilrz3AAAAJph1/Ly8nKriwAAAKD9TUxMxKlTp1Yd6+vri56enqhWqzE9PR3VajXK5XIqs/N6e3ujUqlERMT8/PyqcC5t2/3cAAAAmkHwBwAAwKYdP348pqen1/1ZPp+Pcrl8V+vMrahUKtHb2xsREcViMc6cOdPwmPezXc8NAACgWQR/AAAA1GViYiKmpqZidnY2crlcHDx4MAYHB1OdCXdnCPfFF19s23p62/HcAAAAmkXwBwAAQFupVqtx6NChiIjo7u6O8+fPt7giAACAzvBAqwsAAACAO01MTNS2h4eHW1gJAABAZzHjDwAAgLayd+/eiLi9rt4XX3zR4moAAAA6hxl/AAAAtI1SqVTbNtsPAACgPg+2ugAAAAC4U7FYjIiIwcHBFlcCAADQWbT6BAAAAAAAgAzQ6hMAAAAAAAAyQPAHAAAAAAAAGSD4AwAAAAAAgAwQ/AEAAAAAAEAGCP4AAAAAAAAgAwR/AAAAAAAAkAGCPwAAAAAAAMgAwR8AAAAAAABkgOAPAAAAAAAAMkDwBwAAAAAAABkg+AMAAAAAAIAMEPwBAAAAAABABgj+AAAAAAAAIAMEfwAAAAAAAJABgj8AAAAAAADIAMEfAAAAAAAAZIDgDwAAAAAAADLg/wcw18EEs0m/lQAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABv4AAAMWCAYAAAA53PFgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAACWBklEQVR4nOz9S49j6Xkv+D68LAbJYNwqM7KUkCBUowuNRFXhlNC78kDWAYQzNLDb0sCa9MDeewvWkXzZX+J8hd02BFi9ZcNTDxqCBhoL6O0CsgYSoCpo4AMIhoWqyow7ycXgbfEM0qTjwoggI8gMkvH7AYkKMrie9XKREZUZ/3ieNzcYDAYBAAAAAAAALLX8fS8AAAAAAAAAuDvBHwAAAAAAAKwAwR8AAAAAAACsAMEfAAAAAAAArADBHwAAAAAAAKwAwR8AAAAAAACsAMEfAAAAAAAArADBHwAAAAAAAKwAwR8AAAAAAACsAMEfAAAAAAAArIDifS+A6XS73eh2u9Hr9WIwGEQul4t8Ph9JksTa2tp9Lw8AAAAAAIB7IvhbEo1GIxqNRgwGg2sfV61WY319PYpFLy0AAAAAAMBDkhvclCRxr3q9XhwcHES/35/quO3t7ahUKnNaFQAAAAAAAItGW9gC63a7sb+/f2OX3zhHR0cREcI/AAAAAACAB0Lwt8Da7fa50K9arUa1Wo1CoRD5fH6011+aptHpdC4df3R0FGtra5HP59/ksgEAAAAAALgHgr8Fdna85+PHjyNJknOfT5IkkiSJSqUSrVYrjo+PL3UHNhqN2NzcfCPrBQAAAAAA4P5oBVtgvV4vIiK2trYuhX4XVSqV2NraunT/6enpXNYGAAAAAADAYhH8LbB+vx+5XC6q1epEj69UKlEuly/VyLJsHssDAAAAAABggQj+Fli/34+1tbWpjrkY/A3rAAAAAAAAsNoEfwtq2KU3Lsi7zk0jQQEAAAAAAFhNxfteAOPl8/l4++23I5+fLpstFi+/pIVCYVbLAgAAAAAAYEHp+Ftg04Z+ETF2P7/b1AEAAAAAAGC5SIRWTLfbPXd72lGhAAAAAAAALCfB34q5GPzVarV7WgkAAAAAAABvkj3+Vkyj0Rh9XCqVIkmSiY/t9XrRbrcjy7LIsiwKhULkcrmJj8/n8/YTBAAAAAAAuEK/3x+7bdtVBoNB9Pv9yOfzkc/nY21tLYrFq+M9wd8KabVaMRgMRrd3dnamOr7dbsfJycmslwUAAAAAAMAMbG5uXhv8GfW5Qur1+ujjra2tyOe9vAAAAAAAAA+FZGhFnJycRL/fj4iIarUa1Wr1nlcEAAAAAADAm2TU5wrodrvRbDYj4vW+fltbW7eqc3F/vmq1em276EX2+LvewcFBDAaDyOVy8dZbb933chae6/XvHsq16Ha758YNb25uTrVPKQCr7aH8/xCWha9JFoX34sPltV9cXpv5cW2n43q99pCuw7L8fHHaPf56vV6kaTq6fVMOI/hbclmWxf7+fkREFIvFePTo0a1rXRwNWqlUolQq3Wl9/LtcLjf6Buu63sz1+ncP9VokSfKgni8A13uo/z+EReVrkkXhvfhwee0Xl9dmflzb6bherz3k67AqP1/sdDrngr+btnkz6nPJ7e/vx2AwiEKhcKfQDwAAAAAAgOUm+Ftih4eH0ev1IpfLxePHj29MeQEAAAAAAFhdkqIldXx8HKenp0I/AAAAAAAAIkLwt5ROTk4iTdNR6Fcs2qoRAAAAAADgoZMYLZk0TaPZbEZExKNHj4R+S2R9fX20iSo3c73+nWsBAP5/CIvG1ySLwnvx4fLaLy6vzfy4ttNxvV5zHR4eqdESSdM0jo+PIyLirbfeiiRJ7nlFTKNWq933EpaK6/XvXAsA8P9DWDS+JlkU3osPl9d+cXlt5se1nY7r9Zrr8PAY9bkkWq3WudBvbW3tnlcEAAAAAADAIhH8LYF2ux1HR0cREbG9vS30AwAAAAAA4BKjPhdct9uNg4ODiIjY2tqKSqUy8bFZlkWWZRERMRgMjAYFAAAAAABYYYK/Bdbr9WJ/f390u9lsRrPZjMFgMLpvGOxFxLn7L8rlcvGVr3xlPgsFAAAAAADg3gn+FlSv14u9vb1zYV6v17vHFQHMV6FQOLfZcKFQuMfVAAAAAADLxM8XXxP8LaAsyy6FfgCrrlAoxMbGxn0vAwAAAABYQn6++JrgbwH1+/2pQr9cLjf2/rM1hIgAAAAAAACrTfC3gJIkiadPn973MgAAAAAAAFgi+fteAAAAAAAAAHB3gj8AAAAAAABYAYI/AAAAAAAAWAGCPwAAAAAAAFgBgj8AAAAAAABYAYI/AAAAAAAAWAGCPwAAAAAAAFgBgj8AAAAAAABYAYI/AAAAAAAAWAGCPwAAAAAAAFgBgj8AAAAAAABYAYI/AAAAAAAAWAGCPwAAAAAAAFgBgj8AAAAAAABYAYI/AAAAAAAAWAGCPwAAAAAAAFgBgj8AAAAAAABYAYI/AAAAAAAAWAGCPwAAAAAAgHuQZdl9L4EVU7zvBQAAAAAAAJNptVrR6XQil8uN7svn/73HZxgkDQaDiIhYX1+PYnGyKGB/fz86nU68/fbb52pOs57hcWcDrcFgMNU6Vl23241WqxWnp6fR7/fjrbfeirW1tfteFivCVxkAAAAAACyJbrcbaZpO9NhcLhfr6+sTPTbLsuh0OhER0W63o1KpTLyeVqs1ChqvWke1Wp2o3irqdrvRaDSi2+1Gv9+fyzmyLItGoxFpmsaTJ08mDm5vqtlut6Pf70eWZVEsFiOXy0383rhY6/T0NHK5XOTz+UvrOxtkn30vZVk2CpGTJLkUHvd6vRgMBqO6ETHVcx/WPhuYFwqFmVy/+yL4AwAAAACAJbG5uRmbm5vR7Xbj8PDwUpCUy+Xi8ePHU3fXnZ6envt40nBnuJ6IuLSmarUaGxsbSx2izEKv14terxe5XC5yudy1IeltajebzXNhcJZld7rm7XY7Tk5Ootfrjf380dFRlMvl2NjYmPh91u124/j4+NZriojY2NiIWq127r69vb2ZXs+IiO3t7VuFm4tC8AcAAAAAAEsmSZLY2tqKg4ODc/dXKpVbjdRstVqjj8+GgNOuaW1tLdI0jVwuF1tbW7eqs2oqlcq5IOnly5d37vwbdhHe9rW6yuHh4ahmqVSKWq0WSZJEPp+PXq8Xp6eno/Oenp7G1tbWynVzJkly30u4E8EfAAAAAAAsoVntC3d2zOdQq9W6VddTu92e6dpWUZIktwr+siyLNE0jTdOZjwzNsiz29/dHXX7juuuKxWLUarUol8ujTrthF999hX/5fH6m16JarS79XpTLvXoAAAAAAHjASqXSudDuqvGM1xm3Z+A04z6HsiwbhTCCv9nJsiwODw8vhbPVajXW19dnMu7y8PDw2tDvrGKxGDs7O6Nu0+Pj4yiVStcGZmdHj66vr4/WO9xb7+LH424XCoVrn8Nwn7+z+wVO4uzXzMbGxlTHLiLBHwAAAAAALKkkSc4FQhfDoUlcFfxNa9jtFxFRLpenPp7x8vn86HXN5XJRq9WiWq2OwrS7dr2laXqp/k3W1taiWCyOQrPDw8PY3d298bhcLjfaE3IWhiFftVq91WjZXq8Xr169iohYmf0ol/8ZAAAAAADABLIsi6Ojozg6OrrUTbSsxnXWTdP11+v1rgyNzu77N4lheFQoFFYiQFkk5XI5tra24itf+UrUarVz13faDreLTk5ORh9PEvoNra+vjz7u9XrR7XZvPGZe74vbdurV6/WImDzwXAa+8gAAAAAAWHmdTif29vai1WpFq9WKvb29W3XHLZokSS7dN0kAMzTs9isWi5cCpGm7/uzvNz87Oztz2Uev1WqdGxM67v10lYtdneM6R+dtMBiMRnxOq9frjd7jt+kWXFSCPwAAAAAAVtZgMIhGoxH7+/vnOtv6/X7s7+9Ho9G48/5o9ymfz1/a+2yaQHMY1qyvr1/a02+a4O/s/n7GfC6Pi6/xTfvonXVxP71JOkTv2p04zjRh5VnDbr9isTj1fpaLTPAHAAAAAMBK6vf7cXBwMPoB/zj1ej0ODg7utEfafbsYfEwa/LXb7VHoWa1Wx3aUTTru8+z+fjr+lsfF7tBisTjV8WeDwsFgcOMI3VmP+syybOo1R7x+3sPQc3t7e6Zrum+CPwAAAAAAVk673Z54nOdwDOjZ8GqZXAzaJt3jb9jtN+zQS5Lk1uM+h9f5NiEM9+eugffF1/uqMbPz2lOzUqlEqVSa+rijo6OIeP3ev23H4KLyFQgAAAAAwMoYDAZRr9ej2WxOdVyWZXFwcBDr6+uxsbExl5GE83LVPn83BRrDUO9sp1+1Wj137SYN/oah6aQjE4f7q7Xb7ej3+6MAqlAoRKFQiLW1tSiXy3cOEt/UeYa63W6kaTo6Xy6XG52nUqksfMg0yfvmrIuB3pvu+LvN3nytVmsUjm9sbMx0PYtA8AcAAAAAwEro9XpxdHR0ZdfRJJrNZnQ6ndje3l6a7rXbBH/Dbr9cLneuY/Bi8BfxOii5LtA7u7/fTWM+e71e1Ov1UaBYLBYjSZJYW1uLXq8XnU4n+v1+dDqdqNfrUSqVYmtra+rX4k2dZ6jb7cbJycmlDtPBYBC9Xi96vV40m82p9tC7D71eb6rg7+LX2k37ZZ4N/nq93rmQdDAYjILSSqUy00D2rOPj44h4va/lsnyNT2P1nhEAAAAAAA9OmqZxcnJyY/AwiW63G3t7e7G5uTl237tFVCwWz434bLfb1659GO5dfEyxWIxCoXBuBGSaptcGf2e7Aq8LjVqt1mjEYrFYjJ2dnUvBS5ZlUa/XR8Fkp9OJV69exfb29sTdhG/qPBHnA8ZCoRDr6+uRJEnk8/no9/ujjsPh9Vy0vSRzudy5r5lOpzPV87/49TbJSM9erxfHx8djx/AOg9J6vR71ej2q1eqtuvquMvwekcvlolarzazuIhH8AQAAAACw9JrN5kxCv6HBYBDNZnNpgr9hJ9vQdV2Pww60iMvB3/C+er0+ut3pdCLLsivHNA7HfA73ChwnTdNRp1WxWIzd3d2xj8vn87G1tRVJkoweH/F6T7bBYHDj6/GmzhMR0Wg0RtdpfX09Njc3xz5uc3MzWq1W1Ov1hQv+1tbWzgW3aZrGxsbGRCM5G43Gpfuu6mgcBoKtVmsUtk4iTdPodDrx6NGjO48JHXZdRkTUarWZjx1dFKv5rAAAAAAAeFCuC50Wqea8XOy06/f7V3ZfDYOXYrE4dtThuOc9DPfGGX7uqjGf3W73XLi2s7NzZa2harUa6+vr5+47Pj6+NtB8U+eJiDg8PJwo9BuqVCrx5MmThQuSx73W4wK9ccY97qYwbRjOF4vF2NjYiO3t7Xjrrbdie3s7qtXq2L01e71eHB4eTrSm6wzfG4VCYWW7/SIEfwAAAAAArICHHvyNC92uCq+GHV4XA6+hcYHgVV1avV5vFOaUSqWxjzkb2kyzb9vm5ualIGg4wvM+z5Om6ega5nK5G0O/s+6yj+A8VCqVS8+92WxGq9W68pgsy2J/f39sh+1VHX9nH7u1tRW7u7tRq9WiUqnE2tpaVCqV2Nraiq985Stj35edTmeqTsGLhp2DEREbGxu3rrMMBH8AAAAAACy9JElmGqgUi8Vr96tbNPl8/lKAMy74a7fbo3GT13WfXQxfhuM+LxqGKYVCYez1T9P03HjLaTveLoZqvV5vbPfhmzpPlmXnugpv0zm2SMFfxPjOyKOjozg+Pj43Pjbi9ajOly9fRqfTGRvQXdfxl8vl4vHjxze+Npubm2PDuZOTk2uPu0qWZaNji8XiVHsYLiPBHwAAAAAAK2GWHXrL1O03dLHr76qALOLm5zfu82f3grt4jqvGfA73VBu6qiPsrut4U+e52HW2aKM7b2NtbW1siJemabx69So+//zz+OKLL+Lzzz8fdUI+fvz40mteKBSuDP6q1Wp85StfmThMr9Vql17DwWBwKYicxPHx8ajjcHt7e+rjl43gDwAAAACAlfDQg7+Locq4jr9hmHVTYJXP5y+N7hw3/nEY/I0b85ll2aWgZtput0nW8abOM+6+m/a0Wxabm5uxtbV15eeHwVmhUIjHjx9HkiTnOiwjZv81M249ww7TSbXb7dF7vlwuL1UX722txjsSAAAAAIAHb1bjPpdtzOfQxQ6swWBwbjznMLTK5XJXduiddXEk4sVxn2f395tmj8FpXXwtLu4t96bOczFgnLarcNFVq9V4++23Y2NjI4rF4mh0bKFQiFKpFFtbW/HkyZPR19jFjtJZj9BcW1u7dI2n7fg7O5Z11ff2G1qsQbIAAAAAAHAH5XI5Go3GnWsso3FhZbvdHgUywzGVk46nrFar54KTiNcdg8Pjh91XxWJxbOfbxY6wi3sQTmrc88qybHTO+zrPqgV/Ea87GGu12kR7F54N/nK53FzC8nGdhZM6OTk5t5/lou2tOC86/gAAAAAAWBmzCO2WNfiLuDzictgN1+v1RkHdNPvSXbwWZ0ddDj++qnvwbHfgXdw0TvO+zjOr8y6jbrd7riNykqDwNi6Gq5OGd71e79y+jw+l2y9C8AcAAAAAwAq567jPZR3zOXRxn7phV9Zwn7NisTjV9bkY/J0d9zkMFScZGxpxeXTmpMYFcteFdPM6z8Wg77bnWQUnJyejjwuFwtyCv4uvyaRdloeHh6OPq9XqyuzFOImH0dfIrRwcHIxtiV5fX5/bFzEAAAAAwF3dZdznMnf7RbwO/oYjPSP+fU+04X3r6+tT1atUKnF0dHTuvtPT00iS5Nr9/SLGhzS9Xm/qYPbivm4Xf279ps5zsd5tR1Auu263O+oejZhvN93FsHWSkDlN03Ov5bJ0+zUajXNdikPTBswPJ+JkasONXy/+eci/xQAAAAAALL67hHfLHvyN61ZM03QUUt3m+V08ptlsjjoJL3YYnjUueBt2CU7jYsA23LPwTZ9nXKPM2X3uJrXsI0LPBsGlUunSdZqls3nEJO/dLMvO7Uu5TN1+s8pkdPxxpVwuN/Yb2W03RgUAAAAAeBOSJImnT5/e9zLuRbFYjFwudy4sGI5lLJfLtwpBqtXqaFRoxOvOuJv294sYH0Kenp5OHRRdDMouBkBv6jzjrm2j0Zh41OnQbULJRXF8fDzqpisUCrGzs3PlY3u9XhwcHMTjx49vHb6dDVYnmUR4NvSLmL7D9T7lcrmx12kwGEwV/gn+uNJbb7117W9rAAAAAACweJIkOTeKcRgaVKvVW9VbW1u7FHgNw5+burBKpdK5tZwNECd1NvwpFApjg7Y3dZ61tbVztTudTnS73Yn3hWy1Wks7VS9N09HI2EKhcGOgl8/no9/vR71ej62tranP1+v1Rl2Y1Wr1xmvcbrfPvTalUulO+32+abVabWy42el0Yn9/f+I6y9HfCAAAAAAATGRcYJXL5abuTDtrXPdcLpe7MVjZ3Ny8dN+wA3ES3W53ov3a3tR5xgWdk57n4hjKWXkTQWKj0RitPZfLxVtvvXVjF18+n49yuXxpz71JDc9XKBQm2qfv8PDw3O1JOgRXkeAPAAAAAABWyLjOqNt2+w2NC7wmCRKTJLk0Wa7ZbE4cBDUajdHH1Wr1yvGdb+o8lUrlUtjZ6XRuDP96vV7s7e3FYDC4tM677vl38fhZBoFZlsXh4WHU6/WIeD3u9PHjxxN30g3fd9MGno1GIzqdTuRyuYlGhZ6cnJx73ld1bD4Egj8AAAAAAFgh4wKPuwZ/w3GfZ9005nNoZ2fn0rEHBwc3Bl5nRzeWSqUbx0W+qfNsb29fuq/ZbMb+/v7YoDFN09jb24uIiN3d3UvB7F32/Gu325eCvuE4zrtqtVrx8uXL0bWpVquxu7s71fjM4ftmknB06OTkJOr1+kTjRCNeX79ms3nuvru+35fZ8gw3BQAAAAAAJlIoFEb7oxUKhZnsdXZxf7tJO6ry+Xw8fvw4Dg4ORmvq9/vx8uXL2NraGttdl6bpqEtsfX197CjP+zpPkiTx1ltvxcHBwbn7O51OvHr1KgqFQhQKhciybBQEFovFePToUeTz+UtBXbPZjH6/H4VCIfL5fFSr1bFhV7fbjXa7HVmWxWAwiF6vd25fw7PPqd1uR5Iko5pJkkz8eqVpGo1GY3QNh2Hobd9DlUol0jSNZrMZaZpGtVqNtbW1KBQKERHnnstwD8RqtTrxvoBHR0eX7hP8AQAAAAAAK2NtbW3U+TVpZ95NyuXyKPgbBkqTGo6IrNfro3UNBoM4OjqK4+PjWFtbi3w+H1mWjbrYSqVSbG5ujh1det/nWVtbi8ePH8fh4eEoIBvq9/vn7iuXy7GzszO6Pa4D8WKgOu7attvt0cjNm4xbw3XBX6vVitPT03PrqFarsb6+fufQuFqtnnstms3mpQ69oWlfi4t7Mw7PN817c9XkBm9i10eWQqfTif39/dHtR48eXZo1DAAAAADA4jvbyfb48eOpQq3rfP755xERU3VkXdTr9eL09DRarVb0+/0YDAaRy+Uin8+P9mYrl8t3Dpze1HmGo0I7nc7oPBGvw9FqtRq1Wu1O9d+Ek5OTSNN0dE2u2uPwtrIsG3Ui9vv9UdfisDtyVq/FKpo2uxH8MSL4AwAAAAAAWBzTZjcPt9cRAAAAAAAAVojgDwAAAAAAAFaA4A8AAAAAAABWgOAPAAAAAAAAVoDgDwAAAAAAAFaA4A8AAAAAAABWgOAPAAAAAAAAVoDgDwAAAAAAAFaA4A8AAAAAAABWgOAPAAAAAAAAVoDgDwAAAAAAAFaA4A8AAAAAAABWgOAPAAAAAAAAVoDgDwAAAAAAAFaA4A8AAAAAAABWgOAPAAAAAAAAVoDgDwAAAAAAAFaA4A8AAAAAAABWgOAPAAAAAAAAVoDgDwAAAAAAAFaA4A8AAAAAAABWgOAPAAAAAAAAVoDgDwAAAAAAAFaA4A8AAAAAAABWgOAPAAAAAAAAVkDxvhcAAAAAAACsrpOTk2g2m7G9vR2VSuW+l8MS6na70W63o91uR7/fj36/HxERhUIhCoVCFIvFSJIkSqVSFIsPO/p62M8eAAAAAACWyOeffx4REblcLiIi8vmrB/tlWRaDwSCKxWLs7u6+kfWNk6ZpREQ0Go2ZBH/dbjf29vbGXoPhcy4UCvHkyZM7n+s6L1++jH6/H7lc7tIaIiIGg0E8fvw4kiRZyjV/8cUXMRgMIuLf328X137WsMawzlAul4skSSJJkqhWq1MFc61WKxqNRvR6vbGfH4aAnU5ndF+xWIxKpRLVavXar49VJfgDAAAAAIAlsbGxMQqKOp3OlYFIqVSKtbW1UehyX1qt1igE6vV60e1277yeQqEwug79fj9OT08vPabf70er1Zpbh+Gw8yzidcg1/DgiolwuR6FQiHw+H4VCYWnXvLm5Gb1eLwaDwbljzx531vC4swHg8FydTic6nU40m80olUqxtbV1bQCYZVkcHx+PrlMul4tarRblcnl03HBtrVYr0jQ99z6r1+vR7/dja2tr6uu07AR/AAAAAACwJGq12rnb+/v757qdIiLW19djc3PzTS7rSsNuv7O37xrG5PP5c9dh2E13Ub1en1uIdnJyMvb+t956K9bW1i7dv4xrrlar526/evXqUtC8tbUV5XJ5bGddr9eL09PTaDQa5zoAO51OvHr16srzZlkWe3t7o4CxXC7H1tbWpXMMA8AkSWJzczPSNI3j4+PR5+8z8L5PD6/HEQAAAAAAVsS44GTcffeh1+tdCiXTNL3UEXZXSZKcG0U51O/3o91uz/RcEa9Du6s6LSe99su45nGBZKlUunKcZrFYjFqtFl/5ylcuhYgREQcHB2PfC/v7++dCv52dnYlGdlar1dje3h7dHnYgPjSCPwAAAAAAWFLjwo1FCTyazebY+y92Ac7CVcHQVV1ud3FVzXFB3nWWbc13eV9dNdrzbIdexOv3xjCgzOVyU3eHViqV0XNalK+DN03wBwAAAAAAzNww4LsYLs0j+LsqwOr1ejPtoBvXxTg0SVfaWcu45rvY2dm5dN/FvQ7PBpS1Wu1W6xuO+HyTz22R2OMPAAAAAICll/3sD+dSN/+dX8yl7qobhnvDcY9HR0ejzw3HWc5jJGm5XL4UJjUajZmdq16vjz4uFAqjkZR3sYxrvo1isRilUulSCNnr9aJYLEar1Tq3F+Btn/8w8Huowd/DfNYAAAAAAMDcNBqNiIhYX18/N35xaB5dfxGvw6KLIyU7nU50u907186ybBTQlUqlmQVzy7jm2xp24501DPsuBoK3HdU57no+JII/AAAAAABgZtrt9qirrFqtnvvv0OnpaWRZNvNz53K5qNVql+4fBpF3cbZzbnNz8871hpZxzbc1rgtvGPAN9/Ybuu37o1qtxu7u7q2OXQWCPwAAAAAAYGaG3Xxnw76LwV/EbIKtcSqVyqVusdPT00vB0jSyLBs9r1KpNLZz7S6Wcc23MS7MG4aBF0eQzqLj8SES/C2pLMvi5OQkvvjii7n8VgQAAAAAAEzr7GjJ9fX10f3D/d3Omte4z4gY20HXbDZvXe9sSDmvzrllXPO0LoZ75XJ59PHFcbAXR38yGcHfkun1enF8fBxffvllNJvNGAwGgj8AAAAAABbCMGwqFouX9lm7GGwNBoNotVpzWUe1Wh27r+Btf54+DCmLxeLcOueWcc3Tarfb526f7QQdFwxffDw3E/wtiW63G4eHh/Hq1au5/hYEAAAAAADc1vDn1+O619bW1sYGW/Myq33z0jSNwWAQEfPvnFvGNU+q0WiM1hTxOuhbW1sb3b446jQi4uDgIE5OTjRATUHwt8CyLItGoxEvX76Mvb29UXs0AAAAAAAsmmHYlMvlolKpjH3MxWCr0+ncaR+764zbV7DZbE4dIp2cnETE6865s0HVPCzjmifR6/WiXq+PbhcKhdjZ2Tn3mHHPPeL18//yyy/j8PAw0jSNbrcrCLxG8eaH8KZlWRaHh4eX5tdWq9VYX1+Pvb29c6k4AAAAAADct2Fn2lUBzvBzZwOgiNfBztbW1szXk8/nY319/dI+eWmaju2sG6fVao1+Hj/pMXexjGu+SbvdjsPDw9HtQqEQb731VuTz53vT8vl8bGxsXHp/DJ2enp5rkMrlclEoFKJUKkWSJFEqlS6Nl32IXIEFlM/nR6FfLpeLWq0W1Wp19EWQz+cvbYAJAAAAAAD3pdvtjn5ufV3YlM/no1wunwtw0jSdS/A3XMvFEK3RaEwciA1DqEKhcGUX46wt45qzLItutxtJkkQ+nx/dTtP03GtdLpdja2vrUug3NHyOV4V/Zw0Gg+j1euc6RsdlKg+N4G9BlcvlWFtbG/ubERdnIAMAAAAAwH0advuVSqUbA5dqtXppa6s0Ta/tFLytfD4f1Wr13F6Cg8FgovO12+2JwsxZW9Y1HxwcXPn5crkctVotkiS5sVatVou1tbVoNBpTb4E2GAyiXq9Ho9GIR48eTXS+VSP4W1AXZ9sCAAAAAMAiyrJsFNBMEjatra1FoVA4N9mu2WzOJfiLiFhfXz8XokW8DipvOt9wn7xcLje3tV1lGdf81ltvjfbfy+fzkc/nI0mSW4VvSZLEzs5OZFkW7XY7Op1OdDqd6Pf7E22FNhgMYm9vLx4/fvzgwj/BHwAAAAAAcGvDbr9CoRBra2sTHXNxr79erzcaFTlrxWIxSqXSaIutiIh+vx+tVuvKUZjdbnc0QvI+9slbxjWvra1N/PpPKp/PR6VSOfech2NEh3/a7faVYeDh4WE8efJkpmtadA9zwCkAAAAAADATw860aTrMxj12GCDOw+bm5qX7rttH7mzn3H2EaBHLueY3IZ/Px9raWtRqtdjZ2YmvfOUrsb29PXabtH6/H91u9x5WeX90/AEAAAAAALeSpumo26per18bTN3k9PR0NCZy1pIkiWKxOOqIi3gdCrXb7Utdar1eb9Rp96bHZZ61jGu+L5VKJdbW1mJvb+/cCNmImFsn6aLS8QcAAAAAANxKs9kcfZzL5ab+c9HFfe1maVwH3bBL7qyz4eV9d84t45rvSz6fj52dnUv3nw1OHwIdfwAAAAAAwNTO7in3+PHjW3VVvXr16lwwk6bp3IKrtbW1KBQK5zrCLu4tmGVZnJ6eRsTrzrl5dB9OYxnXfJ+SJIlyuTy6HhFx5f5/q+rhvvoAAAAAAMCtDffkKxaLtx6leDHkG46ynJdxoeLZDrqz+wxubGzMbR3TWMY136eL78VCoXBPK7kfgj8AAAAAAGAky7KJHjPsqlpfX7/1uSqVyqWRn2eDrFmrVquXztfpdKLX60WWZaPRpYvUObeMa76tWYzlvBj0PbTgz6hPrtTtdqd6fKFQeHBfQAAAAAAAqyTLsvjyyy9jY2Pj2pGbZ8O5arV6p3NWKpVze/t1Op3IsmxuIVatVju3J17E6z3yznaK3SXMnIdlXPO0ut1u7O3txVtvvRVra2u3rnNxtGelUrnr0maq3++fG916k2mzGsEfVxq3Qeh1arWaNmIAAAAAgCU2HLN5U5PHMKi7a+gX8TqwOhv8RbwOFjc3N+9ce5xxIdrp6enouZfL5SgWFys+WcY139Y0odg4Z4Oycrl81+XMXJqmc+1qXe6eTwAAAAAAYGY6nU5ExLXddq1Wa9RVNYvgr1gsXgqtLgaBk7rY7XWVcd1xw2Ov63Sch2Vc8zzdddxnq9UaffwQm5VWI/4FAAAAAOBBy3/nF/e9hJUwScffsFspl8udGzV5F+vr63F8fDy6PRgMIk3TiYPFScOzoVqtNtob76xSqTTxc7q4F+IkeyOetYxrnqfhWobvwds4OTkZXdf19fWV6YKcxsN7xkxsc3Nzqm/a9vdbPr9K03jRbManp6eRZllU8/l4v1yO5+vr8Y0Z/KYOAAAAADBf0+7/dZ1erzcas3hVYNJqtUYdWXfZh+2icrl8LviLeB3iTBr8DUOjSYOsfD4f1Wr1UmfhNJ1zF881bZC3bGseN4Jz2uc8iV6vN1XoO5Sm6SgYLZVKcxsVe1fVanWqr51utzvV1myCP66UJEmUSqX7XgYz1h8M4m/39uL/ePkyPj09vfJx75fL8VdPnsQPHj+OQi73BlcIAAAAAEzqdMzP+DqdTuTz+WvHdWZZFlmWxWAwiCzLot/vj0KT3BU/D8yy7FI4Nyv5fD5yudy5IGkwGMTJycmNAU632x0d12q1Jg7CLu4tWCgUJg5ksiwbG7q22+2Jaizjmsd14rVarZl1fZ4NFo+Pj6PdbsfW1ta17+OI10Hh8fHxaExtqVSKR48ezWRN81AoFObaSJUbzCOOZa5evXp1bsbt7u7uTNpVO51O7O/vj24/evRI8LdiPmu14j/97nfxyRTzsT+qVuPv33kn3qtU5rgyAAAAAGAaF8OOWSoWi7G7uzs6z+npafT7/XN7+519bKlUGgVQ04RAaZpGr9eLwWAQ7XZ7bEdZxL+PsqxUKpEkSWRZFmmajgLLi+Hn2TUVCoWoXPOzzcPDw9HxGxsb1wZw7XY7ut1udLvdaLfbV3a7lcvlKBQKkc/nR9dkGdd8dr2dTufKvfeGr08+n79x7dc5OTm5cpRppVIZXZt8Pj8KMTudzrkgdGtrayb7Ti6SabMbHX/wQPyyXo//7Z//OepTzmz+JE3jm7/9bfz83Xfj2w9wI1QAAAAAWESvXr2aW+2zoUK/3496vX7pMcOuwH6/fy54mSb4u6578GzXYafTGQWcSZJcuabhcWfXdFMQVavVRiHaTYHR6enppTGb485/NmDLsmxp1zxJd2culxsFi4PBIIrF4q2Dv2q1GoPB4FLAfPb1v2oN1Wo1arXajd2BD4GOvyWk449pfdpqxTd/+9to3GGj1o18Pj5+9kznHwAAAAAsgF6vd+M4z+uM21fuoYYm+/v7kc/nY2dn576XMrFlXPM0ut1utFqt6Pf7o70nB4NB5HK50VjYtbW10Z9VpuMPOKc3GMR//t3v7hT6RUTUsyz+8+9+F//07Jk9/wAAAADgnt21GeShhnzjLPJ+cFdZxjVPI0mSme0d+ND4yoYV95O9van29LvOizSNn+ztzaQWAAAAAAAwW4I/WGHZz/4w/tv/78VMa866HgAAAAAAMBuCP1hhv0qexmfJ2zOt+Wnydvx6Rh2EAAAAAADA7Aj+ltBgMLjvJbAkXiRfnU9dwR8AAAAAACwcwd8SyrLs3G1BIFf5LHkyl7q/abXmUhcAAAAAALg9wd+Sabfbl4K+VPcVV0hzpbnUbV0InwEAAAAAgPtXvO8FcLVutxvtdjuyLIvBYBC9Xi86nc6lx6VpGu12O5IkiUKhEPl8PpIkibW1tXtYNYukOrj8fpmFSt7vDAAAAAAAwKIR/C2wdrsd9Xp9osf2+/3o9/uj2+VyWfBHvNd9OZe6H1Qqc6kLAAAAAADcnuBvgdVqtajVave9DJbY8+7v51O3Wp1LXQAAAAAA4PbM64MV9o3u5/F+98uZ1vyg+0V8KPgDAAAAAICFI/iDFfcXjY8Xuh4AAAAAADAbgj9YcT9IX8RHnX+dSa3nnX+NP0s/mUktAAAAAABgtgR/sOIKMYifHv5jbGSnd6qzkZ3Gfz/8xyjEYEYrAwAAAAAAZknwBw/Ae71X8bP9f7h1+LeRncbP9v8h3uu9mvHKAAAAAACAWRH8wQPx7c7v4n+8+vHUYz+fd/41/serH8e3O7+bz8IAAAAAAICZEPzBA/Je71X8j1c/jr85/L/i/e6X1z72/e6X8TeH/1f8369+rNMPAAAAAACWQPG+FwC8WYUYxA/TF/HD9EX8uviVeFH6WnyaPIlWLonKoBvvd1/G886/xoe9L+57qQAAAAAAwBQEf/CAfdj7QsAHAAAAAAArwqhPAAAAAAAAWAGCPwAAAAAAAFgBgj8AAAAAAABYAYI/AAAAAAAAWAGCPwAAAAAAAFgBxfteADA/+e/84r6XAAAAAAAAvCE6/gAAAAAAAGAF6PgDAAAAAAAWTrvdjm63O/qTZVkMBoOIiMjlclEoFCKfz0exWIxcLhdra2uRJEnk83qeeLgEfwAAAAAAsCS63W7s7e1FLpeLiDgXcg2DsUKhEE+ePJnrOl6+fBn9fj9yudylNUREDAaDePz4cSRJMlXddrsdaZrG6enptY8bDAbR6/UiIqLT6URERLPZjIiIQqEQ5XI51tbWYm1tbarzw7IT/AEAAAAAwJIoFAqxsbERWZZFv98fG5D1+/1otVpRqVTmsoZ2ux39fj8iXgdww48jIsrl8qgTr1AoTFXz5ORkFOZFvO7qq1Qq52rm8/nIsmz0/LvdbrRarXPH9fv9aDab0Ww24+2339YByIMi+AMAAAAAgCWRz+ejVquNbg87AC+q1+tzC/5OTk7G3v/WW2/dqsPu+Pg40jQd3S4UCrG1tXVlrWEAWCwWY21tLWq1WmRZFmmaRqPRODcOVOjHQyP4AwAAAACAJZUkSeRyuVHYNdTv96Pdbs981GW32z3XXXfWtOfKsiz29/fP1dvY2DgXbE5qGIhWq9XY29uLfr8/9ZhRWAWibgAAAAAAWGJXdbVd1Zl3F1fVHO45OKlutxsvX748F/ptb2/fKvQ7K5/Px9bWVkREFIt6n3h4BH8AAAAAALDErgrder1etNvtmZ2n1+tFp9MZ+7lpRmoOO/3OdilubW3NbDTpcG/BafYYhFUh7gYAAAAAYOX9Kk3jRbMZn56eRpplUc3n4/1yOZ6vr8c3qtX7Xt5MlMvlOD09PXdfo9GY2bjPer0++rhQKES/379VncPDw3OhX7lcjuocXgP7+/EQCf4AAAAAAFhJ/cEg/nZvL/6Ply/j0wuB2Fnvl8vxV0+exA8eP47ClCMrF8na2lr0er1z4zM7nU50u90773eXZdkoVCyVSlEsFiNN06nrnJycXOoaHI7mnLVpx4/CKhB3AwAAAACwcj5rteKbv/1t/Pm//Mu1oV9ExKenp/Hn//Iv8c3f/jY+a7Xe0ApnL5fLjd0jr9Fo3Ln22W6/zc3NW9Xo9XrRbDbP3be+vj7zzrxisRiPHz+eWacjLBPBHwAAAAAAK+WX9Xp887e/jU+m7Ej7JE3jm7/9bfzyTMi1bCqVyqW97U5PT891AU4ry7JRd1+pVLp19+DF0C8ixgaVs5AkiVGfPEje9QAAAAAArIxPW634j//8z1HPslsdX8+y+N/++Z+XuvNvXJg2LnSb1NmOwdt2+0XEpdGghUJBOAczZo8/AAAAAABWQm8wiP/8u99F45ah31A9y+I//+538U/Pni3lnn/VajVOTk5iMBiM7kvTNDY2Nm4VtA0Du2KxeOtuv3a7fem+ZRrFOdzjsNlsxtra2rkAtNfrRb1ej263G/1+P3K5XBQKhVhbW4tarXblNc+yLOr1enQ6nVFHZqFQiHK5fO1xk+r1enF6ehrtdjv6/X70+/3ROYbrK5fLUSwuT1SUZVk0Go3RtR5e7yRJYm1tLarV6oMPk5fn1QQAAAAAgGv8ZG9v6vGeV3mRpvGTvb344e7uTOq9abVa7dy+fBGvO/em7dhL03QUIN6l229c8FcqlW5db956vV50u93odDrngrmI8+s+OTm51E05GAyi1+uN9jR86623LoWcaZrG8fHxpfP2+/1oNpuRpmns7OzcKhwdBpGn/7a35TCwXVtbi16vF51OJ/r9fnQ6najX61EqlWJra+vKAPDw8DC63W5EvN5Hcpzhe2RnZ+dSONxoNEbh8cXjh8dtbW1d+1wvPqdSqXTu+Qz/1Ov12NjYmNsI2WUg+AMAAAAAYCX8t5cvZ15vWYO/arV6KfhrNptTd5KdnJxExOvw6C4desPg6KxF7TTr9Xrx6tWrGx93fHx8bnxpLpc712U5dHBwEI8fPx4FYo1G49xrM+64wWAQBwcHY0PD67RarTg6OoqI19d3Z2fn0nUedhoO197pdOLVq1exvb0dlUrlUs1yuRxJkkSapmP3ihx+PiIu7S8Z8e+dnf1+/9K41+Gx444bOnu9qtXq2M7Vs6/FsPtyZ2fnypqrbDG/qgAAAAAAYAq/StP47N+6gWbl09PT+HWaxofV6kzrvgn5fD7W19cvdaOlaTpxN1Sr1RoFUnftoBqOmTzrqu6x+1YsFuPp06eRZVlkWRYHBweX1n94eBinp6dRKpWiVqtFkiSRz+dHoygvXvfDw8N48uTJKKAqFAqxsbERa2tro+PSNL0U1h4fH8eTJ08mWvfZLsJisRi7V4TW+Xw+tra2IkmSc12HR0dHMRgMonrh/T4MA2u1WnzxxRfnQspCoXBjwJYkySgYzOVyo2szSWfe/v5+dDqdiHjdFXhxbUNbW1ujcawREaenp3FycnKnLtVl9bAHnQIAAAAAsBJeXAhaZlZ3RqND78O4UKXRaEx8/DCEKhQKYzvBppGN2Xdx0fdiy+fzUSwWL4VNaZrG6elpbG9vx6NHj0bh3fCYzc3N2NjYOHdMv9+PL774YrTX4pMnT6JSqZw7rlarxfb29qXjWq3WjWvtdrvnQrxJut2q1Wqsr6+fu+/4+Hhsd+bQxffUuED3OsPQsFAo3Bj6HR4ejkK/Uql0Zeg3dPGaN5vNse+7VbfYX1UAAAAAADCBT2fc7Tf0mwlCl0WVz+cvhSWDweDSuMVx2u32KNSZxX5p40ZgLotxAeVVYzGHarXa2P3sbupyq1Qql0ZzDsOv6xweHo4+LpfLE49R3dzcvLTO4ajQccaFb+P2b7zK8LlcDOkuGoarZ9d5k2KxGOVy+dx90wTdq0LwBwAAAADA0kvn1NnTWvKOoYsdXRGThSHDvf1yudyNnVaTGDfWc9pusftyce3FYnGiDsiL1y2Xy00Uol58zcbtq3dWmqbnruW0r9fFUK3X610Z5uXz+VuHa1mWRa/Xm6iD9GzNXC43GhV6k4v7IU4TSq4KwR8AAAAAAEuvOqexkZUFH0d5k2KxGKVS6dx9N42P7Ha7o7BpFt1+Ea9HO160rGMYL17Pq1wMqyYNry4+7qaA9OJ+guOu9XUuBnkRca7b7qKL74lOp3NjOBkRo07Tm95T3W733HOe9LpFXH7uyxIuz9Jyf8cCAAAAAICIeH9MeDELH9xxb7tFMG5M4nD/vnHOdvvNKvgbNy7zur3kVsGk4zYvuhheXReQDrvo7nLefD5/Kcy8LhhOkuTSOSYZH5um6UQdpBe79KbZC/LiY5d5xOxt3e5dBwAAAAAAC+T5mJGWM6k7gzGX920Y1JwNiPr9frTb7UujEXu93mgftlmM+BwqFouX9qprt9szCxZXyTRB16zC0yRJzr0+NwVmtVrt3F6AaZpeuw/fcM/Im/b2i7jcpXd6ehqvXr2KfD4/ujYXr9EwHJ2k83DVCf4AAAAAAFh636hW4/1yOT69ZkThtD4ol+PDFQj+Il53/R0cHJy77+TkJHZ3d8/dd7YTcJahXLlcvtQVdjEIZHoXQ7JxeylOYtw4zSzLrgwhK5VKHB8fjwLCwWAQrVbryr37hq/9JGHyuA7HSQK94XMvFotRLBajUCjcuutymT28ZwwAAAAAwEr6qydP4s//5V9mWm9VrK2tRaFQOBcU9Xq96Ha7o9Any7LR3m7VanWqzrNJzj/OdWERN5vVPom3ea2r1eq5/QUbjcbY13L4vpr0PXUx5KtWq7G1tTX1+h4qe/wBAAAAALASfvD4cXw0ow6959Vq/NnjxzOptSjGdfAN9/OLeB3cDE0yknFaF/eRu3hO7u62e9qNC+RuCukuvp+GQfJFw26/9QnH8V41xpPJCP4AAAAAAFgJhVwu/v6dd2Ljjp1qG/l8/N0770ThlmMTF1W1Wr00CrLT6USv14ssy0bdW7Pu9hsatwdcr9eLdrs983M9FIVC4dJ9t9nn7uIxk4wMzefzUS6Xz913cZxrxOtwt1wuTzx28+J7z7590xH8AQAAAACwMt6rVOLn77576/BvI5+Pn7/7bry3ouMnx3X91ev1c4HNpJ1Z00qS5FJQFBFxeHioq+uWxoVp47rubnJxr8BJx69efD9dDP5arVYMBoOp9ou8GGYK/qYj+AMAAAAAYKV8e2MjPn72bOqxn8+r1fj42bP49hzGXC6KcQHM6enpaOTmNJ1ZtzFuhOhgMIjDw8O5nXOVDfdnPGu4T+M0Lgav4wLaq85/8f1yNvxrNBpRLBbHrvO6mheN6yRkPMEfAAAAAAAr571KJT5+9ix+/PWvx/s3hBjvl8vx469/Pf7p2bOl7vSbdH+3cR19w2On6cy6jWKxGNvb25fu73Q6wr9burh34m2Cv7PjVguFQqytrU187MX3zDBE7na70ev1pn5Pjes2HI6h5Wbzi+1ZegcHB2Pn+K6vr8/9mz8AAAAAwF0Vcrn44e5u/HB3N36dpvEiTeM3rVa0siwq+Xx8UKnE82o1PpyyM3DRTBr4DdVqtbFBSqlUmrgz62KH2DSjOiuVSvT7/ajX6+fuPz09jVevXsWjR49mssdgr9eLfD4/l/0KF8nm5mbs7e2du+/k5GTsnorjDAO6oXFdmdepVCpxfHw8eh/2+/1ot9uRpmkUCoWJx4aeVS6XzwWYvV4vGo3GSmcTjUZj7NfltF/fgj+uNBgMxr6hpn2TAQAAAADctw9XIOC7yjB0mzR8y+fzUa1WL41PnCZUuXiu24SPWZZdCjp6vV68fPkyarXarUOeLMtGIcrjx4/vHPxdfG633Y9wXvsYJkkSpVIpOp3O6L5msxnVanWisa3DDr2IiGq1equgrlqtnnstT05OotfrxdbW1tS1Il6Hjxc7F+v1+lRB4snJSVQqlanGjN6nwWAwk/fIasfc3Ekulxv9NsTZP+O6AAEAAAAAePO63e4omGq1WhMfd3Hc5zTjHbMsi263e+n+s+MiJ7G5uRlvvfXWpZ85DwaDqNfr8cUXX8TJycnEddvtdhweHsaXX34ZzWZzqg7G61x8rme746Y5rt/v3+r8kwRCOzs7l67jwcHBjce12+1RwFYqlW4d1F0MaYfXaNK9Ai+6aiTs0dFRHB4eXvsapGkaX3zxRTSbzaXKM2aVyeQG2rf4N51OJ/b390e3Hz16dGk2MAAAAAAA9yfLskjTNLIsi36/f6krqlgsRqlUikKhcGN31OHh4ej4jY2Nazvs2u12dLvd6Ha70W63r+zwK5fLUSgUIp/Px9ra2kTBW5ZlUa/XL3UgXlQsFqNYLI7CkGEg1u12L4VqxWIxdnZ2Jup4G7ee665xxL+PRc3n81Eul0fnaTQakWVZDAaDsc+nWCzG2tpa5PP5SJLkyrD1888/P3d7GMxe97r2er04ODg4dy1yuVxsbW2NfXyapnF8fBwRr4PgSUeDXuXs+yni9XthZ2fnTjXPrvGi4fuhUChExL+PGB2+N7e2tqK6Al2+02Y3Rn0CAAAAAMCSGLc33lAul4t+vz8KnG4K/mq12iiouSkgOT09vTGYy+Vy54KXLMsmCv7y+XxsbW3FxsZGNBqNSNN0bLDY6/Wu7fTK5XKxtrYWtVrtTp1+113j4Xm63e5otGaSJFEsFkcB5lXHDGsPR2KWy+WpuixbrVYMBoMrX9disRiPHz8+F6IOBoM4OjqK4+PjUeCYZdnodSqVSrG5uTmTzsiz76eIm99Tk6hWq1EqleL4+PjcKNOIq98P1Wo11tfXbxX6rgIdf4zo+AMAAAAAeFj29/cjn8/fuTNr1nq9XnQ6nWi329Hr9UbdfcNII5fLRaFQiGKxOOqcW5a93N6EXq8Xp6en0Wq1ot/vx2AwGI2SHHYPnu1UnJVXr15Fr9eLXC4XX/nKV2Zau9frRZqmo9Cy3++fex+Uy+Vb7U+46KbNbgR/jAj+AAAAAAAAFse02U3+TSwKAAAAAAAAmC/BHwAAAAAAAKwAwR8AAAAAAACsAMEfAAAAAAAArADBHwAAAAAAAKwAwR8AAAAAAACsAMEfAAAAAAAArADBHwAAAAAAAKwAwR8AAAAAAACsAMEfAAAAAAAArADBHwAAAAAAAKwAwR8AAAAAAACsAMEfAAAAAAAArADBHwAAAAAAAKwAwR8AAAAAAACsAMEfAAAAAAAArADBHwAAAAAAAKwAwR8AAAAAAACsAMEfAAAAAAAArADBHwAAAAAAAKwAwR8AAAAAAACsAMEfAAAAAAAArADBHwAAAAAAAKwAwR8AAAAAAACsAMEfAAAAAAAArADBHwAAAAAAAKwAwR8AAAAAAACsAMEfAAAAAAAArADBHwAAAAAAAKwAwR8AAAAAAACsAMEfAAAAAAAArADBHwAAAAAAAKwAwR8AAAAAAACsAMEfAAAAAAAArADBHwAAAAAAAKwAwR8AAAAAAACsAMEfAAAAAAAArADBHwAAAAAAAKwAwR8AAAAAAACsAMEfAAAAAAAArADBHwAAAAAAAKwAwR8AAAAAAACsgOJ9L4DptNvtOD09jU6nE/1+PwaDQeRyuSgUClGpVKJarUY+L88FAAAAAAB4aAR/S6Lb7cbh4WH0+/2IiCgWi5EkSWRZFr1eL3q9XtTr9ajX67G1tRXVavWeVwwAAAAAAMCbJPhbAmmaxvHxcUREVKvV2NjYONfVl2VZHB8fx+npaUREHB8fR6/Xi83NzXtZLwAAAAAAAG+emZALrt1uj0K/9fX12NraujTKM5/Px87OTpTL5dF9zWYzWq3WG10rAAAAAAAA90fwt+AODw8jIiKXy93Ywbe1tXXu9jAwBAAAAAAAYPUJ/hZYo9GIwWAQERG1Wu3Gx+fz+VhfXx/dHgwGkabp3NYHAAAAAADA4hD8LbBGozH6+OwYz+tUKpVzt437BAAAAAAAeBgEfwuq1WqNuv1yuVwUi8WJjkuS5NztTqcz87UBAAAAAACweAR/C+psYHcxzLvJxZCw3W7PZE0AAAAAAAAsrsnayCJif38/isViJEkShUIhkiSJfF5uOC9nR3RO2u03VCqVotfrjW73+/2ZrQsAAAAAAIDFNHGi1Ol0Lo2NHI6gLJfLUavVZr64hyrLstGYz4jX13kahULh3O2zISAAAAAAAACrabpWsn9TLpdH3X5Zlukom7GL13Pajr+LwV+3273zmgAAAAAAAFhsUwd/6+vrsbm5OY+18G8uBnXTdvwZwQoAAAAAAPDwTBz85XK5GAwGkSTJPNdDvO6ivIuLwd9t603bKVgoFC51GwIAAAAAAPBav9+fapLmtFnN1B1/usnm767B38UOwbP7BU7j5ORkqsfXarXY2Ni41bkAAAAAAABWXZqm0Wg05lZ/6hRP8Dd/F4M61xwAAAAAAICbSJSWwKw7AAEAAAAAAFg9U4/6ZPFd7BC8bcfg5ubmVHs62t8PAAAAAADgatVqNdbW1iZ+fLfbnWprtomDv3w+H/1+X/fYErhrh+BQkiRRKpVmUgsAAAAAAOChKxQKc22kMupzAV0MVy/u+TctewQCAAAAAACsvqkToU6nM7OOsmncxznvy8WgbtrnfjEonGZcJwAAAAAAAMtp6j3+jo+P4/j4OCJeB0rDP4VCIZIkmUt3WavViqOjo3j69OnMay+ii9ew3+9PdfzFoNDeewAAAAAAAKtv6uDvrG63G91u99x9uVwuisXiTAPBYQdblmUPYmzlxQ69aTv+Lj6+WLzTywwAAAAAAMASmHkiNBgMJgoEh6HgJEHeQxrzGXG5Q+/itbzJxQ5Boz4BAAAAAABW39TBX7lcjizLotvtXtpL7jrXBYJJklzqEjwbCE4bfC27fD4fuVxudH2nHfV59vGlUmmmawMAAAAAAGAxTR38bWxsjEZHZlkW/X5/FOj1er1bBYKdTic6nc65+4cdgsNzRFze+26Vra2txenp6eh2t9uduHPv7LVcW1ub+doAAAAAAABYPBMHf+PGbebz+cjn82MDqYthYL/fn6pzbdgh+FCVy+VzwV+73Z44+Ov1eqOPq9XqzNcGAAAAAADA4pn5Hn9Dw7GdF50NA28TCD4UlUoljo6ORrfTNI1arXbjca1Wa/RxuVx+UF2SAAAAAAAAD9ncgr+rDAPBSqVy7v6LYeDwvw/ZxsZG1Ov1iHi9b1+73b5xdGej0Th3PAAAAAAAAA/D1MHfNPv3TaNYLEaxWDwXCGZZFqenp3F8fDyXcy66Wq0WaZqOAtDj4+N4/PjxlV18aZqOxnxubW2N9mIEAAAAAABg9S30HMh8Ph/VavVB71P3+PHjyOVyEfG6629vb2/s3oeNRmMUkK6vrz/oawYAAAAAAPAQTdwSNuz06/V6Y/fum6dCofBGz7dI8vl8PHnyJI6Pj+P09HQU/hUKhUiSJLIsi263O3p9tre3L41RBQAAAAAAYPUtzKjP61w12vKhyOfzsbOzE91uN9I0jXa7PRqDOgwAK5WKLj8AAAAAAIAHbOrgL03TKJfLbzSMS5LkQXf9DSVJEltbW/e9DAAAAAAAABbQ1MFft9uNL7/8MsrlcqytrUWpVIpiceoyU0mSJJ48eTLXcwAAAAAAAMAymzixK5VK0e/3o9/vR0TE6elpnJ6ejj736NGj+awQAAAAAAAAuNHEwd/FYK/X642CwFwuN/OFAQAAAAAAAJO79YzOYrE49xGfAAAAAAAAwGTy970AAAAAAAAA4O6WIvhrtVrx+eef3/cyAAAAAAAAYGEtRfB3enp630sAAAAAAACAhXbrTfp6vV50u90YDAZRKBQiSZLI52efI7ZaLcEfAAAAAAAA3GDq4K/b7cbh4WH0+/1Ln1tbW4v19fVYW1ubyeJOTk6i2WzOpBYAAAAAAPDmZVkWJycnERGxubk5lyYi4LWpgr9utxt7e3tXfr7dbke73Y719fXY3Ny89aKuCxcBAAAAAIDFkP3sDyd63NnEIJvg8fnv/OJW64GHbqrg7/j4eKLHNZvN6Pf7sbOzM/WCdPkBAAAAAMBq+FXyNF4kX43PkieR5kpRHXTive7LeN79fXyj+/l9Lw9WzsTBX7vdjm63e+n+QqEQhUIh+v3+uQ6909PTODk5mbjz76Yuv42NjUmXCgAAAAAA3JN+5OJvq8/jb2rfjE+Tt6983PvdL+MvGh/HD9IXUYjBG1whrK6Jg780Tc/d3tjYiFqtdu6+LMtGgd9gMIhmsxmVSiWSJLm29nVdfuVyOba2tsz8BQAAAACABfdZcTf+y8734pPS12587KfJ2/GXO9+Nn67/h/jp4T/Ge71Xb2CFsNomTtPOduJtb29fCv0iIvL5fFSr1Xjy5EkUi68zxevGg3a73Xj58uXY0K9QKMRbb70VOzs7Qj8AAAAAAFhwvyy9E9/a/dFEod9Zn5S+Ft/a/VH8svTOfBYGD8jEiVqWvd5uM0mSqFQq1xfN52N3dzcKhUJ0u91ot9uXHnNychJ7e3tjR3uur6/HkydPYm1tbdLlAQAAAAAA9+TT4pP4o0d/GvV8+VbH1/Pl+M6jP4nPirszXhk8LFN3/K2vr09cfGtrKyJe7/c3dF2XX5Iksbu7O/G+gAAAAAAAwP3qRT6+v/PH0cjfrZmnni/H93e+F/3IzWhl8PBMPUNzOMJzEmtra1Eul0cdf9d1+W1sbMTjx4+nqg8AAAAAANyvn1Q/mnq851VelL4WP6l+NJNa8BBNnbIVCoWpHl+tVuPg4CBevnw5NvBLkiS2t7cFfgAAAAAAb1D2sz+cS938d34xl7osrr+ufXPG9f4g/nymFeHhmLjjL5d73Vqbz0/XJDjcp0+XHwAAAAAArJZfJU/js+Ttmdb8NHk7fp2mM60JD8XUoz6zLLvzSYd7+dVqtTvXAgAAAAAA7seL5KvzqSv4g1uZutWu3+9P3fWXy+ViMBhExOsuP4EfAAAAAAAsv8+SJ3Op+5tWay51YdVNnOANw75GoxHdbnfqExUKhXj8+LHQDwAAAAAAVkSaK82lbmsG0wfhIZq64+/09DROT08j4vXIzot/xtna2opKpXLrRfZ6vTg9PRUaAgAAAAC8Ib9KnsaL5KvxWfIk0lwpqoNOvNd9Gc+7v49vdD+/7+WxIKqDzlzqVqacPAi8NnXwd1a3273U/ZfL5S6FgXcJ/Ybnqdfrgj8AAAAAgDnqRy7+tvo8/qb2zfg0efvKx73f/TL+ovFx/CB9EYUYvMEVsmje676cS90P7pgrwEN1p+BvnMFgEJ1OJzqd8yl/oVA4FwYWCoUoFic7fb/fn/UyAQAAAAA447PibvyXne/FJ6Wv3fjYT5O34y93vhs/Xf8P8dPDf4z3eq/ewApZRM+7v59P3Wp1LnVh1U0c/GVn5ukWCoXIsiwGg8l/k6Pf70e/3x+NCR26GAYmSTLaT/DssQAAAAAAzMcvS+/Edx79SdTz5amO+6T0tfjW7o/iZ/v/EN/u/G4+i2OhfaP7ebzf/fLaDtFpfdD9Ij6s/oeZ1YOHZOqOv7fffnsUzGVZFv1+P7rdbvR6vdHoz2kCwevGhRaLxciy7FJYCAAAAAA8bFmWxcnJSUREbG5uXmomYHKfFp/EHz3602jk1251fD1fju88+pP4H69+rPPvgfqLxsfxlzvfnWm9iP84s3rwkEwV/F3sxsvn85HP5yNJknOPOxsIDv/0er2JA8GrxoUCAAAAAHQ6nTg6OhpNCut0OrG9vR2lUumeV7Z8epGP7+/88a1Dv6F6vhzf3/le/N+vfhwi2IfnB+mL+On6f5hoTOxNnnf+Nf4s/WQGq4KHaeLgbzAYRC6Xm+ix1wWCZ8PAYTgIAAAAAHCTwWAQzWYz6vX6ufv7/X7s7+/HxsZGrK+vT/xzTCJ+Uv1oJmFNRMSL0tfiJ9WP4s9nUo1lUohB/PTwH+Nbuz+aelzsWRvZafz3w3+MQkw+VRA4b6qOv7u2y+fz+VhbW4u1tfO/PTIcE3q2S9C+fgAAAAAwXvazP5xL3fx3fjGXurPQ7/fj6Ojo2ilh9Xo92u12bG9vR6FQeIOrW15/XfvmjOv9geDvgXqv9yp+tv8Pt9orMuJ16Pez/X8wLhbuaOLg7+nTp/NbRLEYxeLlpXS73UjTNNI0ndu5AQAAAIDF1m634+joKLIsu/GxnU4n9vb2Ynt7+1IDAuf9KnkanyVvz7Tmp8nb8es0jQ+r1ZnWZTl8u/O7+B+vfhz/Zed7U3WSPu/8a/z3w38U+sEMTNXx96YlSRJbW1uRZVmcnp7e93IAAAAAgDdoMBhEvV6PZrM51XFZlsXBwUGsr6/HxsaG0Z9XeJF8dT51BX8PysVO4Q8i4uPBIH6ytxf/7eXL+PSan+2/Xy7Hf33yJP7s8f8ahdx357xSeBgWOvgbSpJE8AcAAAAAD0iv14ujo6Podru3rtFsNqPT6cT29vbYiWMP3WfJk7nU/U2rNZe6LI9CLhc/3N2NH+7uxq/TNF6kafym1YpWlkUln48PKpV4Xq0KiGEOluL/dnfdWxAAAAAAWB5pmsbJyUkMBoM71+p2u7G3txebm5tRFTKck+ZKc6nbmmAkKw/HhwI+eKOWIlErlUqxvr5+38sAAAAAAN6AZrM5k9BvaDAYTD0u9CGoDjpzqVvRyAFwb5biO3CxWIzNzc37XgYAAAAA8AaUy+WlqLns3uu+nEvdDyqVudQF4GZLEfwBAAAAAA+H4O/NeN79/XzqGusIcG8EfwAAAADAQkmSJIrF4szqFYvFSJJkZvVWxTe6n8f73S9nWvOD7hf2cwO4R7P7vycAAAAAsBB+lTyNF8lX47PkSaS5UlQHnXiv+zKed38f3+h+ft/Lm0i5XI5GozGzWoz3F42P4y93vjvTehH/cWb1AJiO4A8AAAAAVkA/cvG31efxN7VvxqfJ21c+7v3ul/EXjY/jB+mLKMTgDa5wOoK/+ct/5xfxw8Egfvrb38YnaXrnes+r1fj//K//3xmsDIDbMuoTAAAAAJbcZ8Xd+Nbuj+Ivd757begXEfFp8nb85c5341u7P4rPirtvaIXTm9W4T2M+r1fI5eLv33knNvJ3+1HxRj4ff/fOO1HI5Wa0MgBuY6Lv5r1eb97rAAAAAABu4Zeld+Jbuz+KT0pfm+q4T0pfi2/t/ih+WXpnPgubgVl06un2u9l7lUr8/N13bx3+beTz8fN33433KpUZrwyAad34nTzLsnj16lUcHh5Gt9t9E2sCAAAAACbwafFJ/NGjP416/nbhVj1fju88+pOF7fwT/L05397YiI+fPYuPqtWpjntercbHz57Ftzc25rQyAKYx8a9wnJ6ext7eXuzt7cXp6ek81wQAAAAA3KAX+fj+zh9HI792pzr1fDm+v/O96MfijWi867hPYz6n816lEh8/exY//vrX4/0bAtP3y+X48de/Hv/07JlOP4AFcuP/NfP5fJRKpeh0OhER0e124/DwMHK5XNRqtahWq5G/4/xnFtPBwUHkxszkXl9fj1qtdg8rAgAAAGDoJ9WPph7veZUXpa/FT6ofxZ/PpNpslcvlaDQatz6W6RRyufjh7m78cHc3fp2m8SJN4zetVrSyLCr5fHxQqcTzajU+nLIzEIDrNRqNaDabl+4fDAZT1Zno12UePXoUvV4vms1mpGk6OlG9Xo96vR7VajXW19dnstkui2MwGIx9Q037JgMAAADOy372h3Opm//OL+ZSl8X017VvzrjeHwj+OOdDAR/AGzMYDCLLsjvXmTipKxaLsbW1FRsbG5GmaTQajVEAlKZppGkaa2trsb6+HmtrdxsvwGLI5XJjO/7G3QcAAADAm/Or5Gl8lrw905qfJm/Hr9N04YKeJEni6dOn970MAJirXC43dsLmVU1aV5m6RS+fz0etVotarRatViuazWZ0u92IiGi329Fut6NQKIzGgLK83nrrrSiVSve9DAAAAAAueJF8dT51FzD4A4CHYJi9XdTpdGJ/f3/iOneazVmpVKJSqUS3241GoxGnp6cREdHv9+P4+DhOTk6iWq1GrVazDyAAAAAAzMhnyZO51P1NqzWXugDAmzGTTfmSJImdnZ3Isuzc5oODwSCazWY0m80ol8tRq9UiSZJZnBIAAAAAHqw0N58pTa0Z7C0EANyfmQR/Q/l8PjY3N2Nzc3O0D2C/34+IiNPT0zg9PY0kSWJjY8M+gAAAAABwS9VBZy51K6Z2AcBSm9v/yavVajx58iS2t7fPdfl1u904ODiIly9fRpqm8zo9AAAAAKysD9773+dTt1KZS10A4M2YacffODftA3h8fBzr6+tRrVajWJz7cgAAAADuzWAwiHq9HrX7XghL7/n6+nzqVqtzqQsAvBlvLGm7uA9gmqYxGAwiIuwDCAAAAKy8Xq8XR0dH0e12BX/c2Teq1Xi/XI5P/+2X7Gfhg3I5PhT8AcBSe+MtdpPuA1ir1aJcLr/p5QEAAADMXJqmcXJyMvol6Jv8KnkaL5KvxmfJk0hzpagOOvFe92U87/4+vtH9fM6rZVn81ZMn8ef/8i8zrQcALLd7na1ZrVajWq1Gu92ORqMRnc7rTYm73W4cHh5GLpeLWq0W1Wo18jYWBgAAAJZUs9m8MfTrRy7+tvo8/qb2zfg0efvKx73f/TL+ovFx/CB9EYWYLEhkNf3g8eP4P/f24pM0vXOt59Vq/NnjxzNYFQBwnxYiTVtbW4tHjx7F7u5uVM+MExjOvf/yyy/j+Pg4er3ePa4SAAAA4HZummr0WXE3vrX7o/jLne9eG/pFRHyavB1/ufPd+Nbuj+Kz4u4sl8mSKeRy8ffvvBMbd/yF+Y18Pv7unXeikMvNaGUAwH1ZiOBvqFgsxtbWVrz99tuxsbERuTN/2UjTNF69ehUHBwfRbrfvcZUAAAAA07ku+Ptl6Z341u6P4pPS16aq+Unpa/Gt3R/FL0vv3HF1LLP3KpX4+bvv3jr828jn4+fvvhvvVSozXhkAcB8WKvgbyufzUavV4itf+Upsb29HkiSjz7Xb7Tg4OIiXL19GOoMxBgAAAADzliRJFIuXd1z5tPgk/ujRn0Y9f31H4FXq+XJ859Gf6Px74L69sREfP3sWH52ZpDWJ59VqfPzsWXx7Y2NOKwMA3rSFDP7OqlQq8fjx43j8+PG5347r9/txfHwcx8fH97g6AAAAgMlc7PrrRT6+v/PH0civ3aluPV+O7+98L/phTOND9l6lEh8/exY//vrX4/0bRsu+Xy7Hj7/+9finZ890+gHAirn8q2YLKkmS2NnZiV6vF2maRrPZvO8lAQAAAEysXC5Ho9EY3f5J9aOpx3te5UXpa/GT6kfx5zOpxrIq5HLxw93d+OHubvw6TeNFmsZvWq1oZVlU8vn4oFKJ59VqfDhlZyAAsDyWJvgbKhaLsbm5GZubm+f+sgwAAACwyIbjPnu9XkRE/HXtmzOt/9e1PxD8MfKhgA8AHqSFH/V5nVqtFrVa7b6XAQAAADCR4bjPXyVP47Pk7ZnW/jR5O36dpjOtCQDAclnq4A8AAABgmQyDvxfJV+dS/4XgDwDgQVu6UZ8AAABwn7Kf/eFc6ua/84u51GWxDMd9fpY8mUv937Rac6kLAMBy0PEHAAAA8AaVy+VIc6W51G5l2VzqAgCwHAR/AAAAAG9QuVyO6qAzl9qVvB/1AAA8ZP42CAAAAPAGJUkSH7z3v8+l9geVylzqAgCwHAR/AAAAAG/Y8/X1+dStVudSFwCA5SD4AwAAAHjDvlGtxvvl8kxrflAux4eCPwCAB23q4K/VasXnn38e7Xb70udOTk7i888/j16vN5PFAQAAAKyqv3ryZKHrAQCwfKYO/vL/tkn08fHxufuzLItms3nuMQAAAACM94PHj+OjGXXoPa9W488eP55JLQAAltfUCd3a2lpUq9Xo9/vnuv4ajUZERGxtbQn+AAAAAG5QyOXi7995Jzbu+HOUjXw+/u6dd6KQy81oZQAALKtb/c1ya2srCoVC1Ov10X3NZjPK5XJUzZIHAAAAmMh7lUr8/N13bx3+beTz8fN33433KpUZrwwAgGVUvO2BOzs7sbe3F+12O7rdbuRyudja2prl2gAAAGDp/Cp5Gi+Sr8ZnyZNIc6WoDjrxXvdlPO/+Pr7R/fy+l8cC+vbGRnz87Fn8p9/9Lj5J04mPe16txt+9847QDwCAkYmCvyzLot/vR6FQGI3xTJIkNjY2otFoRL/fj52dnXMjPnu9XgwGg0iSZD4rBwAAgAXRj1z8bfV5/E3tm/Fp8vaVj3u/+2X8RePj+EH6IgoxeIMrZNG9V6nEx8+exU/29uK/vXwZn56eXvnY98vl+K9PnsSfPX5svCcAAOfkBoPBjf/S+OKLL+Lsw3K5XOTz+cjn89HtdiPidRA4DAjPKpfLsbOzM+NlMw+dTif29/dHtx89ehSlUukeVwQAALB4sp/94bnbnxV347/sfC8+KX1t4hofdf41fnr4j/Fe79Xovvx3fjGzNbL8fp2m8SJN4zetVrSyLCr5fHxQqcTzajU+tM0KAMCDMW12M1HHX61Wi263G/l8ftT1VygUot/vx8nJSUREbGxsRJZlMRgMRt1+WZZFuVy+41MCAACAxfTL0jvxnUd/EvX8dP/2/aT0tfjW7o/iZ/v/EN/u/G4+i2OpfSjgAwDgFiYO/sZ5+fJlbG5uRrvdjjRNdfYBAADwYHxafBJ/9OhPo5Ffu9Xx9Xw5vvPoT+J/vPrxuc4/AACA28rf/JDxjo+PI8uyqFarUavV4vT0NE6vmT8PAAAA42RZFkdHR3F0dBRZlt33cibSi3x8f+ePbx36DdXz5fj+zveiH/ZpAwAA7u5Wwd+ww2/YCZgkSZRKpaX6RxoAAAD3r9PpxN7eXrRarWi1WrG3txedTue+l3Wjn1Q/mmpPv+u8KH0tflL9aCa1AACAh23q4C/Lsjg8PIyIiOqZWfObm5sxGAzi4OBgdqsDAABgJQ0Gg2g0GrG/vx/9fn90f7/fj/39/Wg0GjEYDO5xhdf769o3Z1zvD2ZaDwAAeJimDv7SNI3BYBDr6+uRz//74UmSRLFYjG63G+12e6aLBAAAYHX0+/04ODiIer1+5WPq9XocHBycCwUXxa+Sp/FZ8vZMa36avB2/TtOZ1gQAAB6eqYO/arUaGxsbozGfZ+3s7MTGxkasrd1tjwMAAABWU7vdnnic53AM6KL9cumL5KvzqSv4AwAA7qg47QH5fH5s6BcRUSwWr/wcAAAAD9dgMIh6vR7NZnOq47Isi4ODg1hfX4+NjY3I5XJzWuHkPkuezKXub1qtudQFAAAejqmDPwAAAJhGr9eLo6Oj6Ha7t67RbDaj0+nE9vZ2FIv3+0/ZNFeaS91Wls2lLgAA8HBMPeoTAAAAJpWmaezt7d0p9Bvqdruxt7cX6T2PxFz/n/7jXOpW8v6JDgAA3I2OPwAA4EHIfvaHc6mb/84v5lJ3VTSbzRgMBjOrNxgMotlsRrVanVnNab1fLs+l7geVylzqAgAAD4dfJwQAAGBuynMIyeZRcxrP19fnU/cew0wAAGA1TBz8HR8fx8nJSbTb7ej1evNcEwAAACtiFYO/b1SrM+/6+6Bcjg8FfwAAwB1NPOqz1WqNRqqcVSgUYmtrK9bW1u68mG63G4VCIfL2NQAAAFgJSZJEsVic2S+QFovFSJJkJrXu4q+ePIk//5d/mWk9AACAu5o4+Du7J0O5XI58Pj8K6Wb1j67j4+PodruRy+VG/zhMkiQKhUIUCoUoFm1JmGVZNBqNSNM0njx5IiQFAAAWXrlcjkajMbNai+AHjx/H/7m3F5+k6Z1rPa9W488eP57BqgAAgIdu6iRtY2MjarXaPNYSjx8/jna7He12O05PT6PT6Yw+l8vl4itf+cpczrsMer1eNJvNSM/8ozLLMsEft5ZlWZycnERExObmpvcSAABzs4rBXyGXi79/55345m9/G/Usu3WdjXw+/u6dd6KQy81wdQAAwEM19U/6px3p2e12Y29vL05PTyeuv7m5GU+ePIm33npr2uWtnG63G4eHh/Hq1atzoR/cRafTib29vWi1WtFqtWJvb+9c0A4AALM0nOhyV4sy5nPovUolfv7uu7Fxy1+i28jn4+fvvhvvVSozXhkAAPBQTfyvk9y//fZhoVCY+iTD8GraPR3W1tZifX09Is6PGl11w3GeL1++nCo0hZsMBoNoNBqxv78f/X5/dH+/34/9/f1oNBoP6msNAIA3ZxadeovS7XfWtzc24uNnz+KjanWq455Xq/Hxs2fx7Y2NOa0MAAB4iKb+tcRpxwHmzowruc0owWk7DJdZlmWxv78fX375ZdTr9VEwU61WY3d399y1hGn1+/04ODiIer1+5WPq9XocHBycCwUBAGAWVjX4i3jd+ffxs2fx469/Pd6/YY3vl8vx469/Pf7p2TOdfgAAwMzdfdbKnD2kfcfy+fxo3GIul4tarRbVanV0DfL5vECGW2m323F0dBTZBHuPDMeAbm9vP6jgHQCA+RqO+5x2EszQoo35vKiQy8UPd3fjh7u78es0jRdpGr9ptaKVZVHJ5+ODSiWeV6vx4ZSdgQAAANOYe/B3Nri7TYj30LrcyuVyrK2tRXXMPwYf2rXg7gaDQdTr9Wg2m1Mdl2VZHBwcxPr6emxsbHjvAQAPwq+Sp/Ei+Wp8ljyJNFeK6qAT73VfxvPu7+Mb3c/ve3kroVwuR6PRuPWxy+JDAR8AAHBPdPwtmJ2dnfteAiui1+vF0dFRdLvdW9doNpvR6XRie3s7isWF/3YBADC1fuTib6vP429q34xPk7evfNz73S/jLxofxw/SF1EIeyLf1kMJ/gAAAO7LG+34u4/j4SFK0zROTk5iMLj7D6W63W7s7e3F5ubm2E5UAIBl9VlxN/7Lzvfik9LXbnzsp8nb8Zc7342frv+H+OnhP8Z7vVdvYIWrJ0mSePr06X0vAwAAYGVNnKoNA7hJ9ggD7lez2ZxJ6Dc0GAymHhcKALDIfll6J761+6OJQr+zPil9Lb61+6P4Zemd+SwMAAAA7kA7HaygeYxBMloJAFgVnxafxB89+tOo52/395t6vhzfefQn8Vlxd8YrAwAAgLuZOvjr9/vzWMeNcrncvZwXlpHgDwBgvF7k4/s7fxyN/Nqd6tTz5fj+zveiH/6dAgAAwOKYOvjb29uLvb29OD4+jjRNo9vtGv8JCyZJkigWZ7eFZ7FYjCRJZlYPAOC+/KT60dTjPa/yovS1+En1o5nUAgAAgFm4VTLQ7Xaj2+2euy+Xy0WSJOf+zCJ4ECrC7ZTL5Wg0GjOrBQCwCv669s0Z1/uD+POZVgQAAIDbm1lL0GAwiE6nE51O59z9hUJh9HG73Y4kSSKfn7zRUPAHtyP4AwA471fJ0/gseXumNT9N3o5fp2l8WK3OtC4AAADcxuxmAV7h7J6ABwcHo4+HXYGFQmH08bhAcDAYRERMFRYyGxe7Om9SKBTOBb3cr2HXba/Xu1MdYz4BgFXxIvnqfOoK/gAAAJhQv98/l53dZNqsZuLgL8uySJIktre3I5/PR7/fj16vF/1+fzT6c9qFjlvs2UCwUChMVZPZOjk5merxtVotNjY25rQabmMWXX+5XC4Gg0HkcrkZrQoA4H58ljyZS93ftFpzqQsAAMDqSdN0ZtP6xpmq469cLo/27cvn82O7gHq93rkgcFaBIDC9WXTqdbvd2N/fj+3t7Zns2wkAcF/SXGkudVu2JwAAAGBBTPxT/MFgMNG4zWKxGMViMSqVyrn7u93uuVCw2+2OxnhOwl5/MJ00Tafu2rxKt9uNvb292NzcjKoxVgDAklr/n/5jxMuXM69bsS0BAAAAC2Kq9p27jPobjvAcFwheDAWnCQSZn83Nzak6xuzvt1iazeZMv5YGg0E0m03BHwCwtN4vl+dS94ML/8YBAACAq1Sr1VhbW5v48d1ud6omn4mDv93d3Yk6/qY1DATPyrJsNCa03W7H6enpzM+7v78fnU5n5nWvUyqV4tGjR2/0nHeRJEmUSvMZh8T8zWJ/v3E1AQCW1fP19fnU9YtRAAAATKhQKMy1kWriJK9YLM4l+BtnuH9gtVqNnZ2dKJVKM+8CfFPP5b7PycM1j5BO8AcALLNvVKsz7/r7oFyODwV/AAAALIipRn3el0qlMvPuvJ2dnZnWg0WTJEkUi8Xo9XozqVcsFqca/QoAsIj+6smT+PN/+ZeZ1gMAAIBFsRQtaOVyOTY2Nu57GbB0Ztmhp9sPAFgFP3j8OD6aUYfe82o1/uzx45nUAgAAgFlYiuAvn89HrVa772XA0hH8AQCcV8jl4u/feSc27jiGfyOfj797550o5HIzWhkAAADc3VIEf8DtDMd93pUxnwDAKnmvUomfv/vurcO/jXw+fv7uu/FepTLjlQEAAMDdLMUef8DtlcvlaDQad64BAPcl+9kfzqVu/ju/mEvdeciyLE5OTiIiYnNzM/J37FYj4tsbG/Hxs2fxn373u/gkTSc+7nm1Gn/3zjtCPwAAABaSnxjAiptFaCf4A4D70+l0Ym9vL1qtVrRardjb24tOp3Pfy1oJ71Uq8fGzZ/Hjr3893r/h7zvvl8vx469/Pf7p2TOhHwAAAAtLx98SGQwG970EltBw3Gev17vV8cZ8AsD9GAwG0Ww2o16vn7u/3+/H/v5+bGxsxPr6euTsMXcnhVwufri7Gz/c3Y1fp2m8SNP4TasVrSyLSj4fH1Qq8bxajQ+r1fteKgAAANxI8LdEsiw7d1sQyKTuMu5Ttx8AvHn9fj+Ojo6u7eyr1+vRbrdje3s7CoXCG1zd6vpQwAcAAMCSM+pzSbTb7UtBXzrFXiQ8bHcJ7wR/APBmtdvticd5DseAttvtN7AyAAAAYNHp+FtA3W432u12ZFkWg8Eger3e2B/8pGka7XY7kiSJQqEQ+Xw+kiSJtbW1e1g1iyxJknj69Ol9LwMAuMZgMIh6vR7NZnOq47Isi4ODg1hfX4+NjQ2jPwEAAOABE/wtoHa7fWkvl6v0+/3o9/uj2+VyWfAHADwov0qexovkq/FZ8iTSXCmqg068130Zz7u/j290P7/v5U2k1+vF0dFRdLvdW9doNpvR6XRie3s7ikV/zQcAAICHyE8EFlCtVotarXbfywAAWFj9yMXfVp/H39S+GZ8mb1/5uPe7X8ZfND6OH6QvohCLuT9ymqZxcnIyk/2bu91u7O3txebmZlTtVQcAAAAPjj3+AABYKp8Vd+Nbuz+Kv9z57rWhX0TEp8nb8Zc7341v7f4oPivuvqEVTqfZbM4k9BsaDAZTjwsFAAAAVoPgDwCApfHL0jvxrd0fxSelr0113Celr8W3dn8Uvyy9M5+F3UG5XF6KmgAAAMDiE/wBALAUPi0+iT969KdRz98u1Krny/GdR3+ycJ1/gj8AAABgVgR/AAAsvF7k4/s7fxyN/Nqd6tTz5fj+zveiH7kZrezukiSJYnF2W28Xi8VIkmRm9QAAAIDlMbufMACwkrKf/eFc6ua/84u51AVW00+qH0093vMqL0pfi59UP4o/n0m12SiXy9FoNGZWCwAAAHiYdPwBALDw/rr2zRnX+4OZ1rurWYZ1gj8AAAB4uHT8AXAnv0qexovkq/FZ8iTSXCmqg068130Zz7u/j290P7/v5QEr4FfJ0/gseXumNT9N3o5fp2l8WK3OtO5tDcd99nq9O9Ux5hMAAAAeNsEfAFPrRy7+tvo8/qb2zfj0mh/Gv9/9Mv6i8XH8IH0RhRi8wRUCq+RF8tX51F2g4C9iNuM+dfsBAADAw2bUJwBT+ay4G9/a/VH85c53rw39Il531PzlznfjW7s/is+Ku29ohcCq+Sx5Mpe6v2m15lL3tmYR2gn+AAAA4GET/AEwsV+W3olv7f4oPil9barjPil9Lb61+6P4Zemd+SwMWGlprjSXuq0sm0vd2xqO+7wtYz4BAAAAwR8AE/m0+CT+6NGfRj1/u26Ser4c33n0Jzr/gKlVB5251K3kF++vwnfp2NPtBwAAACzeTzsAWDi9yMf3d/44Gvm1O9Wp58vx/Z3vRT9yM1oZ8BC81305l7ofVCpzqXsXgj8AAADgLm4/SwiAB+Mn1Y+mHu95lRelr8VPqh/Fn8+kGvAQPO/+fj51q9W51L2LJEni6dOn970MAAAAYEnp+APgRn9d++aM6/3BTOsBq+0b3c/j/e6XM635QfeL+HABgz8AAACAuxD8AXCtXyVP47Pk7ZnW/DR5O36dpjOtCayu/Hd+EX/1Pz+fac2/+p//nzOtBwAAALAIBH8AXOtF8tX51BX8AVP4wePH8dGMOvSeV6vxZ48fz6QWAAAAwCIR/AFwrc+SJ3Op+5tWay51gdVUyOXi7995Jzbyd/vr60Y+H3/3zjtRyOVmtDIAAACAxSH4A+Baaa40l7qtLJtLXWB1vVepxM/ffffW4d9GPh8/f/fdeK9SmfHKAAAAABaD4A+Aa1UHnbnUrdyxawd4mL69sREfP3s29djP59VqfPzsWXx7Y2NOKwMAAAC4f37qCsC13uu+nEvdD3TcALf0XqUSHz97Fj/++tfj/XL52se+Xy7Hj7/+9finZ890+gEAAAArr3jfCwBgsT3v/n4+dafs1gE4q5DLxQ93d+OHu7vx6zSNF2kav2m1opVlUcnn44NKJZ5Xq/Gh7zUAAADAAyL4A+Ba3+h+Hu93v4xPk7dnVvOD7hfxYfU/zKwe8LB9KOADAAAAiAijPgGYwF80Pl7oegAAAAAACP4AmMAP0hfxUedfZ1Lreedf48/ST2ZSCwAAAACAf2fUJwA3KsQgfnr4j/Gt3R9FPV++dZ2N7DT+++E/RiEGM1wdiyz72R/OpW7+O7+YS10AAAAAWGY6/gCYyHu9V/Gz/X+Ijez0VsdvZKfxs/1/iPd6r2a8MgAAAAAAInT8AXCDs51V/++I+LjViv/0u9/FJ2k6cY3n1Wr83TvvxXuV/9fsFwgAAAAAQEQI/gCY0nuVSnz87Fn8ZG8v/tvLl/Hp6dUdgO+Xy/FfnzyJP3v8OAq53BtcJcviV8nTeJF8NT5LnkSaK0V10In3ui/jeff38Y3u5/e9PAAAAABYKoI/AKZWyOXih7u78cPd3fh1msaLNI3ftFrRyrKo5PPxQaUSz6vV+LBave+lsoD6kYu/rT6Pv6l9Mz5N3r7yce93v4y/aHwcP0hf2BcSAAAAACYg+APgTj4U8DGFz4q78V92vheflL5242M/Td6Ov9z5bvx0/T/ETw//0f6QAAAAAHCD/H0vAAB4GH5Zeie+tfujiUK/sz4pfS2+tfuj+GXpnfksbM6yLIujo6M4OjqKLMvuezkAAAAArDDBHwAwd58Wn8QfPfrTqOfLtzq+ni/Hdx79SXxW3J3xyuar0+nE3t5etFqtaLVasbe3F51O576XBQAAAMCKEvwBAHPVi3x8f+ePo5Ffu1Oder4c39/5XvQjN6OVzc9gMIhGoxH7+/vR7/dH9/f7/djf349GoxGDgX0LAQAAAJgtwR8AMFc/qX409XjPq7wofS1+Uv1oJrXmpd/vx8HBQdTr9SsfU6/X4+Dg4FwoCAAAAAB3JfgD4Bz7kTFrf1375ozr/cFM681Su92eeJzncAxou91+AysDAAAA4CEQ/AH3Qri0mOxHxqz9KnkanyVvz7Tmp8nb8es0nWnNuxoMBnFychIHBwdTfU/LsiwODg7i5OTE6E8AAAAA7kzwB7xxwqXFYz8y5uVF8tX51F2g4K/X68X+/n40m81b12g2m7G/vx+9Xm+GKwMAAADgoRH8AW+McGkx2Y+MefoseTKXur9pteZSd1ppmsbe3l50u9071+p2u7G3txfpAoWaAAAAACwXwR/wRgiXFpP9yJi3NFeaS93WgowIbjabM/2FhcFgcKfOQQAAAAAeNsEfMHfCpcVjPzLelOpgPmN8K/nF+CtMuVxeipoAAAAAPAyL8VMzYCUJlxaT/ch4k97rvpxL3Q8qlbnUnZbgDwAAAIBFIvgD5kK4tJjsR8ab9rz7+/nUrVbnUndaSZJEsVicWb1isRhJksysHgAAAAAPi+APmDnh0uKyHxlv2je6n8f73S9nWvOD7hfx4YIEfxGz7dDT7QcAAADAXQj+gJkTLi0uYwm5D3/R+Hih692V4A8AAACARSH4A2ZOuLS4vDbchx+kL+Kjzr/OpNbzzr/Gn6WfzKTWrMxq3KcxnwAAAADc1ew2pWHlHBwcRC6Xu3T/+vp61Gq1e1gRy6JcLkej0Zh5Te5uGFDMat/EWQcVWZbFyclJRERsbm5GPu/3U+7LLF+LQgzip4f/GN/a/VHU87f/Wt7ITuO/H/5jFGJ2HcWzMovve77PAQAAADxcjUZj7OS7aafrCf640mAwGPuGmuUIR1bTLPb2G1dTJ8xszDKYnWVQ0el04ujoKPr9/uj29vZ2lEqlmZ2Dyczytch/5xcREfFBRPy8Xo//7Z//OepZNnWdjXw+fv6//D/ig+f/MPWxb4LgDwAAAIC7GAwGkd3i52YXaaXgSrlcLvL5/KU/47oA4ax57Mdnj7/ZWbT9yAaDQTQajdjf3x8FTRER/X4/9vf3o9Fo+IWDN2Ter8W3Nzbi42fP4qNqdarjnler8fGzZ/HtjY1bn3ve7jru05hPAAAAgIdtVpmMjj+u9NZbb+m04VaM+lxssxr3OYugot/vx9HRUXQ6nSsfU6/Xo91ux/b2dhQKhTudj6u9qdfivUolPn72LH6ytxf/7eXL+PT09MrHvl8ux3998iT+7PHjKCzBL53c5Xuf73EAAAAAD1utVhu7zVqn04n9/f2J6wj+gJkT/C2+RRhL2G634+joaKL29U6nE3t7e7G9vR1ra2t3Oi+XvenXopDLxQ93d+OHu7vx6zSNF2kav2m1opVlUcnn44NKJZ5Xq/HhlJ2B903wBwAAAMB9E/wBMzerjrIhI/Bm7z6Dv8FgEPV6ferxrVmWxcHBQayvr8fGxoaxwzOwCK/Fh0sY8F0lSZJ4+vTpfS8DAAAAgAfMHn/AXCzaPnKcd1/7kfV6vdjf37/Tno3NZjP29/dnFiw/VF4LAAAAAFg9gj9gLgR/i+8u1/U2x6ZpGnt7e9Htdm993qFutxt7e3uRpumdaz1EXgsAAAAAWE2CP2Au7tpRNmTM5/y86eCv2WzGYDC49TkvGgwGd+pWe8i8FgAAAACwmuzxB8zNfe4jx83e9H5ks3g/jKvJ9LwWAAAAALCadPwBczOLIECYsDrm8Vp6f9yO1wIAAAAAVpPgD5ibu477NOZzteRyuZnW8/64vVmN4h3yWgAAAADAYhD8AXP1pveRYzGlaRp7e3szrVkoFGZa76GZ5deXr1UAAAAAWAyCP2CuBH9ERDSbzRgMBjOt2ev1ZlrvoRH8AQAAAMDqmd2cL4AxkiSJp0+f3vcyuGflcjkajcZMa1YqlZnWe2iG4z7vGqAa8wkAAAAAi0PHHwBzN4+OMF1mdzeLa+h1AAAAAIDFIfgDYO6G3WWzUigUdJnNgOAPAAAAAFaL4A+AN2KWAZExn7Nx10DWmE8AAAAAWCyCP4AxsiyLo6OjODo6iizL7ns5K2GWwZ8us9m5y7X0OgAAAADAYpnd3DWAFdHpdOLo6Cj6/f7o9vb2dpRKpXte2XIbdpf1er071THmc7bK5XI0Go1bHwsAAAAALA7BH8C/GQwG0Ww2o16vn7u/3+/H/v5+bGxsxPr6euRyuXta4fK7S8g0ZMznbCVJEk+fPr3vZQAAAAAAM2DUJ0C8DvcODg4uhX5n1ev1ODg4GHUCMr1ZdIjpMgMAAAAAGE/wBzx47XY79vb2otPp3PjYTqcTe3t70W6338DKVs9w3OdtFYtFYz4BAAAAAK4g+AMerMFgECcnJ3FwcBBZlk18XJZlcXBwECcnJzEYDOa4wtV0l4493X4AAAAAAFcT/AEPUq/Xi/39/Wg2m7eu0Ww2Y39/P3q93gxXtvoEfwAAAAAA83H7eWsASypN05l163W73djb24vNzc2oVqszWN3qS5Iknj59et/LAAAAAABYOTr+gAen2WzOdETnYDC4U+cgAAAAAADMguAPeHCKxdk3OxtBCQAAAADAfTPqE3gwBoNB1Ov1OD09nXltwR8AAAAAAPdN8Ac8CL1eL46OjqLb7c68drFYjCRJZl4XAAAAAACmIfgDVl6apnFycjLTff3O0u0HAAAAAMAisMcfsPKazebcQr8IwR8AAAAAAItB8AesvHkGc8Z8AgAAAACwKAR/wMqbZ/Cn2w8AAAAAgEUh+ANWXpIkUSzOZ0tTwR8AAAAAAItC8Ac8CPMI6GY55jPLsjg6Ooqjo6PIsmwmNQEAAAAAeFjm0wIDsGDK5XI0Go2Z15yFTqcTR0dH8f9v704b0tbWNgA/YZBBKlq7p///4/Y+Z2stCGFISN4PfeWIQwUBgXhdX0pisrICtim586y1WCyWy5eXl3F2draT9gEAAAAA+BxU/AGfwj6G+9w2+CvLMkajUdze3i5Dv4iIxWIRt7e3MRqNoizLbbsJAAAAAMAnoeIP+DR2UfXX6/Xiy5cvW/dlsVjEjx8/Yj6fv7rN/f19zGazuLy8jHq9vvUxAQAAAACoNhV/wKexi6E5d9HGbDaLm5ubX4Z+D+bzedzc3MRsNtv6uAAAAAAAVJvgD/g0th3us9FoRLPZfPf+ZVnGcDiM79+/R1EUa+9XFEV8//49hsOhoT8BAAAAAHiV4A/4VLap2Ntm3zzP4/b2Nsbj8bvbGI/HcXt7G3mev7sNAAAAAACqS/AHfCqHCP7SNI2bm5vIsuzdx36QZVnc3NxEmqZbtwUAAAAAQLW8f8w7gBPUbDbjr7/++tBjjsfjnQ7RWZZljMfj6Ha7O2sTAAAAAIDTp+IPYM+2qTL8yDYBAAAAADhtgj+APdtHSNdqtXbeJgAAAAAAp03wB7BnzWYzGo3djqw8HA4jz/OdtgkAAAAAwGkT/AF8gF1X/WVZFjc3N5Gm6U7bBQAAAADgdO22BIWdy7IssiyLPM+jLMtIkiRqtVo0m01D/cEJabfbMRqNdtpmWZYxHo+j2+3utF0AAAAAAE6T4O9IjUajGI1GUZblL7frdrtxfn6+82EEgd1qNpuRJMmbf6c3tY/5AwEAAAAAOE3SoiOT53l8//49FovFWtunaRppmsbl5WV0Op099w7YRrvdjslksvM2AQAAAAAgwhx/R+Vhzq51Q7/Hfvz4sfNAAdit8/PznbbXaDSi2WzutE0AAAAAAE6Xir8jMpvNVoYB7Ha70e12o16vR61WW871l6ZpzOfzZ/v/+PEjWq1W1GryXDhGux7uU7UfAAAAAACPSYiOyONKv2/fvkW/349ms7kM8prNZnQ6nbi+vo7Ly8tIkuRZG6PR6MP6C2xul2Gd4A8AAAAAgMcEf0ckz/OIiGXg9yudTif6/f6z9dPpdC99A3ZjV8N9GuYTAAAAAICnBH9HZLFYRJIk0e1219q+0+k8q/hZLBZRFMU+ugfsQLPZjF6vt3U7qv0AAAAAAHhK8HdEFotFtFqtjfZ56eb/4yFDgeOzi9BO8AcAAAAAwFOCvyPxUKW36c18Q/3B6Wk2m9FoNN69v2E+AQAAAAB4ieDvSNRqtfjjjz+i0+lstN9L4UG9Xt9Vt4A92aZiT7UfAAAAAAAvEfwdkVpt84/jpfn83tMO8LEEfwAAAAAA7Nr7x5rjKGRZtrIsEIDT0Gw246+//jp0NwAAAAAAqBClYSfuafDX6/UO1BMAAAAAAAAOScXfiRuNRsvXZ2dn0Ww2d9b201DxLfV63fyCAAAAAAAAr1gsFrFYLNbeftOsRvB3wiaTSZRluVy+urraafvD4XCj7Xu9Xnz58mWnfQAAAAAAAKiKNE1Xirp2zVCfJ+z+/n75ut/vR63m4wQAAAAAAPisJEUnajgcLktBu91udLvdA/cIAAAAAACAQzLU5wnKsizG43FE/JzXr9/v7+U4FxcXG80ZaH4/AAAAAACA13W73Wi1Wmtvn2XZRlOzCf5OTFEUcXt7GxERjUYjrq+v93asZrMZZ2dne2sfAAAAAADgM6nX63stpPq0wd/t7W3M5/MPPebZ2dnWQd3t7W2UZRn1en2voR8AAAAAAACn5dPO8Verffypb3vMu7u7yPM8kiSJb9++HeQcAAAAAAAAOE6ftuLv6urq0F3YyGAwiOl0KvQDAAAAAADgRdKjEzAcDiNN02Xo12h82rwWAAAAAACAVwj+jlyapjEejyMi4vr6WugHAAAAAADAiwR/RyxN0xgMBhER8fXr12g2mwfuEQAAAAAAAMdK8HekJpPJSujXarUO3CMAAAAAAACOmeDvCM1ms/jx40dERFxeXgr9AAAAAAAAeJMJ445MlmXx/fv3iIjo9/vR6XTW3rcoiiiKIiIiyrI0NCgAAAAAAMAnIvg7Inmex+3t7XJ5PB7HeDyOsiyX6x6CvYhYWf9UkiTx559/7qejAAAAAAAAHB3B35HI8zxubm5Wwrw8zw/YIwAAAAAAAE6JOf6OQFEUz0I/AAAAAAAA2ISKvyOwWCw2Cv2SJHlx/eM2hIgAAAAAAACfi+DvCDSbzfjrr78O3Q0AAAAAAABOmKE+AQAAAAAAoAIEfwAAAAAAAFABgj8AAAAAAACoAMEfAAAAAAAAVIDgDwAAAAAAACpA8AcAAAAAAAAVIPgDAAAAAACAChD8AQAAAAAAQAUI/gAAAAAAAKACBH8AAAAAAABQAYI/AAAAAAAAqADBHwAAAAAAAFSA4A8AAAAAAAAqQPAHAAAAAAAAFSD4AwAAAAAAgAoQ/AEAAAAAAEAFCP4AAAAAAACgAgR/AAAAAAAAUAGCPwAAAAAAAKgAwR8AAAAAAABUgOAPAAAAAAAAKkDwBwAAAAAAABUg+AMAAAAAAIAKEPwBAAAAAABABQj+AAAAAAAAoAIEfwAAAAAAAFABgj8AAAAAAACoAMEfAAAAAAAAVIDgDwAAAAAAACpA8AcAAAAAAAAVIPgDAAAAAACAChD8AQAAAAAAQAUI/gAAAAAAAKACBH8AAAAAAABQAYI/AAAAAAAAqADBHwAAAAAAAFSA4A8AAAAAAAAqQPAHAAAAAAAAFSD4AwAAAAAAgAoQ/AEAAAAAAEAFCP4AAAAAAACgAgR/AAAAAAAAUAGCPwAAAAAAAKgAwR8AAAAAAABUQOPQHeB4ff/+PZIkebb+/Pw8er3eAXoEAAAAAABQPaPRKMbj8bP1ZVlu1I7gj1eVZfniL9Smv2QAAAAAAAC8rizLKIpi63YEf7wqSZIXK/5eWgcAAAAAAMD7JEkStdrzGfpeK9J6jeCPV339+jXOzs4O3Q0AAAAAAIBK6/V6L06zNp/P4/b2du12nkeHAAAAAAAAwMkR/AEAAAAAAEAFCP4AAAAAAACgAgR/AAAAAAAAUAGCPwAAAAAAAKgAwR8AAAAAAABUgOAPAAAAAAAAKkDwBwAAAAAAABUg+AMAAAAAAIAKEPwBAAAAAABABQj+AAAAAAAAoAIEfwAAAAAAAFABgj8AAAAAAACoAMEfAAAAAAAAVIDgDwAAAAAAACpA8AcAAAAAAAAVIPgDAAAAAACAChD8AQAAAAAAQAUI/gAAAAAAAKACBH8AAAAAAABQAYI/AAAAAAAAqADBHwAAAAAAAFSA4A8AAAAAAAAqQPAHAAAAAAAAFSD4AwAAAAAAgAoQ/AEAAAAAAEAFCP4AAAAAAACgAgR/AAAAAAAAUAGCPwAAAAAAAKgAwR8AAAAAAABUgOAPAAAAAAAAKkDwBwAAAAAAABUg+AMAAAAAAIAKEPwBAAAAAABABQj+AAAAAAAAoAIEfwAAAAAAAFABgj8AAAAAAACoAMEfAAAAAAAAVIDgDwAAAAAAACpA8AcAAAAAAAAVIPgDAAAAAACAChD8AQAAAAAAQAUI/gAAAAAAAKACBH8AAAAAAABQAYK/E1IUxaG7AAAAAAAAwJFqHLoDvC7LskjTNCaTSZRluVyfJEnU6/U4OzuL8/PzaDR8jAAAAAAAAJ+dxOgIFUURg8EgptPpiz8vyzLyPI88zyNN0+h2u/Hly5eo1RRwAqdrsVhEmqbL5W63G/V6/YA9AgAAAABOhfuLPwn+jkye5/H9+/dYLBZr75Omacxms/j27ZvwDzhZi8UiRqPRcrnVan3KCzMAAAAAsDn3F38S/B2ZwWCwEvp1u91ot9vRbDYj4ufwn7PZLMbj8cp+i8Ui7u7u4vr6+kP7CwAAAAAAwHEQ/B2Z+XweERFnZ2dxdXX1rIKv1WpFq9WKTqcTt7e3K3P/zefzyLJsGRICAAAAAADweRgX8ohkWRYREY1GI66vr385bGez2Yyrq6tn62ez2d76BwAAAAAAwPES/B2Rh9Du8vJyre1brVa02+2VdZvMDQgAAAAAAEB1GOrziGRZFkmSbDRUZ6vViul0ulxOkmQfXWMHRqNRlGUZSZJEr9c7dHeOnvfrf7wXAOB6CMfG30mOhd/Fz8tnf7x8Nvvjvd2M9+sn78PnI/g7InmeR7fb3Wifer2+stxo+EiP1Xg8jqIoolar+Qd2Dd6v//FeAIDrIRwbfyc5Fn4XPy+f/fHy2eyP93Yz3q+fvA+fj5ToiPz2228b7/N0aM+nQ38CAAAAAADwOZjj78RlWbZ8fX5+HrWajxQAAAAAAOAzkhKdsKIoYjKZRMTPIT4vLi4O3CMAAAAAAAAORfB3wgaDQZRlGfV6Pa6vrw/dHQAAAAAAAA7IHH8najAYxHQ6jUajEdfX1zsZ4rMoipXlyWSyMpToW2q1WtTr9a37UVVlWS7/nM/nB+7N8fN+/c9neS+e/nuzyb8/AFTfZ7kewqnwd5Jj4Xfx8/LZHy+fzf54bzfj/frpM70Pp3J/cbFYPMtjfiXP85Xlt/ZNyodPnaP08AHWarUoiiJms1nc39/HYrGIer0e375929m8fuPxOIbD4U7aAgAAAAAAYLcuLi7i/Pz81Z+r+DtyD5V9L1ksFvGf//wnGo1GdDqd6PV6H9w7AAAAAAAAjoU5/o7cbDaLiIh6vR5nZ2fRbrefDaeZ53nc39/HP//8s9weAAAAAACAz8VQn0duNBpFt9t9cTjP4XAY4/H42fqvX79Gq9Xa+Fh5nsdsNouiKKIoiqjX65Ekydr7m+MPAAAAAADgdZvO8VeWZSwWi6jValGr1aLVakWj8fqAnoK/EzebzeL79+8r65IkiT///PNAPQIAAAAAAOAQPu0cf7e3tzGfzz/0mGdnZ3F9fb3TNlutVrTb7ZV5AMuyjMlkEp1OZ6fHAgAAAAAA4Hh92jn+Xho681SP2e/3n6376FATAAAAAACAw/q0FX9XV1eH7sLO1Gq1SJIkHo/ausn4sAAAAAAAAJy+T1vxVzX1en1l+RAVjQAAAAAAAByOdKgingZ9T4NAAAAAAAAAqk3wdyQmk8lW+z8d2rPVam3VHgAAAAAAAKdF8HcE8jyPHz9+bBX+LRaL5etGoxHNZnMXXQMAAAAAAOBECP6OQKPRiEajEaPR6F37Z1kWZVkuly8vL3fUMwAAAAAAAE6F4O9ItFqtyPP8XVV/P378WL4+Pz9X7QcAAAAAAPAJCf6ORKfTiYifIV6e52vvl6bpcvtutxsXFxd76R/AqcvzPLIsezYnKgAAAABAVTQO3QF+elyld3NzE/1+fxkGvmY0GsX9/X1E/Kz0E/oBrMqyLIbDYczn85X1SZJ4WAIAAAAAWFue58tM5urq6sC9eV1SPp4cjoP6559/VubqazQacXFxEc1mM2q1/xVnzmazGA6Hked51Ov16Pf70Wq1DtFlgKM1HA5jPB5Hu92OXq8XzWYziqKINE2XF+h6vR7fvn1b+TcWAAAAAODB0+KCs7OzuL6+PnCvXif4OyJ3d3cxnU7X2jZJkuj1etHr9fbcK4DTk6ZpDAaDaLfbLz59M5lMlvOjHvuFGgAAAAD4WA8FBGmaxmKxWPnZsd9PNNTnEbm6uoqiKGI2m8V0Oo08z2OxWERZlpEkSdTr9Tg7O4t2u63CD+AVeZ7HYDCIiIh+v//iNp1OJ9I0jfl8HvP5PLIsWxlyGQAAAAD4nAaDQaRpGhGxHHXxYf0pEPwdmVqtFp1O5835/QB42Xg8joifT978agjPbre7LM8fjUZHPS43AAAAAPAx8jxfTsX2UIQ1m80O3Kv1Cf4AqJSHp3HequB7XDl9ShduAAAAAGB/jnkYz3W8XgoBACfmcYD3VvBXq9UiSZKIiCjLMvI832vfAAAAAAD2TfAHQGU8Dv4ajbeL2h+Hg1mW7aVPAAAAAAAfRfAHQGUsFovl64dqvl95HA4+3hcAAAAA4BQJ/gDYWFEUMRwO459//omiKA7dnaXHw3XWam9f4h6Hg8d0HgAAAABQZcd6f7EK3h4HDQD+X57nMR6PI03T5bqiKNYK2d4ym81iOp3GfD6PxWIRZVlGkiRRr9ej0+lEt9t98zhlWS5fr9OnXfQbAAAAAFjPsd9frALBHwBvyrIsRqNRTKfTvbR9d3e3HGqz0WhEs9mMoigiz/PI8zzu7+/j/v4++v1+dLvdV9va5umgx6EhAAAAALA7p3J/sQoEfwC8qCiKSNM00jTd2/x3aZrGYDCIiIhutxtfvnxZeeqmKIoYDAbL/xAMBoPI8zwuLi5ebG/T8O7xsdaZExAAAAAAWM8p3l+sAsEfACuKooi7u7uYz+cr67vdbpyfn8fNzc1OquNms9nyonx+fv7ixbZWq8XV1VXc3d0tL87j8TiazWZ0Op1n2ydJsuzbpkMEfIYyfwAAAADYt1O+v1gFgj8AVtRqteVFOUmS6PV6K+Nf12q1nTyhc3d3tzzGW0/Y9Pv9lWEABoPBTi7Mj4cGFfwBAAAAwPY+0/3FYyT4A+CZdrsdrVbrxfGudzEk5mg0Wj7V0+v13ty+VqvF+fl5jMfjiPg5pGeaps/69/g/DZtW/NXr9bW3BQAAAABed6r3F6tAeQMAz1xdXe31ojcajZav2+32Wvs8fQJnMpk82+ZxeLfOU0OPK/4EfwAAAACwG6d6f7EKBH8AfKjJZLJ8GidJkmg01is+bzabK8tPxwiPiJW21gn+Hm+zbj8AAAAAgMPZ5/3FKhD8AfChHl9Qn15s3/L0Ij6bzVaWH7eX5/mb7T1sc3Z2tlE/AAAAAIDD2Of9xSoQ/AHwoR6X0G9aZfc0oHta1ff45+tctB+Cv1artVE/AAAAAIDD2Of9xSoQ/AHwYYqiWJbhR2w+ke/TefieVvU1Go3lNnmer8zh99TjYLCKk/gCAAAAQNXs+/5iFQj+APgwT5+g2fSJnKcX5izLnm3z5cuX5evHk/w+laZpREScn59HreZyCAAAAADH7iPuL546dzoB+DBPL6SbPpGzTkDX6XSWJfvj8fjFi/dsNovpdBqNRiMuLi426gMAAAAAcBgfcX/xJY8Dx2MfHnSzKBQAtvCroTfX8fTC/Fp719fXcXt7G/P5PG5ubuL8/Hw5j990Oo00TaPRaMT19fVW/QEAAAAAPs5H3V98+NlisYg8z1dGFlssFjEcDqPT6USSJFGr1Y5qRDHBHwAfZtsL89MneB6P5/3U9fV1zGazGI1GkaZpjMfjSJIkms1mXF5eRqfT2aovAAAAAMDH+qj7i4PBYDlV0EvG43GMx+Nlm3/++edW/dolwR8AH+bphXTfT8K0Wq1lpR8AAAAAcNo+6v5iv9+Pfr+/l7b37XhqDwH4dHb9hA4AAAAA8Hm4v/ic4A+Ak/H0CZ5jGjsbAAAAADhun+H+YvXOCIDK2vYJHgAAAADg8/oM9xcFfwB8mHUnz11XFZ/IAQAAAABe5v7i26p3RgAcracX0k2fsHl6IW82m1v3CQAAAAA4De4vvk3wB8CHeXphXiwWG+3/9EJer9e37hMAAAAAcBrcX3yb4A+AD/P0CZpNn8h5un2j0di6TwAAAADAaXB/8W2CPwA+zNMnaLIs22j/p0/wVLEUHwAAAAB4mfuLbxP8AfBharXaygS8m5biP97+7OxsZ/0CAAAAAI6f+4tvE/wB8KFardbK8iZP5czn81fbAQAAAACqz/3FXxP8AfCh2u32yvJsNlt73zzPl6+73e7O+gQAAAAAnAb3F39N8AfARsqy3Gr/Tqezspym6Vr7TSaT5et2ux21mksYAAAAAJwa9xf3q5pnBcDeFEWxsvyeC/WXL1+WrxeLxVpP5YxGoxf3BwAAAABOh/uL+yX4A2Bts9ns2YV43SdqHuv1elGv15fLg8Hg2QX/6TEeyvD7/X40Go2NjwkAAAAAHJb7i/uXlNvWVAJQSVmWxWw2i6IooizLyPN8ZfLbx+r1ejSbzajX61Gr1aLZbL45OW5RFPHf//53eaGv1+txdXUVzWZzZbvRaBT39/cREXF+fh4XFxc7ODsAAAAAYJ/cXzwMwR8AL3p8QdxUu92Oq6urN7criiIGg0FMp9PluoeLfFEUkWXZ8sJ9eXn5bPxuAAAAAOA4ub94GII/AA4uy7JI03TlCaB6vR71ej06nU50u91DdxEAAAAAOFLuL/6P4A8AAAAAAAAqoHboDgAAAAAAAADbE/wBAAAAAABABQj+AAAAAAAAoAIEfwAAAAAAAFABgj8AAAAAAACoAMEfAAAAAAAAVIDgDwAAAAAAACpA8AcAAAAAAAAVIPgDAAAAAACAChD8AQAAAAAAQAUI/gAAAAAAAKACBH8AAAAAAABQAYI/AAAAAAAAqADBHwAAAAAAAFSA4A8AAAAAAAAqQPAHAABA5RRFEUVRHLobAAAAH6px6A4AAADALt3e3sZ8Po+IiN9++y0ajeP76jsajWI0GsXvv/8etZpncgEAgN3w7QIAAIDKyPN8Gfq12+2jDP0iIrIsi7IsY7FYHLorAABAhQj+AAAAqIzxeLx83ev1DtiTX3uo8qvX6wfuCQAAUCWCPwAAACqhKIpI0zQiIhqNRjSbzQP36GefRqPRs/kGHwK/p8N8zmazmEwmH9Y/AACgWo5zzBMAAADY0EPoF3E81X5pmsb9/X2MRqO4urqKVqsVET8DvyRJVrYdDAbLc+h0Oh/eVwAA4PQJ/gAAAKiE0WgUERFJkhxNcNbtdqMoihiPx/H9+/fodrvR7/ejXq8vq/2yLIu7u7tYLBZRr9ej3+8fuNcAAMCpEvwBAABw8iaTSZRlGRHHU+0X8bOy7+LiInq9XqRpGqPRKGazWfR6vUiSJEajUdzf30ej0YivX78uKwIBAADeIykfvhkBAADAifr3338jz/OIiPjjjz+ezZ13TNI0jeFwGGVZxtnZWfR6PYEfAACwE8f7TQgAAADWkGXZMvTrdrtHHfplWRaz2Wy5vFgsIsuyA/YIAACokuP9NgQAAABreJjbLyLi/Pz8gD15XZZlcXt7Gzc3NxERcXV1FY1GI/r9foxGo/j7779jOBxGURQH7ikAAHDKzPEHAADAySqKIqbTaUREnJ2dRaNxXF9z8zyPu7u7yPM8kiSJy8vL6HQ6yzkJW61W/P777zEYDGI8Hsd4PI7z8/O4uLg4dNcBAIATdFzfiAAAADhas9ks0jSNWq0WSZJErVaLWq0WRVEsA7ivX7+uhG9FUcTd3V3M5/Not9txdXW10z49rvbr9Xrvbmdf5zadTiPP82g0GnF9fb0chrQsy1gsFhERUavV4urqKtI0XQaAgj8AAOA9BH8AAAD8UpZlcXd3twyqXlOv11eCsTzP4+bmJsqyjIifIdhgMIh+v7+zvo3H4+WxW63Wxvvv+9x6vV40m81nfXuYk/Cxbrcb7XbbcJ8AAMC7meMPAACAXxoOh28GYxGxUvH2NBh7kKbpzvr1uK33Vvt9xLm9FEg+7Ps0AKzVakc3XCkAAHA6fJsAAADgVUVRxHw+j4iIRqMRZ2dnKxVptVot5vN5dDqdaDabK+tbrVa0Wq0Yj8crAVeWZSvbvtfDMJ9JkkS32914/0Oe28NxnoaHAAAA2xD8AQAA8KrpdBoREd++fXsx0MrzPObz+bOKu4d56yJ+DmH5999/r+yzbfA3mUyWlXrvCf0iDntu7XY7ImInASgAAMADQ30CAADwqtlsFt1u98WAqiiKuLm5icvLyzfbOTs7W77eRZXbQ7VfxPuH+TzkuXU6nZXhQwEAAHZB8AcAAMCrsiyL8/PzF392e3sbzWZzraq1x/PW1ev1rfv0MLxmu92OWu19X22P8dwAAAC2IfgDAADgVb///vtKsPVgMBhEnudxcXGxVjuP587bNhzbRbVfxHGeGwAAwDYEfwAAAGxkNptFmqbRbrfXnqPuoUIvIl4M29ZVFMVybr5Go7HzOfIOeW4AAADbEvwBAACwkbu7u4iI6Ha7a+/zMPddu93e6tiPq/3WrcjbxCHPDQAAYFuCPwAAANY2HA6XQVer1Vprn6IoYrFYRMT24ViaphHxc0jNdY+/rkOfGwAAwLYEfwAAAKxtPB5HxGYhV5Zly9edTufdx07TdBnMbTO332sOeW4AAAC7IPgDAABgLZPJZPl6k3DsYU6+XQ7zuclQnOs49LkBAADsguAPAACAtTwMsxkR0Wg01t7vIVT78uXLu489m82WQ2qen5+/u53XHPLcAAAAdkXwBwAAwFrm8/nydZIka+0zm82iLMvodrsbBWpP7bPaL+Kw5wYAALArgj8AAADelOf5yvK6QddwOIyI7Sri8jxfBnPtdnvnIdshzw0AAGCXBH8AAAC86WGYzU3MZrPI8zy+fPkStdr7v36Ox+Pl616v9+52XnPIcwMAANgl304AAAB409NwrCiKN/cZDAZRr9e3CuuKoljOv9doNKLZbL67rdcc6twAAAB2TfAHAADAm57Oe/dWldxgMIjFYhFfv37d6rgPoV/Efqr9Ig53bgAAALsm+AMAAOBNTyvtRqPRq9umaRppmsbXr1+3no/v4ThJkkSn09mqrdcc6twAAAB2TfAHAADAmxqNxkpl3HQ6jdls9my74XAYg8EgLi8vo9VqbXXMyWQSZVlGxP6q/SIOc24AAAD7kJQP36IAAADgF9I0jcFgsLKu3W5Hq9WKPM9jOp3GYrGIy8vLnVTn/fvvv5HneURE/PHHH1Gr7e/Z1Y8+NwAAgH0Q/AEAALC2u7u7mE6nL/6sXq/H1dXVs6Ez3yPLsri5uYmIiG63G/1+f+s23/JR5wYAALAvgj8AAAA2kqZpTCaTmM/nkSRJNJvN6Ha7O62EexzC/fbbbx82n95HnBsAAMC+CP4AAAA4Knmex7///hsREWdnZ3F9fX3gHgEAAJyG/U2QAAAAAO+Qpunyda/XO2BPAAAATovgDwAAgKMyHo8j4ue8eq1W68C9AQAAOB2CPwAAAI7GaDRavlbtBwAAsJmPmR0dAAAA1tTtdlf+BAAAYD1JWZbloTsBAAAAAAAAbMdQnwAAAAAAAFABgj8AAAAAAACoAMEfAAAAAAAAVIDgDwAAAAAAACpA8AcAAAAAAAAVIPgDAAAAAACAChD8AQAAAAAAQAUI/gAAAAAAAKACBH8AAAAAAABQAYI/AAAAAAAAqADBHwAAAAAAAFSA4A8AAAAAAAAqQPAHAAAAAAAAFSD4AwAAAAAAgAoQ/AEAAAAAAEAFCP4AAAAAAACgAgR/AAAAAAAAUAH/B+EAsziPhV/jAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "filename = \"energy-vs-density\"\n", - "for dark_mode in [False, True]:\n", - " myplt = PltTools()\n", - " myplt.prepare_figure(fig_size = (18,8), dark_mode = dark_mode,\n", - " transparency = True, use_serif=True)\n", - " myplt.add_panel()\n", - " myplt.add_plot(x = Wood1957[:,0], y = Wood1957[:,1], type = \"semilogx\",\n", - " linewidth_data = 3, marker = \"p\", data_color = \"autogray\",\n", - " markersize = 16, data_label = r'$\\mathrm{Wood1957}$')\n", - " myplt.add_plot(x = Epot_vs_tau_lmp[:,0], y = Epot_vs_tau_lmp[:,1], type = \"semilogx\",\n", - " linewidth_data = 3, marker = \"s\", data_color = 1,\n", - " markersize = 16, data_label = r'$\\mathrm{LAMMPS}$')\n", - " myplt.add_plot(x = Epot_vs_tau[:,0], y = Epot_vs_tau[:,1], type = \"semilogx\",\n", - " linewidth_data = 3, marker = \"o\", data_color = np.array([0, 0.8, 0.8]),\n", - " markersize = 16, data_label = r'$\\mathrm{MC~move}$')\n", - " myplt.complete_panel(ylabel = r'$E^* / R T$', xlabel = r'$v / v^*$',\n", - " xpad = 16, legend=True, handlelength_legend=1)\n", - " myplt.set_boundaries(x_boundaries=(0.6, 11), y_ticks=np.arange(-3., 2.1, 1),\n", - " y_boundaries=(-3, 2))\n", - " myplt.save_figure(filename = filename, saving_path = './')" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3.10.6 64-bit", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.12.3" - }, - "vscode": { - "interpreter": { - "hash": "916dbcbb3f70747c44a77c7bcd40155683ae19c65e1c03b4aa3499c5328201f1" - } - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} diff --git a/illustration/Equation-of-state/energy-vs-density.png b/illustration/Equation-of-state/energy-vs-density.png deleted file mode 100644 index ca891d7..0000000 Binary files a/illustration/Equation-of-state/energy-vs-density.png and /dev/null differ diff --git a/illustration/Equation-of-state/generate-code.py b/illustration/Equation-of-state/generate-code.py deleted file mode 100644 index cfa9963..0000000 --- a/illustration/Equation-of-state/generate-code.py +++ /dev/null @@ -1,25 +0,0 @@ -import os, git, sys -import numpy as np - -# detect the path to the documentation -current_path = os.getcwd() -git_repo = git.Repo(current_path, search_parent_directories=True) -git_path = git_repo.git.rev_parse("--show-toplevel") -path_to_docs = git_path + "/mdcourse.github.io/docs/source/chapters/" - -# import the python converter -path_to_converter = git_path + "/mdcourse.github.io/tests/" -sys.path.append(path_to_converter) -from utilities import sphinx_to_python - -# make sure the documentation was found -assert os.path.exists(path_to_docs), """Documentation files not found""" - -# if necessary, create the "generated-codes/" folder -if os.path.exists("generated-codes/") is False: - os.mkdir("generated-codes/") - -# Choose a desired chapter id to build the code from -# max_chapter_id = 6 -for chapter_id in [1, 2, 3, 4, 5, 6, 7]: - RST_EXISTS, created_tests, folder = sphinx_to_python(path_to_docs, chapter_id) diff --git a/illustration/Equation-of-state/illustration.ipynb b/illustration/Equation-of-state/illustration.ipynb deleted file mode 100644 index ef7f747..0000000 --- a/illustration/Equation-of-state/illustration.ipynb +++ /dev/null @@ -1,164 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import warnings\n", - "warnings.filterwarnings(\"ignore\")\n", - "\n", - "from scipy import constants as cst\n", - "from pint import UnitRegistry\n", - "ureg = UnitRegistry()\n", - "ureg = UnitRegistry(autoconvert_offset_to_baseunit = True)\n", - "import sys\n", - "import multiprocessing\n", - "import subprocess\n", - "import numpy as np\n", - "import shutil\n", - "import os\n", - "\n", - "path_to_code = \"generated-codes/chapter7/\"\n", - "sys.path.append(path_to_code)\n", - "\n", - "from MinimizeEnergy import MinimizeEnergy\n", - "from MonteCarlo import MonteCarlo\n", - "from WriteLAMMPSfiles import write_topology_file, write_lammps_parameters, write_lammps_variables" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\"The values of the potential constants for argon have been taken throughout as \n", - "E*/k= 119.76°K, r*=3.822 A, v*=23.79 cm3/mole, as determined by Michels6 from \n", - "second virial coefficient data.\" [1] \n", - "\n", - "[1] Wood and Parker. The Journal of Chemical Physics, 27(3):720–733, 1957. " - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "kB = cst.Boltzmann*ureg.J/ureg.kelvin # boltzman constant\n", - "Na = cst.Avogadro/ureg.mole # avogadro\n", - "R = kB*Na # gas constant" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def launch_MC_code(tau):\n", - "\n", - " epsilon = (119.76*ureg.kelvin*kB*Na).to(ureg.kcal/ureg.mol) # kcal/mol\n", - " r_star = 3.822*ureg.angstrom # angstrom\n", - " sigma = r_star / 2**(1/6) # angstrom\n", - " N_atom = 200 # no units\n", - " m_argon = 39.948*ureg.gram/ureg.mol\n", - " T = (55 * ureg.degC).to(ureg.degK) # 55°C\n", - " volume_star = r_star**3 * Na * 2**(-0.5)\n", - " cut_off = sigma*2.5\n", - " displace_mc = sigma/5 # angstrom\n", - " volume = N_atom*volume_star*tau/Na\n", - " L = volume**(1/3)\n", - " folder = \"outputs_tau\"+str(tau)+\"/\"\n", - "\n", - " em = MinimizeEnergy(\n", - " ureg = ureg,\n", - " maximum_steps=100,\n", - " thermo_period=10,\n", - " dumping_period=10,\n", - " number_atoms=[N_atom],\n", - " epsilon=[epsilon], \n", - " sigma=[sigma],\n", - " atom_mass=[m_argon],\n", - " box_dimensions=[L, L, L],\n", - " cut_off=cut_off,\n", - " data_folder=folder,\n", - " thermo_outputs=\"Epot-MaxF\",\n", - " neighbor=20,\n", - " )\n", - " em.run()\n", - "\n", - " minimized_positions = em.atoms_positions*em.ref_length\n", - "\n", - " mc = MonteCarlo(\n", - " ureg = ureg,\n", - " maximum_steps=20000,\n", - " dumping_period=1000,\n", - " thermo_period=1000,\n", - " neighbor=50,\n", - " displace_mc = displace_mc,\n", - " desired_temperature = T,\n", - " number_atoms=[N_atom],\n", - " epsilon=[epsilon], \n", - " sigma=[sigma],\n", - " atom_mass=[m_argon],\n", - " box_dimensions=[L, L, L],\n", - " initial_positions = minimized_positions,\n", - " cut_off=cut_off,\n", - " data_folder=folder,\n", - " thermo_outputs=\"Epot-press\",\n", - " )\n", - " mc.run()\n", - "\n", - " folder = \"lammps_tau\"+str(tau)+\"/\"\n", - " if os.path.exists(folder) is False:\n", - " os.mkdir(folder)\n", - "\n", - " write_topology_file(mc, filename=folder+\"initial.data\")\n", - " write_lammps_parameters(mc, filename=folder+\"PARM.lammps\")\n", - " write_lammps_variables(mc, filename=folder+\"variable.lammps\")\n", - "\n", - " mycwd = os.getcwd() # initial path\n", - " os.chdir(folder)\n", - " shutil.copyfile(\"../lammps/input.lmp\", \"input.lmp\")\n", - " subprocess.call([\"/home/simon/Softwares/lammps-2Aug2023/src/lmp_serial\", \"-in\", \"input.lmp\"])\n", - " os.chdir(mycwd)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "if __name__ == \"__main__\":\n", - " tau_values = np.round(np.logspace(-0.126, 0.882, 10),2)\n", - " pool = multiprocessing.Pool()\n", - " squared_numbers = pool.map(launch_MC_code, tau_values)\n", - " pool.close()\n", - " pool.join()" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.12.3" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/illustration/Equation-of-state/lammps/input.lmp b/illustration/Equation-of-state/lammps/input.lmp deleted file mode 100644 index 44f7ad7..0000000 --- a/illustration/Equation-of-state/lammps/input.lmp +++ /dev/null @@ -1,42 +0,0 @@ -# LAMMPS input file - -include variable.lammps - -units real -dimension 3 -atom_style atomic -pair_style lj/cut ${cut_off} -boundary p p p - -read_data initial.data -include PARM.lammps - -neigh_modify every ${neighbor} - -velocity all create ${temp} 4928459 -fix mymc all gcmc 1 0 1 1 29494 ${temp} -0.5 ${displace_mc} - -thermo ${thermo} -dump mydmp all custom ${dump} dump.lammpstrj id type x y z vx vy vz - -variable Ecoul equal ecoul -variable Evdwl equal evdwl -variable Epot equal pe -variable Ekin equal ke -variable Etot equal v_Epot+v_Ekin -variable volume equal vol -variable pressure equal press -variable temperature equal temp -variable mass equal mass(all) -variable density equal v_mass/v_volume/6.022e23*(1e8)^3 # g/cm3 -fix myat1 all ave/time ${thermo} 1 ${thermo} v_Epot file Epot.dat -fix myat2 all ave/time ${thermo} 1 ${thermo} v_Ekin file Ekin.dat -fix myat3 all ave/time ${thermo} 1 ${thermo} v_Etot file Etot.dat -fix myat4 all ave/time ${thermo} 1 ${thermo} v_Ecoul file Ecoul.dat -fix myat5 all ave/time ${thermo} 1 ${thermo} v_Evdwl file Evdwl.dat -fix myat6 all ave/time ${thermo} 1 ${thermo} v_pressure file pressure.dat -fix myat7 all ave/time ${thermo} 1 ${thermo} v_temperature file temperature.dat -fix myat8 all ave/time ${thermo} 1 ${thermo} v_volume file volume.dat -fix myat9 all ave/time ${thermo} 1 ${thermo} v_density file density.dat - -run ${maximum_steps} diff --git a/illustration/Equation-of-state/lammps_tau0.75/Epot.dat b/illustration/Equation-of-state/lammps_tau0.75/Epot.dat deleted file mode 100644 index f1a58a3..0000000 --- a/illustration/Equation-of-state/lammps_tau0.75/Epot.dat +++ /dev/null @@ -1,23 +0,0 @@ -# Time-averaged data for fix myat1 -# TimeStep v_Epot -0 125.058 -1000 127.665 -2000 120.939 -3000 121.416 -4000 121.795 -5000 122.378 -6000 113.006 -7000 104.662 -8000 116.907 -9000 119.619 -10000 122.086 -11000 107.38 -12000 113.401 -13000 128.844 -14000 119.339 -15000 122.48 -16000 114.038 -17000 111.727 -18000 83.1278 -19000 97.9686 -20000 92.9485 diff --git a/illustration/Equation-of-state/lammps_tau0.75/PARM.lammps b/illustration/Equation-of-state/lammps_tau0.75/PARM.lammps deleted file mode 100644 index 8001a35..0000000 --- a/illustration/Equation-of-state/lammps_tau0.75/PARM.lammps +++ /dev/null @@ -1,6 +0,0 @@ -# LAMMPS parameter file - -mass 1 39.948 - -pair_coeff 1 1 0.237987582014826 3.4050149007323767 - diff --git a/illustration/Equation-of-state/lammps_tau0.75/initial.data b/illustration/Equation-of-state/lammps_tau0.75/initial.data deleted file mode 100644 index b0ddcae..0000000 --- a/illustration/Equation-of-state/lammps_tau0.75/initial.data +++ /dev/null @@ -1,211 +0,0 @@ -# LAMMPS data file - -200 atoms -1 atom types - --9.046 9.046 xlo xhi --9.046 9.046 ylo yhi --9.046 9.046 zlo zhi - -Atoms - -1 1 -7.051 -6.331 5.685 -2 1 6.983 8.017 3.834 -3 1 5.378 -6.366 -1.627 -4 1 -3.809 3.286 5.973 -5 1 8.750 -4.449 6.674 -6 1 -6.110 -1.154 -0.560 -7 1 -2.234 0.858 -6.843 -8 1 -0.492 1.179 4.820 -9 1 -8.862 2.100 3.613 -10 1 -2.813 3.008 2.616 -11 1 6.849 -2.005 7.230 -12 1 4.971 -8.977 6.184 -13 1 3.037 -8.679 -2.771 -14 1 -0.057 -4.222 -5.100 -15 1 5.693 -5.465 6.310 -16 1 -4.434 8.038 -0.863 -17 1 2.246 -0.587 -0.529 -18 1 7.296 7.331 -7.314 -19 1 -1.293 5.834 0.805 -20 1 -8.887 -4.494 -8.374 -21 1 -6.810 -2.959 4.760 -22 1 -0.788 3.767 6.358 -23 1 9.019 -1.294 -4.940 -24 1 -7.640 -8.482 -0.585 -25 1 8.740 -4.496 -4.495 -26 1 -5.186 6.299 5.252 -27 1 5.962 -2.690 4.111 -28 1 -1.288 -8.901 -0.256 -29 1 3.971 7.289 3.190 -30 1 8.087 -7.294 -2.931 -31 1 7.831 -6.711 0.680 -32 1 7.684 4.172 7.312 -33 1 -9.008 4.620 -7.652 -34 1 5.884 3.837 -2.856 -35 1 -7.568 2.471 -3.114 -36 1 -8.413 -7.956 3.150 -37 1 7.100 2.442 -8.341 -38 1 3.252 -7.781 8.773 -39 1 -7.458 2.134 -6.435 -40 1 2.905 0.250 -4.852 -41 1 -6.656 -2.571 -3.581 -42 1 -0.029 -7.415 8.075 -43 1 1.832 0.209 6.992 -44 1 -0.923 -7.563 -3.920 -45 1 -6.032 6.643 -6.323 -46 1 8.389 -0.096 -7.752 -47 1 2.833 -5.895 -4.345 -48 1 -8.511 4.974 4.903 -49 1 -3.451 -6.601 6.505 -50 1 5.309 -0.503 -8.366 -51 1 2.878 6.354 -2.687 -52 1 7.986 1.932 -5.083 -53 1 2.650 -2.709 -3.401 -54 1 -8.328 7.647 -8.963 -55 1 -2.913 -8.336 -8.910 -56 1 1.860 8.900 5.592 -57 1 -0.140 -0.692 -5.317 -58 1 -0.136 0.159 1.563 -59 1 1.921 6.160 0.157 -60 1 -4.694 -5.726 3.656 -61 1 -5.443 3.603 0.337 -62 1 -6.738 8.112 -3.338 -63 1 -1.005 -4.947 -2.207 -64 1 7.573 -6.901 -6.321 -65 1 2.184 -5.734 -1.271 -66 1 -2.435 8.442 6.025 -67 1 3.770 2.772 -0.619 -68 1 5.345 5.526 0.070 -69 1 6.942 7.291 7.296 -70 1 -0.756 -1.674 -8.255 -71 1 -1.524 2.195 -0.194 -72 1 6.937 -2.418 -2.398 -73 1 -6.616 -4.364 -6.041 -74 1 -8.864 -4.692 -1.403 -75 1 6.112 2.013 2.478 -76 1 1.631 8.380 -5.431 -77 1 8.175 8.272 -4.536 -78 1 0.982 1.139 -2.685 -79 1 1.836 3.971 8.937 -80 1 -3.254 -2.261 -5.418 -81 1 6.034 8.456 -1.409 -82 1 5.125 5.199 8.856 -83 1 2.460 5.327 -6.122 -84 1 2.752 7.132 8.466 -85 1 0.411 2.611 -6.198 -86 1 -7.768 -2.758 1.473 -87 1 0.613 3.644 2.540 -88 1 -5.267 -8.760 4.520 -89 1 1.781 -3.456 1.029 -90 1 4.538 -6.242 -6.857 -91 1 -3.831 0.349 4.608 -92 1 2.956 3.085 -3.693 -93 1 2.822 -7.387 3.244 -94 1 0.187 -6.691 1.301 -95 1 -0.624 1.626 8.744 -96 1 -0.286 5.737 -5.069 -97 1 8.855 4.539 1.166 -98 1 -4.195 -8.177 -5.716 -99 1 -3.832 -7.642 -2.731 -100 1 4.945 0.391 4.890 -101 1 5.846 -0.321 -5.298 -102 1 7.588 1.167 6.307 -103 1 5.464 -8.111 -4.361 -104 1 0.844 -7.131 -7.019 -105 1 -7.306 -8.547 -6.538 -106 1 -1.438 -4.812 8.254 -107 1 1.882 -1.516 4.071 -108 1 -7.700 1.641 0.070 -109 1 -1.363 -3.080 0.612 -110 1 2.187 0.062 -7.930 -111 1 -3.036 6.999 -6.793 -112 1 -5.209 -1.216 7.377 -113 1 -8.258 -1.397 7.553 -114 1 5.761 -4.582 9.024 -115 1 -5.694 5.102 -3.433 -116 1 8.950 -4.417 3.670 -117 1 -5.318 -8.084 1.371 -118 1 -7.094 6.272 -0.506 -119 1 -4.708 1.239 9.005 -120 1 -0.244 -7.272 4.720 -121 1 2.048 2.883 5.372 -122 1 6.978 -3.704 0.911 -123 1 -4.032 -4.888 -4.225 -124 1 -4.564 1.399 -1.635 -125 1 -1.696 -4.886 3.335 -126 1 -9.013 -0.340 -2.051 -127 1 -6.800 -0.089 2.924 -128 1 4.339 -5.388 1.470 -129 1 -4.774 -2.954 2.033 -130 1 -0.266 6.671 7.151 -131 1 -5.309 -6.409 -8.256 -132 1 -6.207 -4.227 7.864 -133 1 -8.004 8.242 5.919 -134 1 7.942 5.889 -1.661 -135 1 6.596 5.054 3.464 -136 1 2.038 -5.824 6.532 -137 1 -5.358 0.244 -4.955 -138 1 -8.199 -7.288 8.721 -139 1 2.724 1.208 2.696 -140 1 -5.559 8.979 7.993 -141 1 -6.740 -6.704 -3.508 -142 1 4.253 8.601 -7.007 -143 1 4.449 -3.097 -1.000 -144 1 -1.635 6.125 4.010 -145 1 -2.265 0.904 -3.368 -146 1 3.742 -2.654 -6.695 -147 1 2.614 -4.467 3.698 -148 1 -3.020 3.752 -4.452 -149 1 0.062 7.707 -2.395 -150 1 0.696 8.223 2.265 -151 1 -2.386 -8.387 2.754 -152 1 1.863 -4.252 -8.687 -153 1 6.494 -6.386 3.464 -154 1 -1.527 -1.728 4.037 -155 1 3.662 -2.775 6.839 -156 1 5.527 -8.437 1.499 -157 1 -2.023 -0.573 7.067 -158 1 0.269 4.439 -1.814 -159 1 5.459 -4.547 -4.248 -160 1 -6.803 -1.560 -7.664 -161 1 7.304 2.425 -0.487 -162 1 8.496 -0.801 4.065 -163 1 -7.500 7.056 2.703 -164 1 -6.847 4.999 7.660 -165 1 3.653 4.237 2.625 -166 1 -7.042 -5.594 1.285 -167 1 -3.455 -3.348 5.649 -168 1 -2.097 -5.571 -6.761 -169 1 -0.334 8.033 -8.176 -170 1 5.414 7.136 -4.263 -171 1 4.494 2.001 7.982 -172 1 8.099 -0.087 1.051 -173 1 1.494 5.835 4.710 -174 1 -3.296 -2.015 -2.038 -175 1 4.579 5.504 5.784 -176 1 2.744 -8.975 0.379 -177 1 8.157 -7.442 5.960 -178 1 -2.828 7.231 -3.628 -179 1 -3.601 -0.072 1.165 -180 1 -1.013 4.821 -8.389 -181 1 -8.653 5.083 -4.472 -182 1 6.285 4.704 -6.227 -183 1 5.130 0.207 -2.239 -184 1 4.319 2.440 -6.893 -185 1 8.136 7.950 0.983 -186 1 -0.169 -1.823 -2.334 -187 1 -5.313 -4.565 -1.352 -188 1 -3.247 4.868 -1.377 -189 1 -6.010 3.868 3.307 -190 1 -3.522 6.458 8.112 -191 1 -4.162 6.641 2.205 -192 1 7.097 -2.881 -6.738 -193 1 0.160 -2.918 6.530 -194 1 -4.234 4.077 -7.381 -195 1 -7.943 1.809 8.386 -196 1 -6.597 1.590 5.511 -197 1 6.370 -7.809 8.948 -198 1 4.764 -1.035 1.303 -199 1 -3.654 -3.169 -8.454 -200 1 -2.924 -6.049 0.554 diff --git a/illustration/Equation-of-state/lammps_tau0.75/input.lmp b/illustration/Equation-of-state/lammps_tau0.75/input.lmp deleted file mode 100644 index 44f7ad7..0000000 --- a/illustration/Equation-of-state/lammps_tau0.75/input.lmp +++ /dev/null @@ -1,42 +0,0 @@ -# LAMMPS input file - -include variable.lammps - -units real -dimension 3 -atom_style atomic -pair_style lj/cut ${cut_off} -boundary p p p - -read_data initial.data -include PARM.lammps - -neigh_modify every ${neighbor} - -velocity all create ${temp} 4928459 -fix mymc all gcmc 1 0 1 1 29494 ${temp} -0.5 ${displace_mc} - -thermo ${thermo} -dump mydmp all custom ${dump} dump.lammpstrj id type x y z vx vy vz - -variable Ecoul equal ecoul -variable Evdwl equal evdwl -variable Epot equal pe -variable Ekin equal ke -variable Etot equal v_Epot+v_Ekin -variable volume equal vol -variable pressure equal press -variable temperature equal temp -variable mass equal mass(all) -variable density equal v_mass/v_volume/6.022e23*(1e8)^3 # g/cm3 -fix myat1 all ave/time ${thermo} 1 ${thermo} v_Epot file Epot.dat -fix myat2 all ave/time ${thermo} 1 ${thermo} v_Ekin file Ekin.dat -fix myat3 all ave/time ${thermo} 1 ${thermo} v_Etot file Etot.dat -fix myat4 all ave/time ${thermo} 1 ${thermo} v_Ecoul file Ecoul.dat -fix myat5 all ave/time ${thermo} 1 ${thermo} v_Evdwl file Evdwl.dat -fix myat6 all ave/time ${thermo} 1 ${thermo} v_pressure file pressure.dat -fix myat7 all ave/time ${thermo} 1 ${thermo} v_temperature file temperature.dat -fix myat8 all ave/time ${thermo} 1 ${thermo} v_volume file volume.dat -fix myat9 all ave/time ${thermo} 1 ${thermo} v_density file density.dat - -run ${maximum_steps} diff --git a/illustration/Equation-of-state/lammps_tau0.75/pressure.dat b/illustration/Equation-of-state/lammps_tau0.75/pressure.dat deleted file mode 100644 index fc5b1ec..0000000 --- a/illustration/Equation-of-state/lammps_tau0.75/pressure.dat +++ /dev/null @@ -1,23 +0,0 @@ -# Time-averaged data for fix myat6 -# TimeStep v_pressure -0 37721 -1000 37826.4 -2000 37456.2 -3000 37437 -4000 37474.2 -5000 37490.6 -6000 37022.2 -7000 36565 -8000 37207.8 -9000 37299.2 -10000 37432.1 -11000 36662.4 -12000 37005 -13000 37885.3 -14000 37392.8 -15000 37539.1 -16000 37095.7 -17000 36960.9 -18000 35476.8 -19000 36298.3 -20000 35995.7 diff --git a/illustration/Equation-of-state/lammps_tau0.75/variable.lammps b/illustration/Equation-of-state/lammps_tau0.75/variable.lammps deleted file mode 100644 index 9dbced8..0000000 --- a/illustration/Equation-of-state/lammps_tau0.75/variable.lammps +++ /dev/null @@ -1,10 +0,0 @@ -# LAMMPS variable file - -variable neighbor equal 50 -variable thermo equal 1000 -variable dump equal 1000 -variable cut_off equal 8.512537251830942 -variable displace_mc equal 0.6810029801464753 -variable maximum_steps equal 20000 -variable temp equal 328.15 - diff --git a/illustration/Equation-of-state/lammps_tau0.97/Epot.dat b/illustration/Equation-of-state/lammps_tau0.97/Epot.dat deleted file mode 100644 index 2bd89a7..0000000 --- a/illustration/Equation-of-state/lammps_tau0.97/Epot.dat +++ /dev/null @@ -1,23 +0,0 @@ -# Time-averaged data for fix myat1 -# TimeStep v_Epot -0 -165.009 -1000 -162.92 -2000 -180.047 -3000 -172.19 -4000 -168.216 -5000 -180.395 -6000 -171.69 -7000 -174.01 -8000 -174.34 -9000 -187.04 -10000 -173.151 -11000 -163.135 -12000 -171.456 -13000 -168.551 -14000 -147.388 -15000 -163.365 -16000 -161.373 -17000 -166.004 -18000 -159.463 -19000 -158.594 -20000 -164.473 diff --git a/illustration/Equation-of-state/lammps_tau0.97/PARM.lammps b/illustration/Equation-of-state/lammps_tau0.97/PARM.lammps deleted file mode 100644 index 8001a35..0000000 --- a/illustration/Equation-of-state/lammps_tau0.97/PARM.lammps +++ /dev/null @@ -1,6 +0,0 @@ -# LAMMPS parameter file - -mass 1 39.948 - -pair_coeff 1 1 0.237987582014826 3.4050149007323767 - diff --git a/illustration/Equation-of-state/lammps_tau0.97/initial.data b/illustration/Equation-of-state/lammps_tau0.97/initial.data deleted file mode 100644 index b62818e..0000000 --- a/illustration/Equation-of-state/lammps_tau0.97/initial.data +++ /dev/null @@ -1,211 +0,0 @@ -# LAMMPS data file - -200 atoms -1 atom types - --9.856 9.856 xlo xhi --9.856 9.856 ylo yhi --9.856 9.856 zlo zhi - -Atoms - -1 1 -8.199 -7.018 5.225 -2 1 7.122 8.402 4.388 -3 1 5.165 -7.123 -0.863 -4 1 -5.001 3.779 7.364 -5 1 -9.684 -5.710 7.552 -6 1 -6.355 -1.288 0.315 -7 1 -2.024 0.561 -7.001 -8 1 -1.221 0.392 5.765 -9 1 8.879 2.955 4.496 -10 1 -3.216 3.901 3.555 -11 1 8.181 -3.115 7.883 -12 1 4.920 -9.687 6.784 -13 1 3.851 -9.246 -3.454 -14 1 -1.188 -4.884 -4.352 -15 1 6.186 -6.263 6.380 -16 1 -3.931 7.555 -0.633 -17 1 2.747 -0.978 -0.390 -18 1 8.156 9.339 -8.240 -19 1 -1.604 6.027 1.674 -20 1 -8.321 -5.493 -8.131 -21 1 -8.840 -2.366 6.348 -22 1 -0.987 3.501 7.041 -23 1 -9.637 -0.648 -5.555 -24 1 -8.338 -9.258 -1.473 -25 1 8.073 -2.872 -3.844 -26 1 -5.505 7.618 6.091 -27 1 6.436 -3.071 4.364 -28 1 -0.876 8.996 -0.726 -29 1 3.618 7.949 4.139 -30 1 9.706 -8.750 -4.557 -31 1 8.457 -7.578 0.689 -32 1 8.168 4.568 8.037 -33 1 9.288 5.419 -8.673 -34 1 6.227 3.748 -2.296 -35 1 -8.144 2.096 -4.109 -36 1 -8.957 -9.288 2.858 -37 1 7.186 2.392 -9.259 -38 1 1.169 -9.586 -8.298 -39 1 -8.203 2.374 -7.434 -40 1 3.234 -0.205 -3.788 -41 1 -6.984 -3.860 -1.890 -42 1 -0.160 -7.975 8.710 -43 1 1.504 0.516 8.218 -44 1 -1.895 -8.895 -3.541 -45 1 -6.170 5.768 -5.971 -46 1 9.162 -0.289 -9.055 -47 1 1.730 -7.229 -4.860 -48 1 -9.334 5.556 5.986 -49 1 -3.145 -7.034 5.309 -50 1 5.829 -1.164 9.588 -51 1 2.312 4.356 -3.456 -52 1 7.286 1.600 -5.051 -53 1 2.342 -3.966 -4.553 -54 1 -8.083 8.291 -7.384 -55 1 -2.714 -9.468 -9.534 -56 1 1.485 9.476 5.984 -57 1 -1.364 -2.659 -7.638 -58 1 -0.137 0.323 1.179 -59 1 1.701 7.265 0.559 -60 1 -5.042 -6.630 2.747 -61 1 -5.818 4.130 0.276 -62 1 -7.411 8.043 -3.759 -63 1 -1.895 -6.366 -1.708 -64 1 8.697 -6.998 -7.008 -65 1 1.511 -6.771 -1.723 -66 1 -2.410 9.721 6.857 -67 1 3.961 2.294 -0.349 -68 1 5.105 5.919 -0.146 -69 1 7.766 7.914 8.498 -70 1 -2.151 -1.930 8.575 -71 1 -2.384 2.385 0.566 -72 1 7.174 -2.978 -0.183 -73 1 -8.529 -4.085 -4.767 -74 1 9.702 -5.588 -1.462 -75 1 5.529 1.985 3.575 -76 1 1.323 8.694 -5.454 -77 1 7.841 7.688 -5.228 -78 1 0.715 1.218 -2.066 -79 1 1.834 4.300 8.652 -80 1 -3.598 -2.354 -5.571 -81 1 6.858 9.209 -1.561 -82 1 4.994 5.717 -9.107 -83 1 1.635 5.327 -7.257 -84 1 2.817 7.771 9.316 -85 1 0.232 2.146 -5.176 -86 1 -8.991 -3.189 1.168 -87 1 -0.039 2.779 3.517 -88 1 -5.511 -9.414 4.579 -89 1 0.917 -3.438 3.215 -90 1 3.222 -6.864 -8.113 -91 1 -5.024 0.947 2.636 -92 1 3.552 1.980 -5.948 -93 1 3.108 -8.012 3.212 -94 1 0.332 -7.224 1.495 -95 1 0.557 1.561 -8.424 -96 1 -1.263 5.581 -6.004 -97 1 -9.334 4.858 1.285 -98 1 -4.085 -9.119 -6.414 -99 1 -5.093 -9.663 -2.909 -100 1 5.990 -0.384 5.993 -101 1 6.023 -0.377 -7.105 -102 1 9.109 1.081 7.161 -103 1 6.324 -9.302 -5.186 -104 1 0.211 -5.335 -9.065 -105 1 -7.155 -8.472 -7.010 -106 1 -2.627 -5.876 8.340 -107 1 2.763 -1.942 6.178 -108 1 -9.414 2.363 -1.113 -109 1 0.051 -3.520 -0.275 -110 1 2.515 -1.243 -6.923 -111 1 -3.926 7.469 -7.495 -112 1 -4.906 -0.545 6.709 -113 1 -8.529 -2.789 9.674 -114 1 7.146 -5.036 -9.293 -115 1 -7.548 4.954 -2.689 -116 1 9.373 -4.180 4.123 -117 1 -6.093 -9.755 1.264 -118 1 -7.623 7.322 -0.356 -119 1 -6.410 0.483 9.557 -120 1 -0.038 -7.296 5.146 -121 1 2.413 2.548 5.738 -122 1 5.970 -5.839 1.887 -123 1 -5.348 -5.021 -6.149 -124 1 -5.894 1.620 -1.739 -125 1 -1.983 -5.218 2.865 -126 1 -9.257 -1.195 -2.069 -127 1 -8.515 0.443 1.974 -128 1 3.424 -4.429 0.728 -129 1 -6.437 -2.137 3.521 -130 1 0.045 6.745 7.424 -131 1 -5.255 -7.022 -9.247 -132 1 -6.318 -5.670 7.817 -133 1 -9.380 9.300 5.982 -134 1 8.698 6.448 -2.093 -135 1 6.438 5.530 3.615 -136 1 2.418 -6.562 7.511 -137 1 -6.154 -1.196 -3.932 -138 1 -8.584 -8.116 9.497 -139 1 2.639 0.151 3.375 -140 1 -5.518 -9.770 8.542 -141 1 -6.898 -7.221 -3.774 -142 1 4.085 9.044 -7.175 -143 1 4.736 -3.707 -2.828 -144 1 -1.830 7.107 4.880 -145 1 -2.655 1.037 -3.345 -146 1 4.116 -3.829 -7.949 -147 1 3.476 -4.908 4.412 -148 1 -5.184 2.529 -5.037 -149 1 -0.772 6.953 -3.209 -150 1 0.316 9.472 2.703 -151 1 -3.294 -8.772 1.365 -152 1 1.665 -2.485 9.502 -153 1 7.801 -7.935 4.057 -154 1 -2.170 -1.593 3.185 -155 1 4.454 -3.915 8.084 -156 1 6.259 -9.718 1.906 -157 1 -2.687 1.373 9.124 -158 1 0.360 4.471 0.170 -159 1 6.185 -5.642 -5.315 -160 1 -7.021 -1.998 -7.215 -161 1 7.367 3.475 1.378 -162 1 9.120 -0.320 4.278 -163 1 -7.898 7.190 3.344 -164 1 -8.272 7.707 8.795 -165 1 3.356 4.214 2.432 -166 1 -8.009 -6.342 1.055 -167 1 -3.302 -3.486 5.654 -168 1 -1.271 -7.023 -7.096 -169 1 -0.639 7.340 -8.735 -170 1 4.806 7.284 -4.024 -171 1 5.590 2.412 7.728 -172 1 8.062 0.219 0.815 -173 1 1.285 5.459 4.701 -174 1 -3.940 -3.748 -2.769 -175 1 5.068 6.236 6.523 -176 1 3.499 9.701 0.046 -177 1 8.322 -8.484 7.457 -178 1 -3.745 7.070 -4.131 -179 1 -3.108 -0.875 -0.255 -180 1 -0.977 4.344 -9.647 -181 1 9.735 4.956 -5.197 -182 1 6.058 4.448 -6.056 -183 1 6.032 0.176 -1.816 -184 1 3.871 2.070 -9.420 -185 1 8.710 8.233 1.108 -186 1 -0.186 -1.633 -3.689 -187 1 -5.418 -6.992 -0.652 -188 1 -3.334 4.559 -1.896 -189 1 -6.433 4.353 3.716 -190 1 -3.213 6.825 8.375 -191 1 -4.434 7.124 2.568 -192 1 8.832 -3.040 -6.980 -193 1 -0.183 -4.102 6.404 -194 1 -4.075 3.023 -7.970 -195 1 -8.582 3.024 8.466 -196 1 -7.377 1.691 5.581 -197 1 5.727 -8.083 -9.303 -198 1 5.017 -1.737 1.867 -199 1 -4.083 -3.707 -9.311 -200 1 -4.416 -3.922 0.895 diff --git a/illustration/Equation-of-state/lammps_tau0.97/input.lmp b/illustration/Equation-of-state/lammps_tau0.97/input.lmp deleted file mode 100644 index 44f7ad7..0000000 --- a/illustration/Equation-of-state/lammps_tau0.97/input.lmp +++ /dev/null @@ -1,42 +0,0 @@ -# LAMMPS input file - -include variable.lammps - -units real -dimension 3 -atom_style atomic -pair_style lj/cut ${cut_off} -boundary p p p - -read_data initial.data -include PARM.lammps - -neigh_modify every ${neighbor} - -velocity all create ${temp} 4928459 -fix mymc all gcmc 1 0 1 1 29494 ${temp} -0.5 ${displace_mc} - -thermo ${thermo} -dump mydmp all custom ${dump} dump.lammpstrj id type x y z vx vy vz - -variable Ecoul equal ecoul -variable Evdwl equal evdwl -variable Epot equal pe -variable Ekin equal ke -variable Etot equal v_Epot+v_Ekin -variable volume equal vol -variable pressure equal press -variable temperature equal temp -variable mass equal mass(all) -variable density equal v_mass/v_volume/6.022e23*(1e8)^3 # g/cm3 -fix myat1 all ave/time ${thermo} 1 ${thermo} v_Epot file Epot.dat -fix myat2 all ave/time ${thermo} 1 ${thermo} v_Ekin file Ekin.dat -fix myat3 all ave/time ${thermo} 1 ${thermo} v_Etot file Etot.dat -fix myat4 all ave/time ${thermo} 1 ${thermo} v_Ecoul file Ecoul.dat -fix myat5 all ave/time ${thermo} 1 ${thermo} v_Evdwl file Evdwl.dat -fix myat6 all ave/time ${thermo} 1 ${thermo} v_pressure file pressure.dat -fix myat7 all ave/time ${thermo} 1 ${thermo} v_temperature file temperature.dat -fix myat8 all ave/time ${thermo} 1 ${thermo} v_volume file volume.dat -fix myat9 all ave/time ${thermo} 1 ${thermo} v_density file density.dat - -run ${maximum_steps} diff --git a/illustration/Equation-of-state/lammps_tau0.97/pressure.dat b/illustration/Equation-of-state/lammps_tau0.97/pressure.dat deleted file mode 100644 index 24aae6a..0000000 --- a/illustration/Equation-of-state/lammps_tau0.97/pressure.dat +++ /dev/null @@ -1,23 +0,0 @@ -# Time-averaged data for fix myat6 -# TimeStep v_pressure -0 10111.9 -1000 10207 -2000 9428.63 -3000 9829.14 -4000 9893.71 -5000 9385.06 -6000 9776.47 -7000 9669.08 -8000 9627.31 -9000 9104.53 -10000 9788.04 -11000 10108.8 -12000 9746.14 -13000 9913.63 -14000 10861.5 -15000 10137.9 -16000 10265.6 -17000 10037.3 -18000 10314.1 -19000 10384.2 -20000 10177.2 diff --git a/illustration/Equation-of-state/lammps_tau0.97/variable.lammps b/illustration/Equation-of-state/lammps_tau0.97/variable.lammps deleted file mode 100644 index 9dbced8..0000000 --- a/illustration/Equation-of-state/lammps_tau0.97/variable.lammps +++ /dev/null @@ -1,10 +0,0 @@ -# LAMMPS variable file - -variable neighbor equal 50 -variable thermo equal 1000 -variable dump equal 1000 -variable cut_off equal 8.512537251830942 -variable displace_mc equal 0.6810029801464753 -variable maximum_steps equal 20000 -variable temp equal 328.15 - diff --git a/illustration/Equation-of-state/lammps_tau1.25/Epot.dat b/illustration/Equation-of-state/lammps_tau1.25/Epot.dat deleted file mode 100644 index 93db43a..0000000 --- a/illustration/Equation-of-state/lammps_tau1.25/Epot.dat +++ /dev/null @@ -1,23 +0,0 @@ -# Time-averaged data for fix myat1 -# TimeStep v_Epot -0 -186.977 -1000 -188.969 -2000 -180.055 -3000 -183.207 -4000 -192.787 -5000 -192.244 -6000 -182.022 -7000 -176.65 -8000 -186.813 -9000 -184.863 -10000 -188.925 -11000 -175.375 -12000 -182.996 -13000 -180.898 -14000 -182.632 -15000 -177.325 -16000 -194.156 -17000 -187.223 -18000 -191.29 -19000 -173.813 -20000 -187.969 diff --git a/illustration/Equation-of-state/lammps_tau1.25/PARM.lammps b/illustration/Equation-of-state/lammps_tau1.25/PARM.lammps deleted file mode 100644 index 8001a35..0000000 --- a/illustration/Equation-of-state/lammps_tau1.25/PARM.lammps +++ /dev/null @@ -1,6 +0,0 @@ -# LAMMPS parameter file - -mass 1 39.948 - -pair_coeff 1 1 0.237987582014826 3.4050149007323767 - diff --git a/illustration/Equation-of-state/lammps_tau1.25/initial.data b/illustration/Equation-of-state/lammps_tau1.25/initial.data deleted file mode 100644 index 378bc02..0000000 --- a/illustration/Equation-of-state/lammps_tau1.25/initial.data +++ /dev/null @@ -1,211 +0,0 @@ -# LAMMPS data file - -200 atoms -1 atom types - --10.725 10.725 xlo xhi --10.725 10.725 ylo yhi --10.725 10.725 zlo zhi - -Atoms - -1 1 -8.862 -7.256 6.529 -2 1 7.199 8.439 5.659 -3 1 5.026 -8.098 -3.227 -4 1 -5.742 3.542 7.689 -5 1 9.643 -6.274 7.698 -6 1 -6.662 -1.442 -0.439 -7 1 -0.035 -0.873 -7.697 -8 1 -1.047 0.856 6.789 -9 1 -10.404 3.355 3.405 -10 1 -2.511 3.496 5.116 -11 1 10.046 -2.555 8.638 -12 1 5.324 -10.470 7.514 -13 1 3.138 9.993 -3.788 -14 1 -2.421 -4.000 -5.322 -15 1 5.574 -7.155 8.846 -16 1 -5.730 8.205 -0.767 -17 1 1.899 -0.927 1.079 -18 1 7.961 8.434 -8.426 -19 1 -1.047 7.874 0.941 -20 1 10.706 -6.906 -8.240 -21 1 -9.141 -3.724 6.195 -22 1 -2.206 4.168 8.944 -23 1 10.321 -0.817 -5.122 -24 1 -8.846 -9.242 -0.430 -25 1 -10.573 -4.237 -4.300 -26 1 -4.441 9.716 6.632 -27 1 6.727 -3.402 5.086 -28 1 0.603 10.286 -0.525 -29 1 3.800 8.355 4.829 -30 1 -9.588 -8.472 -5.611 -31 1 8.707 -8.907 -0.292 -32 1 7.430 6.326 8.645 -33 1 10.576 5.763 -7.625 -34 1 7.615 5.960 -3.224 -35 1 -8.239 4.105 -4.764 -36 1 -10.181 -10.148 3.276 -37 1 9.331 2.295 -8.102 -38 1 2.727 -10.277 10.708 -39 1 -8.521 2.807 -7.847 -40 1 3.815 -0.441 -5.315 -41 1 -7.645 -3.803 -3.260 -42 1 -0.625 -7.928 10.286 -43 1 1.634 -0.351 8.806 -44 1 -1.116 -8.973 -2.620 -45 1 -7.221 6.483 -7.476 -46 1 8.673 0.517 10.611 -47 1 2.232 -7.459 -5.545 -48 1 -10.282 6.477 7.135 -49 1 -3.476 -9.121 4.978 -50 1 5.564 -0.544 10.242 -51 1 3.604 6.125 -3.456 -52 1 7.036 1.211 -4.602 -53 1 1.580 -3.647 -5.562 -54 1 -8.225 9.570 -9.820 -55 1 -4.453 -8.450 -9.876 -56 1 2.158 9.669 7.312 -57 1 -2.469 -4.294 -9.312 -58 1 -0.118 1.404 3.661 -59 1 2.420 6.706 0.227 -60 1 -5.294 -6.242 5.065 -61 1 -7.352 5.382 1.226 -62 1 -9.470 8.177 -4.896 -63 1 -0.629 -5.830 -2.955 -64 1 -10.707 -10.634 -7.950 -65 1 2.967 -7.885 -0.321 -66 1 -1.491 10.522 7.837 -67 1 3.708 2.825 0.083 -68 1 7.323 6.523 -0.162 -69 1 10.503 7.590 10.626 -70 1 -2.744 -2.195 9.523 -71 1 -2.936 2.631 -2.187 -72 1 7.283 -3.343 -0.807 -73 1 -8.201 -5.494 -5.996 -74 1 -9.864 -6.146 -1.230 -75 1 6.509 2.503 3.216 -76 1 0.341 10.161 -6.246 -77 1 8.721 9.374 -5.340 -78 1 -0.043 1.118 -0.926 -79 1 3.165 5.521 10.723 -80 1 -5.836 -2.276 -5.480 -81 1 6.657 9.531 -2.442 -82 1 5.021 8.535 10.246 -83 1 2.387 4.589 -7.298 -84 1 2.322 8.060 -8.847 -85 1 0.702 1.710 -5.580 -86 1 -8.466 -3.773 2.297 -87 1 -1.960 4.495 1.679 -88 1 -6.933 -10.041 4.813 -89 1 1.300 -4.289 3.430 -90 1 4.423 -7.759 -9.049 -91 1 -4.668 0.607 5.017 -92 1 3.615 2.435 -3.920 -93 1 3.584 -8.630 3.636 -94 1 0.454 -8.192 2.352 -95 1 -0.744 2.373 -9.766 -96 1 -1.169 6.529 -6.142 -97 1 10.464 5.418 0.240 -98 1 -3.801 -8.076 -4.679 -99 1 -3.117 10.009 -1.708 -100 1 6.889 -0.305 5.360 -101 1 6.715 -0.442 -8.136 -102 1 8.925 2.260 5.806 -103 1 6.966 -10.026 -6.234 -104 1 1.240 -5.805 -9.011 -105 1 -6.270 -10.669 -7.140 -106 1 -2.482 -5.989 8.187 -107 1 3.645 -1.471 6.620 -108 1 -10.100 1.481 0.123 -109 1 -1.536 -4.079 0.273 -110 1 3.192 0.288 -8.661 -111 1 -4.109 7.591 -7.610 -112 1 -6.815 -1.153 7.942 -113 1 -9.469 -1.300 -8.610 -114 1 6.812 -4.495 -10.207 -115 1 -5.882 8.120 -4.311 -116 1 9.900 -4.783 4.361 -117 1 -5.510 -9.924 1.095 -118 1 -8.493 9.008 0.861 -119 1 -8.058 0.849 10.545 -120 1 -0.182 -8.326 5.558 -121 1 1.170 3.072 8.051 -122 1 8.986 -6.167 1.149 -123 1 -5.296 -5.773 -7.696 -124 1 -6.215 2.713 -0.842 -125 1 -2.619 -5.462 3.504 -126 1 10.683 -1.861 -1.692 -127 1 -7.457 0.155 2.952 -128 1 4.959 -5.478 2.238 -129 1 -5.358 -3.288 2.389 -130 1 0.783 6.368 7.832 -131 1 -7.525 -7.475 -9.618 -132 1 -9.199 -5.132 9.670 -133 1 -10.691 9.668 6.222 -134 1 9.759 8.891 -1.837 -135 1 8.410 5.477 4.256 -136 1 1.903 -7.898 8.003 -137 1 -7.700 0.248 -3.445 -138 1 -10.679 -8.280 10.513 -139 1 3.649 1.693 4.269 -140 1 -6.441 10.492 8.990 -141 1 -7.003 -10.551 -2.681 -142 1 3.710 10.677 -7.252 -143 1 3.997 -4.310 -2.735 -144 1 -1.548 7.619 5.726 -145 1 -3.016 -0.099 -4.520 -146 1 4.933 -3.986 -7.054 -147 1 3.580 -5.022 5.513 -148 1 -5.341 1.996 -5.231 -149 1 -1.241 8.300 -3.675 -150 1 1.031 9.593 3.662 -151 1 -2.483 -10.686 2.372 -152 1 3.062 -3.027 -10.695 -153 1 8.143 -7.882 5.074 -154 1 -1.717 -1.883 3.822 -155 1 5.829 -3.525 8.386 -156 1 7.524 -10.536 3.262 -157 1 -3.854 0.966 9.837 -158 1 0.218 4.715 -1.009 -159 1 7.349 -5.294 -4.965 -160 1 -5.789 -2.451 -9.840 -161 1 7.647 2.440 -0.929 -162 1 -10.297 -0.475 4.931 -163 1 -8.545 7.626 4.169 -164 1 -7.498 6.457 8.621 -165 1 5.069 5.257 1.918 -166 1 -8.252 -7.339 2.206 -167 1 -4.372 -2.846 5.760 -168 1 -0.851 -7.819 -7.656 -169 1 -1.538 9.073 -10.398 -170 1 5.719 8.066 -5.804 -171 1 5.957 2.233 7.829 -172 1 8.286 0.129 1.914 -173 1 1.181 4.513 3.919 -174 1 -4.453 -3.666 -2.354 -175 1 4.650 5.216 5.787 -176 1 4.934 9.539 0.863 -177 1 9.267 -9.665 7.957 -178 1 -3.012 10.419 -6.165 -179 1 -4.141 -0.091 1.551 -180 1 -0.339 5.698 -9.229 -181 1 10.363 4.461 -2.884 -182 1 6.900 4.868 -6.804 -183 1 4.552 -0.472 -1.866 -184 1 6.876 3.478 -10.178 -185 1 9.684 8.344 2.625 -186 1 0.249 -2.234 -2.459 -187 1 -6.357 -6.686 -0.437 -188 1 -3.223 6.618 -1.686 -189 1 -6.644 5.362 5.063 -190 1 -3.869 7.343 9.692 -191 1 -4.191 6.971 2.585 -192 1 9.305 -3.647 -7.356 -193 1 0.066 -4.113 7.059 -194 1 -4.309 4.115 -9.102 -195 1 10.242 2.799 8.724 -196 1 -8.592 2.158 6.260 -197 1 7.207 -9.020 -9.948 -198 1 5.075 -1.963 1.695 -199 1 -5.336 -5.038 9.564 -200 1 -3.072 -7.420 0.817 diff --git a/illustration/Equation-of-state/lammps_tau1.25/input.lmp b/illustration/Equation-of-state/lammps_tau1.25/input.lmp deleted file mode 100644 index 44f7ad7..0000000 --- a/illustration/Equation-of-state/lammps_tau1.25/input.lmp +++ /dev/null @@ -1,42 +0,0 @@ -# LAMMPS input file - -include variable.lammps - -units real -dimension 3 -atom_style atomic -pair_style lj/cut ${cut_off} -boundary p p p - -read_data initial.data -include PARM.lammps - -neigh_modify every ${neighbor} - -velocity all create ${temp} 4928459 -fix mymc all gcmc 1 0 1 1 29494 ${temp} -0.5 ${displace_mc} - -thermo ${thermo} -dump mydmp all custom ${dump} dump.lammpstrj id type x y z vx vy vz - -variable Ecoul equal ecoul -variable Evdwl equal evdwl -variable Epot equal pe -variable Ekin equal ke -variable Etot equal v_Epot+v_Ekin -variable volume equal vol -variable pressure equal press -variable temperature equal temp -variable mass equal mass(all) -variable density equal v_mass/v_volume/6.022e23*(1e8)^3 # g/cm3 -fix myat1 all ave/time ${thermo} 1 ${thermo} v_Epot file Epot.dat -fix myat2 all ave/time ${thermo} 1 ${thermo} v_Ekin file Ekin.dat -fix myat3 all ave/time ${thermo} 1 ${thermo} v_Etot file Etot.dat -fix myat4 all ave/time ${thermo} 1 ${thermo} v_Ecoul file Ecoul.dat -fix myat5 all ave/time ${thermo} 1 ${thermo} v_Evdwl file Evdwl.dat -fix myat6 all ave/time ${thermo} 1 ${thermo} v_pressure file pressure.dat -fix myat7 all ave/time ${thermo} 1 ${thermo} v_temperature file temperature.dat -fix myat8 all ave/time ${thermo} 1 ${thermo} v_volume file volume.dat -fix myat9 all ave/time ${thermo} 1 ${thermo} v_density file density.dat - -run ${maximum_steps} diff --git a/illustration/Equation-of-state/lammps_tau1.25/pressure.dat b/illustration/Equation-of-state/lammps_tau1.25/pressure.dat deleted file mode 100644 index 47c8d9e..0000000 --- a/illustration/Equation-of-state/lammps_tau1.25/pressure.dat +++ /dev/null @@ -1,23 +0,0 @@ -# Time-averaged data for fix myat6 -# TimeStep v_pressure -0 3345.63 -1000 3339.93 -2000 3708.5 -3000 3482.57 -4000 3138.34 -5000 3175.71 -6000 3504.8 -7000 3745.13 -8000 3433.7 -9000 3452.06 -10000 3301.69 -11000 3811.6 -12000 3448.16 -13000 3650.8 -14000 3647.62 -15000 3808.16 -16000 3149.25 -17000 3387.94 -18000 3176.44 -19000 3852.99 -20000 3391 diff --git a/illustration/Equation-of-state/lammps_tau1.25/variable.lammps b/illustration/Equation-of-state/lammps_tau1.25/variable.lammps deleted file mode 100644 index 9dbced8..0000000 --- a/illustration/Equation-of-state/lammps_tau1.25/variable.lammps +++ /dev/null @@ -1,10 +0,0 @@ -# LAMMPS variable file - -variable neighbor equal 50 -variable thermo equal 1000 -variable dump equal 1000 -variable cut_off equal 8.512537251830942 -variable displace_mc equal 0.6810029801464753 -variable maximum_steps equal 20000 -variable temp equal 328.15 - diff --git a/illustration/Equation-of-state/lammps_tau1.62/Epot.dat b/illustration/Equation-of-state/lammps_tau1.62/Epot.dat deleted file mode 100644 index 9d4fb48..0000000 --- a/illustration/Equation-of-state/lammps_tau1.62/Epot.dat +++ /dev/null @@ -1,23 +0,0 @@ -# Time-averaged data for fix myat1 -# TimeStep v_Epot -0 -161.659 -1000 -166.746 -2000 -158.552 -3000 -162.479 -4000 -161.339 -5000 -154.608 -6000 -146.889 -7000 -148.508 -8000 -150.265 -9000 -153.669 -10000 -155.457 -11000 -136.478 -12000 -144.428 -13000 -155.605 -14000 -152.171 -15000 -153.593 -16000 -157.13 -17000 -157.888 -18000 -150.36 -19000 -148.277 -20000 -153.747 diff --git a/illustration/Equation-of-state/lammps_tau1.62/PARM.lammps b/illustration/Equation-of-state/lammps_tau1.62/PARM.lammps deleted file mode 100644 index 8001a35..0000000 --- a/illustration/Equation-of-state/lammps_tau1.62/PARM.lammps +++ /dev/null @@ -1,6 +0,0 @@ -# LAMMPS parameter file - -mass 1 39.948 - -pair_coeff 1 1 0.237987582014826 3.4050149007323767 - diff --git a/illustration/Equation-of-state/lammps_tau1.62/initial.data b/illustration/Equation-of-state/lammps_tau1.62/initial.data deleted file mode 100644 index c5ea2ad..0000000 --- a/illustration/Equation-of-state/lammps_tau1.62/initial.data +++ /dev/null @@ -1,211 +0,0 @@ -# LAMMPS data file - -200 atoms -1 atom types - --11.693 11.693 xlo xhi --11.693 11.693 ylo yhi --11.693 11.693 zlo zhi - -Atoms - -1 1 -8.867 -6.287 6.732 -2 1 8.220 9.302 5.062 -3 1 6.406 -8.219 -1.742 -4 1 -5.765 3.748 8.598 -5 1 10.961 -6.491 8.123 -6 1 -8.410 -1.495 -0.773 -7 1 -1.466 2.342 -8.114 -8 1 0.513 2.599 9.165 -9 1 11.607 2.571 4.160 -10 1 -4.468 3.878 4.112 -11 1 8.663 -3.401 7.833 -12 1 5.744 11.599 8.136 -13 1 3.796 -11.250 -3.694 -14 1 -1.454 -5.450 -4.418 -15 1 5.719 -7.032 9.526 -16 1 -6.373 8.285 -0.891 -17 1 1.975 -2.234 -0.670 -18 1 8.898 7.568 -9.956 -19 1 -1.368 7.928 2.167 -20 1 10.010 -8.179 -8.768 -21 1 -9.708 -3.450 4.770 -22 1 -2.555 5.003 7.914 -23 1 -11.016 -0.397 -5.844 -24 1 -9.720 -10.086 -0.675 -25 1 -11.257 -3.778 -4.749 -26 1 -4.843 9.701 7.607 -27 1 6.465 -5.781 6.235 -28 1 0.808 -11.479 -0.298 -29 1 5.387 7.310 4.578 -30 1 -9.387 -9.415 -7.448 -31 1 9.808 -8.849 0.246 -32 1 7.831 6.600 9.832 -33 1 10.318 8.079 -6.651 -34 1 7.755 7.078 -3.771 -35 1 -8.776 3.667 -5.485 -36 1 -11.082 -10.533 3.413 -37 1 11.663 4.857 -9.756 -38 1 3.508 -10.367 -10.272 -39 1 -9.721 1.842 -9.390 -40 1 5.126 1.741 -8.862 -41 1 -8.591 -5.550 -2.362 -42 1 -1.395 -7.626 10.110 -43 1 3.507 1.557 7.928 -44 1 -1.862 -10.940 -2.075 -45 1 -6.161 7.124 -8.571 -46 1 10.331 0.671 11.650 -47 1 2.003 -8.963 -6.564 -48 1 -11.427 7.545 7.506 -49 1 -3.872 -9.946 4.137 -50 1 6.679 -1.989 -10.994 -51 1 4.065 6.713 -3.391 -52 1 7.618 1.230 -5.857 -53 1 1.464 -3.691 -6.410 -54 1 -9.412 10.306 -9.373 -55 1 -6.663 -9.506 11.641 -56 1 2.646 -10.626 6.560 -57 1 -1.455 -1.440 -9.228 -58 1 -0.384 0.385 2.228 -59 1 2.950 7.881 1.719 -60 1 -5.642 -7.035 3.513 -61 1 -6.102 4.831 0.282 -62 1 -8.104 9.710 -3.868 -63 1 -0.213 -8.116 -2.661 -64 1 10.675 10.942 -9.711 -65 1 2.649 -8.313 -0.554 -66 1 -2.564 11.201 5.859 -67 1 3.290 3.384 -1.830 -68 1 5.909 6.360 -0.382 -69 1 11.564 8.310 11.129 -70 1 -3.035 -3.578 10.544 -71 1 -3.155 3.434 -2.580 -72 1 9.251 -3.746 -0.864 -73 1 -9.809 -6.560 -5.375 -74 1 -11.341 -7.594 -2.365 -75 1 5.657 1.734 5.312 -76 1 -0.054 11.393 -6.199 -77 1 6.443 -10.776 -5.889 -78 1 -0.964 0.632 -1.734 -79 1 1.738 9.386 -9.621 -80 1 -5.619 -3.937 -5.799 -81 1 6.583 10.282 -2.149 -82 1 5.114 8.012 11.436 -83 1 3.180 4.783 -9.321 -84 1 3.310 10.580 10.441 -85 1 0.656 3.438 -5.386 -86 1 -9.751 -3.511 1.505 -87 1 -1.645 3.588 2.157 -88 1 -6.486 -10.999 6.281 -89 1 1.393 -5.104 4.112 -90 1 5.172 -7.288 -8.910 -91 1 -4.461 0.636 5.517 -92 1 3.980 3.066 -5.021 -93 1 3.306 -9.787 2.762 -94 1 0.145 -8.174 2.051 -95 1 -2.773 3.247 11.554 -96 1 -0.478 8.173 -7.444 -97 1 -10.967 5.714 2.236 -98 1 -3.831 -9.603 -4.895 -99 1 -5.028 -10.936 -1.403 -100 1 8.991 -1.281 2.873 -101 1 8.513 -0.565 -8.676 -102 1 8.386 1.569 7.846 -103 1 7.547 -11.434 -8.944 -104 1 0.247 -8.502 -10.368 -105 1 -5.238 -10.241 -8.064 -106 1 -4.150 -6.639 8.978 -107 1 1.902 -1.920 8.403 -108 1 -10.174 2.453 0.130 -109 1 -1.052 -3.725 -1.183 -110 1 3.246 -1.180 -11.288 -111 1 -3.239 10.549 -7.856 -112 1 -7.987 -1.011 7.263 -113 1 10.160 -3.076 -11.134 -114 1 8.123 -5.712 -11.575 -115 1 -6.852 6.730 -5.076 -116 1 11.090 -6.246 4.393 -117 1 -7.187 -10.227 2.501 -118 1 -10.623 10.276 -1.556 -119 1 -9.561 1.268 10.356 -120 1 -0.957 -8.826 5.894 -121 1 2.316 5.801 10.656 -122 1 8.005 -5.707 1.839 -123 1 -7.633 -6.463 -8.778 -124 1 -6.544 1.756 -1.027 -125 1 -3.275 -4.344 4.227 -126 1 10.457 -1.041 -2.259 -127 1 -7.457 1.071 2.664 -128 1 4.817 -5.825 2.793 -129 1 -6.203 -4.189 1.537 -130 1 0.680 9.534 8.426 -131 1 -8.455 -6.669 10.499 -132 1 -11.542 -6.928 -11.185 -133 1 -9.903 10.267 5.727 -134 1 9.211 8.600 -0.223 -135 1 8.567 5.538 3.802 -136 1 1.802 -8.388 9.560 -137 1 -7.627 -1.595 -4.406 -138 1 -10.516 -9.715 10.276 -139 1 2.417 1.046 4.683 -140 1 -8.648 9.483 10.100 -141 1 -7.758 -10.118 -3.419 -142 1 5.162 9.831 -8.542 -143 1 5.823 -4.725 -0.667 -144 1 -1.149 7.680 6.148 -145 1 -4.857 -1.389 -2.307 -146 1 4.548 -3.350 -8.074 -147 1 3.008 -7.124 5.904 -148 1 -4.790 0.834 -4.689 -149 1 0.119 9.423 -2.795 -150 1 1.059 10.719 3.929 -151 1 -2.376 -11.389 1.743 -152 1 3.583 -4.479 -11.185 -153 1 8.253 -8.556 3.962 -154 1 -0.476 -1.924 5.250 -155 1 4.897 -3.164 9.209 -156 1 7.206 -11.587 3.268 -157 1 -3.073 -0.383 8.845 -158 1 -0.415 5.413 -0.382 -159 1 9.063 -7.565 -4.886 -160 1 -6.453 -3.403 -10.991 -161 1 8.355 3.493 -2.529 -162 1 -10.206 -0.299 3.484 -163 1 -8.907 8.573 1.887 -164 1 -8.424 5.919 7.730 -165 1 3.875 4.170 1.772 -166 1 -9.807 -7.146 1.312 -167 1 -5.346 -3.361 6.799 -168 1 -1.360 -7.674 -7.458 -169 1 -1.335 10.558 11.502 -170 1 3.818 7.656 -6.617 -171 1 6.334 2.348 10.783 -172 1 11.549 -0.787 7.927 -173 1 0.492 4.175 5.011 -174 1 -5.343 -6.218 -3.023 -175 1 3.450 9.631 5.670 -176 1 4.517 10.751 0.959 -177 1 9.988 -9.941 7.085 -178 1 -4.785 9.836 -4.633 -179 1 -4.758 -1.152 2.691 -180 1 -1.007 7.224 -11.020 -181 1 11.127 4.980 -5.427 -182 1 6.893 5.952 -7.303 -183 1 4.957 0.116 -3.108 -184 1 8.136 4.039 -10.660 -185 1 11.191 9.703 2.399 -186 1 -1.563 -1.749 -5.222 -187 1 -6.723 -8.279 -0.338 -188 1 -3.256 8.252 -1.668 -189 1 -7.911 6.299 4.368 -190 1 -4.280 8.821 10.599 -191 1 -4.269 9.272 2.969 -192 1 9.184 -4.851 -7.123 -193 1 -0.034 -5.092 7.731 -194 1 -5.433 4.917 -11.077 -195 1 11.235 3.524 7.899 -196 1 -8.530 2.593 6.165 -197 1 8.267 -10.669 10.797 -198 1 4.134 0.059 0.726 -199 1 -3.815 -7.687 -10.991 -200 1 -3.655 -7.098 0.808 diff --git a/illustration/Equation-of-state/lammps_tau1.62/input.lmp b/illustration/Equation-of-state/lammps_tau1.62/input.lmp deleted file mode 100644 index 44f7ad7..0000000 --- a/illustration/Equation-of-state/lammps_tau1.62/input.lmp +++ /dev/null @@ -1,42 +0,0 @@ -# LAMMPS input file - -include variable.lammps - -units real -dimension 3 -atom_style atomic -pair_style lj/cut ${cut_off} -boundary p p p - -read_data initial.data -include PARM.lammps - -neigh_modify every ${neighbor} - -velocity all create ${temp} 4928459 -fix mymc all gcmc 1 0 1 1 29494 ${temp} -0.5 ${displace_mc} - -thermo ${thermo} -dump mydmp all custom ${dump} dump.lammpstrj id type x y z vx vy vz - -variable Ecoul equal ecoul -variable Evdwl equal evdwl -variable Epot equal pe -variable Ekin equal ke -variable Etot equal v_Epot+v_Ekin -variable volume equal vol -variable pressure equal press -variable temperature equal temp -variable mass equal mass(all) -variable density equal v_mass/v_volume/6.022e23*(1e8)^3 # g/cm3 -fix myat1 all ave/time ${thermo} 1 ${thermo} v_Epot file Epot.dat -fix myat2 all ave/time ${thermo} 1 ${thermo} v_Ekin file Ekin.dat -fix myat3 all ave/time ${thermo} 1 ${thermo} v_Etot file Etot.dat -fix myat4 all ave/time ${thermo} 1 ${thermo} v_Ecoul file Ecoul.dat -fix myat5 all ave/time ${thermo} 1 ${thermo} v_Evdwl file Evdwl.dat -fix myat6 all ave/time ${thermo} 1 ${thermo} v_pressure file pressure.dat -fix myat7 all ave/time ${thermo} 1 ${thermo} v_temperature file temperature.dat -fix myat8 all ave/time ${thermo} 1 ${thermo} v_volume file volume.dat -fix myat9 all ave/time ${thermo} 1 ${thermo} v_density file density.dat - -run ${maximum_steps} diff --git a/illustration/Equation-of-state/lammps_tau1.62/pressure.dat b/illustration/Equation-of-state/lammps_tau1.62/pressure.dat deleted file mode 100644 index 9cc3422..0000000 --- a/illustration/Equation-of-state/lammps_tau1.62/pressure.dat +++ /dev/null @@ -1,23 +0,0 @@ -# Time-averaged data for fix myat6 -# TimeStep v_pressure -0 1368.24 -1000 1274.8 -2000 1476.07 -3000 1466.03 -4000 1440.6 -5000 1611.91 -6000 1841 -7000 1728.64 -8000 1665.18 -9000 1555.48 -10000 1506.45 -11000 2010.3 -12000 1824.38 -13000 1492.1 -14000 1632.25 -15000 1569.71 -16000 1466.72 -17000 1431.24 -18000 1624.3 -19000 1730.38 -20000 1540.17 diff --git a/illustration/Equation-of-state/lammps_tau1.62/variable.lammps b/illustration/Equation-of-state/lammps_tau1.62/variable.lammps deleted file mode 100644 index 9dbced8..0000000 --- a/illustration/Equation-of-state/lammps_tau1.62/variable.lammps +++ /dev/null @@ -1,10 +0,0 @@ -# LAMMPS variable file - -variable neighbor equal 50 -variable thermo equal 1000 -variable dump equal 1000 -variable cut_off equal 8.512537251830942 -variable displace_mc equal 0.6810029801464753 -variable maximum_steps equal 20000 -variable temp equal 328.15 - diff --git a/illustration/Equation-of-state/lammps_tau2.1/Epot.dat b/illustration/Equation-of-state/lammps_tau2.1/Epot.dat deleted file mode 100644 index 02ada2f..0000000 --- a/illustration/Equation-of-state/lammps_tau2.1/Epot.dat +++ /dev/null @@ -1,23 +0,0 @@ -# Time-averaged data for fix myat1 -# TimeStep v_Epot -0 -129.147 -1000 -125.045 -2000 -131.071 -3000 -129.733 -4000 -128.499 -5000 -129.705 -6000 -130.73 -7000 -129.654 -8000 -123.251 -9000 -126 -10000 -122.864 -11000 -113.039 -12000 -125.704 -13000 -124.905 -14000 -118.59 -15000 -121.527 -16000 -118.126 -17000 -119.716 -18000 -120.984 -19000 -113.821 -20000 -129.797 diff --git a/illustration/Equation-of-state/lammps_tau2.1/PARM.lammps b/illustration/Equation-of-state/lammps_tau2.1/PARM.lammps deleted file mode 100644 index 8001a35..0000000 --- a/illustration/Equation-of-state/lammps_tau2.1/PARM.lammps +++ /dev/null @@ -1,6 +0,0 @@ -# LAMMPS parameter file - -mass 1 39.948 - -pair_coeff 1 1 0.237987582014826 3.4050149007323767 - diff --git a/illustration/Equation-of-state/lammps_tau2.1/initial.data b/illustration/Equation-of-state/lammps_tau2.1/initial.data deleted file mode 100644 index 83620e7..0000000 --- a/illustration/Equation-of-state/lammps_tau2.1/initial.data +++ /dev/null @@ -1,211 +0,0 @@ -# LAMMPS data file - -200 atoms -1 atom types - --12.750 12.750 xlo xhi --12.750 12.750 ylo yhi --12.750 12.750 zlo zhi - -Atoms - -1 1 -8.776 -7.879 6.382 -2 1 9.376 11.311 5.522 -3 1 5.960 -12.723 -0.052 -4 1 -6.180 3.920 8.367 -5 1 12.334 -6.881 10.087 -6 1 -8.717 -2.423 -0.323 -7 1 -1.554 1.274 -7.986 -8 1 -0.670 3.611 9.183 -9 1 -11.798 3.312 4.302 -10 1 -5.986 4.310 3.974 -11 1 10.719 -3.063 7.462 -12 1 6.802 -12.544 8.218 -13 1 3.617 12.607 -4.966 -14 1 -2.436 -3.964 -5.549 -15 1 6.792 -8.868 6.944 -16 1 -6.827 7.878 -1.859 -17 1 2.714 -0.167 0.152 -18 1 9.769 7.710 -11.483 -19 1 -1.714 10.269 2.017 -20 1 -10.345 -7.238 -10.190 -21 1 -10.583 -4.544 4.200 -22 1 -4.039 6.426 9.881 -23 1 12.386 0.298 -5.781 -24 1 -10.666 -10.270 0.525 -25 1 -11.481 -4.725 -4.855 -26 1 -5.538 10.983 8.794 -27 1 8.589 -5.504 7.350 -28 1 -0.729 12.547 -0.535 -29 1 3.115 9.424 4.858 -30 1 -11.012 -9.877 -6.147 -31 1 11.130 -10.599 0.890 -32 1 9.656 6.192 10.865 -33 1 12.641 10.193 -7.949 -34 1 7.547 5.814 -4.813 -35 1 -10.868 6.821 -7.183 -36 1 -10.837 -12.687 4.261 -37 1 11.764 4.941 -12.503 -38 1 4.711 -12.184 -11.845 -39 1 12.141 3.619 -8.831 -40 1 3.548 1.575 -7.338 -41 1 -9.030 -6.649 -3.813 -42 1 0.145 -5.983 9.992 -43 1 1.922 0.520 8.927 -44 1 -1.466 -12.353 -3.518 -45 1 -6.700 11.053 -9.862 -46 1 10.273 1.354 -11.199 -47 1 1.620 -10.443 -8.075 -48 1 -12.113 10.777 10.355 -49 1 -4.723 -10.344 4.616 -50 1 5.746 -3.291 -11.673 -51 1 4.902 7.052 -2.861 -52 1 7.336 2.238 -7.094 -53 1 0.884 -1.317 -6.288 -54 1 -10.389 10.100 -11.073 -55 1 -6.945 -10.125 -11.395 -56 1 2.618 12.550 6.774 -57 1 -2.094 -3.749 -9.456 -58 1 -1.713 -2.109 1.774 -59 1 2.344 9.994 0.365 -60 1 -6.896 -8.719 2.491 -61 1 -5.222 4.175 -0.337 -62 1 -7.915 11.712 -3.112 -63 1 0.714 -9.211 -4.307 -64 1 11.835 11.147 -11.426 -65 1 3.123 -8.655 0.035 -66 1 -2.944 12.141 7.018 -67 1 4.286 3.935 -1.721 -68 1 7.774 7.572 -0.781 -69 1 9.770 9.798 10.598 -70 1 -4.009 -4.153 11.291 -71 1 -3.057 3.276 -3.370 -72 1 8.095 -3.980 -1.800 -73 1 -10.208 -6.811 -6.843 -74 1 -11.801 -8.168 -1.575 -75 1 7.675 2.566 4.821 -76 1 1.418 10.876 -8.456 -77 1 8.284 11.933 -7.226 -78 1 1.920 1.280 -2.987 -79 1 3.718 10.056 -10.802 -80 1 -5.399 -5.751 -6.657 -81 1 6.502 9.861 -4.192 -82 1 5.537 8.035 10.737 -83 1 4.332 6.356 -9.324 -84 1 3.013 10.614 11.040 -85 1 1.442 3.581 -8.959 -86 1 -9.938 -6.278 1.445 -87 1 -2.079 5.219 3.102 -88 1 -7.009 11.419 4.934 -89 1 1.936 -6.072 4.036 -90 1 5.724 -8.532 -8.717 -91 1 -6.048 0.729 5.610 -92 1 3.698 4.046 -4.989 -93 1 5.924 -10.280 3.239 -94 1 0.827 -10.095 2.149 -95 1 -1.903 1.548 12.453 -96 1 -2.110 11.364 -6.783 -97 1 -12.665 6.978 2.944 -98 1 -4.654 -12.670 -2.561 -99 1 -3.943 9.761 -4.067 -100 1 10.288 -3.386 2.449 -101 1 8.900 -0.857 -8.338 -102 1 9.504 2.993 9.015 -103 1 7.669 10.965 -10.528 -104 1 -0.389 -9.621 -11.924 -105 1 -9.287 -10.559 -9.380 -106 1 -4.659 -5.519 7.919 -107 1 -0.537 -2.648 9.630 -108 1 -8.775 4.976 1.739 -109 1 -2.355 -5.891 -1.131 -110 1 4.199 1.305 -10.842 -111 1 -2.644 -12.285 -9.568 -112 1 -8.132 -1.492 7.995 -113 1 10.326 -6.341 -9.405 -114 1 8.927 -4.929 12.562 -115 1 -9.278 9.753 -6.057 -116 1 -12.574 -6.629 6.447 -117 1 -6.186 -12.012 1.301 -118 1 -11.138 -12.408 -2.487 -119 1 -11.489 3.534 10.884 -120 1 -0.705 -10.988 5.392 -121 1 1.440 8.076 8.539 -122 1 9.836 -7.614 2.524 -123 1 -7.065 -8.469 -7.903 -124 1 -7.657 0.677 0.916 -125 1 -2.886 -3.924 4.844 -126 1 12.394 -1.925 -2.856 -127 1 -11.670 -0.888 1.071 -128 1 5.683 -6.032 3.634 -129 1 -6.547 -1.796 3.262 -130 1 -0.776 10.376 10.493 -131 1 -9.755 -8.487 12.205 -132 1 11.908 -9.242 -12.293 -133 1 -10.781 9.954 5.903 -134 1 11.024 9.975 -0.932 -135 1 8.784 7.940 4.223 -136 1 2.902 -9.567 9.524 -137 1 -5.474 -3.126 -2.954 -138 1 -11.542 -9.881 9.917 -139 1 3.399 3.422 2.250 -140 1 -9.008 12.150 8.766 -141 1 -7.233 -10.861 -4.623 -142 1 4.439 10.203 -7.717 -143 1 5.582 -5.129 0.009 -144 1 -2.450 8.499 7.808 -145 1 -2.326 0.817 -1.204 -146 1 4.657 -4.744 -8.012 -147 1 2.644 -9.258 4.828 -148 1 -5.720 0.676 -4.104 -149 1 -0.668 9.728 -2.816 -150 1 0.304 10.562 5.110 -151 1 -2.679 -11.491 2.549 -152 1 5.808 -6.710 -11.830 -153 1 9.580 -10.618 4.233 -154 1 -0.624 0.751 3.521 -155 1 5.070 -5.394 10.074 -156 1 7.337 11.894 3.128 -157 1 -5.206 -0.021 9.837 -158 1 0.537 5.790 0.863 -159 1 9.694 -6.068 -5.533 -160 1 -6.552 -4.235 -11.465 -161 1 9.840 4.034 -1.287 -162 1 -12.290 0.124 4.509 -163 1 -10.095 9.524 1.932 -164 1 -9.518 7.868 8.075 -165 1 4.813 7.127 1.335 -166 1 -11.713 -8.109 3.610 -167 1 -2.964 -0.985 6.944 -168 1 -1.292 -8.147 -7.129 -169 1 -3.382 8.181 12.676 -170 1 2.896 7.935 -5.638 -171 1 7.024 1.627 11.722 -172 1 -11.828 -1.569 7.442 -173 1 1.098 4.882 5.141 -174 1 -5.594 -7.451 -3.888 -175 1 6.055 10.352 6.144 -176 1 3.217 12.503 3.342 -177 1 11.471 -9.875 7.537 -178 1 -5.079 -12.352 -7.041 -179 1 -4.117 1.611 2.473 -180 1 -0.150 6.938 12.353 -181 1 12.155 4.953 -5.459 -182 1 8.652 6.319 -8.895 -183 1 5.679 0.858 -3.488 -184 1 7.190 3.549 -10.363 -185 1 11.462 10.604 2.705 -186 1 0.332 -3.115 -2.674 -187 1 -7.803 -9.733 -0.970 -188 1 -4.307 9.721 -0.601 -189 1 -8.054 7.622 4.778 -190 1 -4.591 11.897 12.200 -191 1 -4.908 8.355 3.276 -192 1 11.884 -3.536 -7.070 -193 1 -0.964 -7.489 6.617 -194 1 -5.396 4.705 12.729 -195 1 12.404 4.614 7.010 -196 1 -9.531 3.015 7.282 -197 1 9.344 -10.974 10.847 -198 1 3.622 -0.114 3.452 -199 1 -3.727 -7.345 -10.654 -200 1 -3.627 -9.707 -0.418 diff --git a/illustration/Equation-of-state/lammps_tau2.1/input.lmp b/illustration/Equation-of-state/lammps_tau2.1/input.lmp deleted file mode 100644 index 44f7ad7..0000000 --- a/illustration/Equation-of-state/lammps_tau2.1/input.lmp +++ /dev/null @@ -1,42 +0,0 @@ -# LAMMPS input file - -include variable.lammps - -units real -dimension 3 -atom_style atomic -pair_style lj/cut ${cut_off} -boundary p p p - -read_data initial.data -include PARM.lammps - -neigh_modify every ${neighbor} - -velocity all create ${temp} 4928459 -fix mymc all gcmc 1 0 1 1 29494 ${temp} -0.5 ${displace_mc} - -thermo ${thermo} -dump mydmp all custom ${dump} dump.lammpstrj id type x y z vx vy vz - -variable Ecoul equal ecoul -variable Evdwl equal evdwl -variable Epot equal pe -variable Ekin equal ke -variable Etot equal v_Epot+v_Ekin -variable volume equal vol -variable pressure equal press -variable temperature equal temp -variable mass equal mass(all) -variable density equal v_mass/v_volume/6.022e23*(1e8)^3 # g/cm3 -fix myat1 all ave/time ${thermo} 1 ${thermo} v_Epot file Epot.dat -fix myat2 all ave/time ${thermo} 1 ${thermo} v_Ekin file Ekin.dat -fix myat3 all ave/time ${thermo} 1 ${thermo} v_Etot file Etot.dat -fix myat4 all ave/time ${thermo} 1 ${thermo} v_Ecoul file Ecoul.dat -fix myat5 all ave/time ${thermo} 1 ${thermo} v_Evdwl file Evdwl.dat -fix myat6 all ave/time ${thermo} 1 ${thermo} v_pressure file pressure.dat -fix myat7 all ave/time ${thermo} 1 ${thermo} v_temperature file temperature.dat -fix myat8 all ave/time ${thermo} 1 ${thermo} v_volume file volume.dat -fix myat9 all ave/time ${thermo} 1 ${thermo} v_density file density.dat - -run ${maximum_steps} diff --git a/illustration/Equation-of-state/lammps_tau2.1/pressure.dat b/illustration/Equation-of-state/lammps_tau2.1/pressure.dat deleted file mode 100644 index ff4379a..0000000 --- a/illustration/Equation-of-state/lammps_tau2.1/pressure.dat +++ /dev/null @@ -1,23 +0,0 @@ -# Time-averaged data for fix myat6 -# TimeStep v_pressure -0 931.705 -1000 892.275 -2000 763.933 -3000 737.452 -4000 835.726 -5000 833.305 -6000 805.903 -7000 822.582 -8000 936.579 -9000 832.251 -10000 888.815 -11000 1127.03 -12000 926.519 -13000 931.196 -14000 1074.46 -15000 979.989 -16000 1020.01 -17000 1060.53 -18000 1014.67 -19000 1051.18 -20000 671.399 diff --git a/illustration/Equation-of-state/lammps_tau2.1/variable.lammps b/illustration/Equation-of-state/lammps_tau2.1/variable.lammps deleted file mode 100644 index 9dbced8..0000000 --- a/illustration/Equation-of-state/lammps_tau2.1/variable.lammps +++ /dev/null @@ -1,10 +0,0 @@ -# LAMMPS variable file - -variable neighbor equal 50 -variable thermo equal 1000 -variable dump equal 1000 -variable cut_off equal 8.512537251830942 -variable displace_mc equal 0.6810029801464753 -variable maximum_steps equal 20000 -variable temp equal 328.15 - diff --git a/illustration/Equation-of-state/lammps_tau2.72/Epot.dat b/illustration/Equation-of-state/lammps_tau2.72/Epot.dat deleted file mode 100644 index 2e585b7..0000000 --- a/illustration/Equation-of-state/lammps_tau2.72/Epot.dat +++ /dev/null @@ -1,23 +0,0 @@ -# Time-averaged data for fix myat1 -# TimeStep v_Epot -0 -96.1255 -1000 -98.4006 -2000 -101.411 -3000 -97.7504 -4000 -97.3302 -5000 -100.904 -6000 -101.638 -7000 -101.48 -8000 -99.5857 -9000 -101.136 -10000 -89.6301 -11000 -93.9277 -12000 -95.968 -13000 -101.609 -14000 -101.31 -15000 -96.3495 -16000 -95.5773 -17000 -90.3194 -18000 -96.9751 -19000 -96.8575 -20000 -101.15 diff --git a/illustration/Equation-of-state/lammps_tau2.72/PARM.lammps b/illustration/Equation-of-state/lammps_tau2.72/PARM.lammps deleted file mode 100644 index 8001a35..0000000 --- a/illustration/Equation-of-state/lammps_tau2.72/PARM.lammps +++ /dev/null @@ -1,6 +0,0 @@ -# LAMMPS parameter file - -mass 1 39.948 - -pair_coeff 1 1 0.237987582014826 3.4050149007323767 - diff --git a/illustration/Equation-of-state/lammps_tau2.72/initial.data b/illustration/Equation-of-state/lammps_tau2.72/initial.data deleted file mode 100644 index 33b2975..0000000 --- a/illustration/Equation-of-state/lammps_tau2.72/initial.data +++ /dev/null @@ -1,211 +0,0 @@ -# LAMMPS data file - -200 atoms -1 atom types - --13.898 13.898 xlo xhi --13.898 13.898 ylo yhi --13.898 13.898 zlo zhi - -Atoms - -1 1 -9.049 -7.546 6.537 -2 1 9.115 11.990 6.069 -3 1 4.783 -12.635 1.061 -4 1 -6.881 5.072 8.854 -5 1 -12.932 -8.489 9.476 -6 1 -10.639 -3.450 -1.162 -7 1 -1.701 1.072 -9.628 -8 1 -0.014 1.480 11.162 -9 1 -10.924 4.217 5.928 -10 1 -6.849 3.904 4.670 -11 1 10.089 -3.582 8.181 -12 1 6.901 -13.614 9.147 -13 1 5.166 13.070 -3.275 -14 1 -3.306 -6.868 -5.552 -15 1 6.944 -9.529 7.432 -16 1 -6.756 9.299 -0.909 -17 1 1.760 -1.122 0.738 -18 1 7.562 9.546 -11.124 -19 1 -1.173 12.118 2.148 -20 1 -12.158 -10.356 -11.057 -21 1 -12.409 -3.923 4.257 -22 1 -2.937 4.467 9.576 -23 1 13.023 0.155 -6.551 -24 1 -12.379 -10.945 1.622 -25 1 -13.026 -5.857 -6.768 -26 1 -6.623 12.507 8.169 -27 1 9.620 -6.874 7.114 -28 1 0.697 13.304 -1.202 -29 1 6.848 9.496 5.858 -30 1 -9.221 -9.813 -8.351 -31 1 11.806 -10.842 1.867 -32 1 11.673 7.207 12.907 -33 1 12.247 11.836 -9.279 -34 1 8.942 6.206 -4.952 -35 1 -11.851 6.068 -7.302 -36 1 -12.188 -12.639 6.620 -37 1 -13.693 4.096 13.550 -38 1 4.532 13.106 -11.852 -39 1 12.496 4.811 -9.294 -40 1 6.987 -0.172 -6.261 -41 1 -11.198 -8.063 -3.337 -42 1 -0.520 -7.909 11.106 -43 1 2.872 -0.724 9.696 -44 1 -1.877 -12.411 -3.233 -45 1 -6.744 12.252 -12.471 -46 1 11.308 2.119 -11.429 -47 1 1.327 -10.513 -7.812 -48 1 -10.526 9.926 9.293 -49 1 -5.177 -11.435 4.523 -50 1 5.849 -2.713 -13.755 -51 1 3.101 8.589 -3.527 -52 1 8.660 2.559 -8.382 -53 1 0.424 -2.884 -6.782 -54 1 -11.398 11.140 -12.452 -55 1 -9.226 -13.010 -7.434 -56 1 3.437 -12.634 6.577 -57 1 -2.673 -3.563 -10.057 -58 1 -2.760 -1.971 3.014 -59 1 2.557 10.914 1.399 -60 1 -6.331 -8.767 2.362 -61 1 -5.789 5.509 0.009 -62 1 -8.949 13.394 -2.735 -63 1 -2.454 -9.237 -2.838 -64 1 10.530 -13.556 -12.441 -65 1 2.170 -7.802 -0.613 -66 1 -2.533 11.408 7.965 -67 1 3.197 4.450 -2.629 -68 1 5.557 10.314 -0.945 -69 1 -13.829 9.790 10.753 -70 1 -4.035 -4.911 13.888 -71 1 -2.878 3.033 -3.447 -72 1 7.844 -3.708 -3.018 -73 1 -10.213 -7.372 -6.204 -74 1 13.671 -8.714 -0.602 -75 1 8.342 3.440 5.631 -76 1 1.038 11.762 -6.414 -77 1 8.142 11.572 -7.524 -78 1 0.514 2.012 -1.156 -79 1 3.858 10.256 -13.352 -80 1 -7.545 -6.081 -3.915 -81 1 8.868 9.857 -3.413 -82 1 6.899 9.070 11.995 -83 1 6.361 6.794 -9.067 -84 1 3.946 12.647 12.175 -85 1 2.850 3.505 -8.555 -86 1 -12.754 -6.343 1.692 -87 1 -1.248 4.734 3.414 -88 1 -8.211 -13.733 5.706 -89 1 1.387 -7.321 3.684 -90 1 5.770 -10.124 -11.922 -91 1 -7.924 0.744 5.695 -92 1 5.966 3.959 -4.416 -93 1 6.300 -12.583 4.053 -94 1 -1.570 -11.976 0.266 -95 1 -3.776 2.181 -13.262 -96 1 -0.798 -13.247 -7.926 -97 1 -13.667 5.705 3.780 -98 1 -4.733 -12.896 -5.124 -99 1 -5.067 13.789 -1.857 -100 1 11.934 -3.063 3.230 -101 1 10.465 -0.951 -9.707 -102 1 9.868 4.667 10.023 -103 1 8.022 13.052 -10.118 -104 1 0.800 -11.160 -11.991 -105 1 -7.019 -11.462 -13.581 -106 1 -4.615 -7.162 8.036 -107 1 -0.192 -3.216 9.676 -108 1 -9.957 2.268 2.348 -109 1 -0.369 -5.205 0.078 -110 1 2.632 0.142 -13.043 -111 1 -3.384 -12.921 -10.205 -112 1 -9.243 -2.157 9.500 -113 1 11.763 -5.346 -13.261 -114 1 10.168 -6.923 10.975 -115 1 -8.480 10.555 -5.046 -116 1 13.040 -7.945 4.578 -117 1 -7.086 -12.666 2.062 -118 1 -9.938 -13.842 0.650 -119 1 -11.549 2.369 11.551 -120 1 -1.370 13.824 5.860 -121 1 2.825 9.430 10.446 -122 1 9.027 -9.993 4.086 -123 1 -6.715 -7.436 -7.758 -124 1 -7.924 1.808 -0.268 -125 1 -2.640 -6.815 5.319 -126 1 12.759 -2.309 -2.210 -127 1 -13.138 -1.765 1.570 -128 1 4.929 -8.518 3.043 -129 1 -6.720 -2.474 5.473 -130 1 -0.659 10.162 11.294 -131 1 -9.693 -6.601 -10.291 -132 1 -12.449 -11.345 13.418 -133 1 12.855 11.200 6.625 -134 1 13.297 11.288 1.677 -135 1 9.211 9.883 1.056 -136 1 2.842 -10.328 9.893 -137 1 -3.225 -0.894 -5.729 -138 1 12.706 -12.080 11.430 -139 1 4.960 4.629 2.308 -140 1 -10.174 13.285 10.183 -141 1 -8.131 -11.190 -3.953 -142 1 4.370 12.332 -6.878 -143 1 5.975 -5.267 -0.622 -144 1 -4.465 12.533 5.424 -145 1 -2.547 0.018 -1.017 -146 1 5.705 -4.299 -10.233 -147 1 3.107 -8.909 5.741 -148 1 -6.326 2.094 -5.409 -149 1 -1.036 11.087 -3.158 -150 1 1.434 10.303 5.275 -151 1 -2.253 -11.304 3.747 -152 1 4.881 -5.982 -13.541 -153 1 12.142 -11.451 5.484 -154 1 -0.496 0.137 4.534 -155 1 5.293 -6.759 10.369 -156 1 8.374 12.884 2.917 -157 1 -4.587 1.544 7.374 -158 1 1.882 6.471 1.096 -159 1 10.005 -7.013 -4.320 -160 1 -6.882 -4.253 -11.827 -161 1 7.257 6.270 -1.767 -162 1 -11.489 -0.155 6.005 -163 1 -10.462 7.449 2.179 -164 1 -10.817 6.354 8.846 -165 1 6.059 7.983 1.346 -166 1 -9.818 -7.499 2.748 -167 1 -5.112 -1.481 8.781 -168 1 -2.267 -10.008 -7.126 -169 1 -1.666 10.249 -13.101 -170 1 4.814 8.689 -6.837 -171 1 9.003 2.169 12.960 -172 1 13.229 -2.123 8.240 -173 1 2.435 5.446 5.829 -174 1 -4.660 -6.362 -1.881 -175 1 4.903 11.894 4.486 -176 1 1.543 -13.816 3.160 -177 1 11.117 -11.048 8.388 -178 1 -5.538 11.541 -8.429 -179 1 -4.734 1.902 2.797 -180 1 -1.474 7.078 13.792 -181 1 13.007 4.790 -5.509 -182 1 9.703 6.968 -12.353 -183 1 8.398 0.464 -3.100 -184 1 7.874 3.847 -11.662 -185 1 -10.231 11.794 3.512 -186 1 -1.210 -4.280 -3.712 -187 1 -10.865 -11.097 -1.315 -188 1 -3.796 10.655 0.142 -189 1 -8.904 7.805 5.916 -190 1 -4.492 -13.822 12.308 -191 1 -5.667 8.854 3.817 -192 1 11.659 -4.473 -5.803 -193 1 0.388 -6.584 8.048 -194 1 -6.026 4.309 13.211 -195 1 13.388 5.813 9.159 -196 1 -10.242 2.224 7.967 -197 1 8.518 -11.134 11.810 -198 1 5.023 -0.302 3.129 -199 1 -3.613 -9.186 -11.250 -200 1 -4.933 -10.670 0.076 diff --git a/illustration/Equation-of-state/lammps_tau2.72/input.lmp b/illustration/Equation-of-state/lammps_tau2.72/input.lmp deleted file mode 100644 index 44f7ad7..0000000 --- a/illustration/Equation-of-state/lammps_tau2.72/input.lmp +++ /dev/null @@ -1,42 +0,0 @@ -# LAMMPS input file - -include variable.lammps - -units real -dimension 3 -atom_style atomic -pair_style lj/cut ${cut_off} -boundary p p p - -read_data initial.data -include PARM.lammps - -neigh_modify every ${neighbor} - -velocity all create ${temp} 4928459 -fix mymc all gcmc 1 0 1 1 29494 ${temp} -0.5 ${displace_mc} - -thermo ${thermo} -dump mydmp all custom ${dump} dump.lammpstrj id type x y z vx vy vz - -variable Ecoul equal ecoul -variable Evdwl equal evdwl -variable Epot equal pe -variable Ekin equal ke -variable Etot equal v_Epot+v_Ekin -variable volume equal vol -variable pressure equal press -variable temperature equal temp -variable mass equal mass(all) -variable density equal v_mass/v_volume/6.022e23*(1e8)^3 # g/cm3 -fix myat1 all ave/time ${thermo} 1 ${thermo} v_Epot file Epot.dat -fix myat2 all ave/time ${thermo} 1 ${thermo} v_Ekin file Ekin.dat -fix myat3 all ave/time ${thermo} 1 ${thermo} v_Etot file Etot.dat -fix myat4 all ave/time ${thermo} 1 ${thermo} v_Ecoul file Ecoul.dat -fix myat5 all ave/time ${thermo} 1 ${thermo} v_Evdwl file Evdwl.dat -fix myat6 all ave/time ${thermo} 1 ${thermo} v_pressure file pressure.dat -fix myat7 all ave/time ${thermo} 1 ${thermo} v_temperature file temperature.dat -fix myat8 all ave/time ${thermo} 1 ${thermo} v_volume file volume.dat -fix myat9 all ave/time ${thermo} 1 ${thermo} v_density file density.dat - -run ${maximum_steps} diff --git a/illustration/Equation-of-state/lammps_tau2.72/pressure.dat b/illustration/Equation-of-state/lammps_tau2.72/pressure.dat deleted file mode 100644 index 5de3e34..0000000 --- a/illustration/Equation-of-state/lammps_tau2.72/pressure.dat +++ /dev/null @@ -1,23 +0,0 @@ -# Time-averaged data for fix myat6 -# TimeStep v_pressure -0 706.891 -1000 624.652 -2000 553.787 -3000 631.548 -4000 622.661 -5000 557.007 -6000 476.033 -7000 490.377 -8000 561.301 -9000 598.755 -10000 807.134 -11000 720.798 -12000 698.141 -13000 562.511 -14000 495.024 -15000 553.927 -16000 547.054 -17000 605.863 -18000 527.69 -19000 599.136 -20000 520.179 diff --git a/illustration/Equation-of-state/lammps_tau2.72/variable.lammps b/illustration/Equation-of-state/lammps_tau2.72/variable.lammps deleted file mode 100644 index 9dbced8..0000000 --- a/illustration/Equation-of-state/lammps_tau2.72/variable.lammps +++ /dev/null @@ -1,10 +0,0 @@ -# LAMMPS variable file - -variable neighbor equal 50 -variable thermo equal 1000 -variable dump equal 1000 -variable cut_off equal 8.512537251830942 -variable displace_mc equal 0.6810029801464753 -variable maximum_steps equal 20000 -variable temp equal 328.15 - diff --git a/illustration/Equation-of-state/lammps_tau3.52/Epot.dat b/illustration/Equation-of-state/lammps_tau3.52/Epot.dat deleted file mode 100644 index 768d9cf..0000000 --- a/illustration/Equation-of-state/lammps_tau3.52/Epot.dat +++ /dev/null @@ -1,23 +0,0 @@ -# Time-averaged data for fix myat1 -# TimeStep v_Epot -0 -86.4968 -1000 -81.7244 -2000 -83.7244 -3000 -81.0985 -4000 -82.6465 -5000 -82.7639 -6000 -78.8906 -7000 -74.9298 -8000 -78.7919 -9000 -71.2612 -10000 -78.9983 -11000 -75.5426 -12000 -75.9957 -13000 -75.6773 -14000 -75.2124 -15000 -73.7487 -16000 -80.5974 -17000 -77.2209 -18000 -76.745 -19000 -74.3314 -20000 -77.712 diff --git a/illustration/Equation-of-state/lammps_tau3.52/PARM.lammps b/illustration/Equation-of-state/lammps_tau3.52/PARM.lammps deleted file mode 100644 index 8001a35..0000000 --- a/illustration/Equation-of-state/lammps_tau3.52/PARM.lammps +++ /dev/null @@ -1,6 +0,0 @@ -# LAMMPS parameter file - -mass 1 39.948 - -pair_coeff 1 1 0.237987582014826 3.4050149007323767 - diff --git a/illustration/Equation-of-state/lammps_tau3.52/initial.data b/illustration/Equation-of-state/lammps_tau3.52/initial.data deleted file mode 100644 index a006fdc..0000000 --- a/illustration/Equation-of-state/lammps_tau3.52/initial.data +++ /dev/null @@ -1,211 +0,0 @@ -# LAMMPS data file - -200 atoms -1 atom types - --15.145 15.145 xlo xhi --15.145 15.145 ylo yhi --15.145 15.145 zlo zhi - -Atoms - -1 1 -9.281 -9.529 6.839 -2 1 11.446 12.912 7.057 -3 1 6.171 -13.386 -0.960 -4 1 -7.547 4.170 10.214 -5 1 -13.689 -8.929 10.583 -6 1 -13.768 -2.132 -0.953 -7 1 -2.514 0.730 -9.461 -8 1 -3.008 4.522 13.130 -9 1 -11.361 3.604 4.644 -10 1 -7.234 4.211 5.723 -11 1 13.620 -5.521 10.139 -12 1 7.544 -14.579 9.183 -13 1 5.340 13.343 -1.650 -14 1 -5.879 -7.636 -2.282 -15 1 8.595 -10.647 8.114 -16 1 -7.964 12.786 -0.149 -17 1 0.304 -3.067 -0.041 -18 1 9.911 11.554 -13.147 -19 1 -2.766 10.617 2.421 -20 1 -12.299 -11.371 -10.378 -21 1 -14.241 -4.184 6.431 -22 1 -3.457 4.487 9.332 -23 1 12.779 -1.480 -7.491 -24 1 -10.302 -10.798 1.138 -25 1 -13.615 -6.437 -5.753 -26 1 -6.838 14.627 9.046 -27 1 11.023 -7.740 9.051 -28 1 1.084 15.070 -1.353 -29 1 7.936 11.003 5.786 -30 1 -8.036 -11.765 -8.879 -31 1 -14.420 -11.374 2.909 -32 1 13.447 7.035 14.435 -33 1 -15.134 13.350 -8.036 -34 1 10.910 7.473 -4.143 -35 1 -13.434 4.962 -7.388 -36 1 -12.586 14.971 6.189 -37 1 15.108 2.051 -15.135 -38 1 2.280 13.783 -12.303 -39 1 14.874 4.658 -10.499 -40 1 5.778 1.497 -6.448 -41 1 -10.655 -8.459 -2.616 -42 1 1.330 -7.758 10.197 -43 1 2.720 0.015 10.680 -44 1 -2.339 -14.406 -2.933 -45 1 -6.734 13.347 -11.871 -46 1 10.970 4.076 -10.071 -47 1 -1.017 -11.350 -8.888 -48 1 -11.522 12.275 13.273 -49 1 -4.685 -14.131 4.166 -50 1 6.851 -2.044 -14.389 -51 1 5.152 9.992 -4.504 -52 1 8.325 3.542 -8.264 -53 1 3.061 -4.099 -7.408 -54 1 -11.998 12.275 -12.552 -55 1 -8.431 -14.802 -7.053 -56 1 2.259 -13.968 7.830 -57 1 -0.834 -2.259 -9.092 -58 1 -2.074 -2.934 3.213 -59 1 1.095 12.570 1.233 -60 1 -6.927 -10.776 3.473 -61 1 -8.097 5.889 1.634 -62 1 -6.990 11.728 -3.252 -63 1 -2.781 -10.770 -3.464 -64 1 12.470 -15.054 -14.053 -65 1 1.558 -9.788 -0.451 -66 1 -3.473 13.257 6.707 -67 1 4.167 3.253 -3.277 -68 1 5.757 8.499 -1.314 -69 1 12.979 10.768 12.830 -70 1 -5.627 -5.851 14.210 -71 1 -4.631 2.941 -2.852 -72 1 9.200 -5.657 -2.974 -73 1 -11.202 -8.389 -6.481 -74 1 -15.021 -9.614 -3.698 -75 1 8.487 4.449 5.284 -76 1 -0.100 12.048 -7.877 -77 1 7.203 9.007 -7.261 -78 1 -2.252 -0.192 -1.143 -79 1 3.085 11.269 -14.742 -80 1 -9.264 -5.483 -3.637 -81 1 9.027 10.254 -2.553 -82 1 6.966 10.223 12.766 -83 1 4.779 10.336 -10.011 -84 1 3.922 14.268 13.744 -85 1 3.917 2.320 -9.762 -86 1 -12.283 -4.925 3.066 -87 1 -2.472 3.746 3.838 -88 1 -8.575 -13.846 5.909 -89 1 0.031 -8.133 4.020 -90 1 5.558 -10.888 -11.989 -91 1 -6.732 0.907 7.322 -92 1 5.519 5.660 -4.728 -93 1 5.858 15.021 2.086 -94 1 -0.321 -12.033 0.921 -95 1 -5.029 2.276 -14.472 -96 1 -1.099 -14.154 -10.763 -97 1 -12.430 6.001 -0.512 -98 1 -5.163 -13.188 -5.580 -99 1 -5.852 -15.001 -2.098 -100 1 11.909 -3.338 3.203 -101 1 9.878 0.379 -10.549 -102 1 9.797 6.562 13.837 -103 1 8.874 -14.849 -13.268 -104 1 0.295 -10.140 -12.272 -105 1 -7.560 -14.099 -13.651 -106 1 -4.925 -7.345 8.018 -107 1 -0.286 -2.420 10.986 -108 1 -12.653 6.926 4.842 -109 1 -3.633 -4.468 -1.086 -110 1 3.604 -0.157 -14.424 -111 1 -4.697 -13.130 -10.283 -112 1 -10.911 -1.328 8.691 -113 1 12.840 -6.357 14.863 -114 1 11.406 -8.847 12.073 -115 1 -11.312 10.380 -1.986 -116 1 13.830 -7.937 3.772 -117 1 -9.312 -13.763 2.412 -118 1 -11.535 14.190 -1.059 -119 1 -11.685 1.099 12.301 -120 1 -1.189 -14.383 5.187 -121 1 2.480 8.627 11.928 -122 1 10.367 -10.374 4.392 -123 1 -7.416 -8.621 -10.029 -124 1 -8.594 2.396 0.595 -125 1 -4.162 -8.231 4.615 -126 1 14.170 -3.348 -4.485 -127 1 -11.578 -0.316 2.154 -128 1 3.897 -7.925 3.552 -129 1 -8.051 -1.857 5.500 -130 1 -0.936 9.780 11.280 -131 1 -10.293 -9.036 -13.539 -132 1 14.466 -9.430 -12.718 -133 1 -13.525 10.464 7.023 -134 1 13.853 13.259 0.291 -135 1 10.920 10.309 0.938 -136 1 6.088 -12.594 12.699 -137 1 -5.715 -2.114 -6.755 -138 1 12.467 -10.209 14.888 -139 1 5.322 5.010 1.993 -140 1 -10.679 14.062 9.842 -141 1 -8.820 -12.030 -4.687 -142 1 8.148 12.331 -8.121 -143 1 6.985 -4.465 -0.432 -144 1 -6.731 13.620 5.419 -145 1 -0.622 1.724 1.447 -146 1 5.737 -2.378 -10.332 -147 1 4.022 -10.716 7.175 -148 1 -7.545 1.761 -5.701 -149 1 -0.053 13.279 -4.292 -150 1 0.386 11.271 4.838 -151 1 -2.460 -14.841 1.423 -152 1 6.760 -7.298 -14.702 -153 1 12.896 -12.719 5.220 -154 1 -2.617 -0.349 5.737 -155 1 7.517 -7.310 10.955 -156 1 8.443 12.722 1.581 -157 1 -5.718 0.560 11.424 -158 1 1.539 8.846 0.809 -159 1 12.435 -6.794 -6.391 -160 1 -8.548 -4.923 -14.039 -161 1 9.336 5.648 -1.830 -162 1 -12.739 0.502 5.620 -163 1 -10.608 9.472 3.168 -164 1 -10.927 7.669 9.066 -165 1 8.027 8.211 1.900 -166 1 -11.681 -8.342 4.244 -167 1 -6.195 -2.266 8.807 -168 1 -2.528 -9.151 -6.484 -169 1 -2.257 8.989 -12.523 -170 1 3.797 8.212 -7.417 -171 1 9.839 1.725 14.919 -172 1 12.937 0.255 7.865 -173 1 2.728 6.917 5.178 -174 1 -2.269 -6.975 -2.935 -175 1 5.552 13.448 5.462 -176 1 2.464 -15.054 4.480 -177 1 12.567 -12.516 8.248 -178 1 -4.256 13.571 -8.279 -179 1 -4.845 1.268 2.058 -180 1 -0.810 6.576 -14.650 -181 1 12.742 5.725 -6.820 -182 1 10.087 7.822 -12.098 -183 1 9.056 -0.134 -5.778 -184 1 8.206 3.881 -12.044 -185 1 -12.602 13.440 2.440 -186 1 -0.057 -3.631 -5.132 -187 1 -12.387 -11.675 -1.845 -188 1 -4.272 9.707 -1.857 -189 1 -8.042 8.944 6.520 -190 1 -3.827 14.680 -14.729 -191 1 -6.355 9.950 1.544 -192 1 -14.300 -5.055 -8.803 -193 1 -2.771 -4.472 6.509 -194 1 -7.582 3.940 14.258 -195 1 15.044 5.340 10.011 -196 1 -10.893 3.312 8.364 -197 1 10.365 -13.426 11.525 -198 1 4.760 -0.515 2.060 -199 1 -6.144 -7.558 -13.309 -200 1 -5.000 -10.494 0.701 diff --git a/illustration/Equation-of-state/lammps_tau3.52/input.lmp b/illustration/Equation-of-state/lammps_tau3.52/input.lmp deleted file mode 100644 index 44f7ad7..0000000 --- a/illustration/Equation-of-state/lammps_tau3.52/input.lmp +++ /dev/null @@ -1,42 +0,0 @@ -# LAMMPS input file - -include variable.lammps - -units real -dimension 3 -atom_style atomic -pair_style lj/cut ${cut_off} -boundary p p p - -read_data initial.data -include PARM.lammps - -neigh_modify every ${neighbor} - -velocity all create ${temp} 4928459 -fix mymc all gcmc 1 0 1 1 29494 ${temp} -0.5 ${displace_mc} - -thermo ${thermo} -dump mydmp all custom ${dump} dump.lammpstrj id type x y z vx vy vz - -variable Ecoul equal ecoul -variable Evdwl equal evdwl -variable Epot equal pe -variable Ekin equal ke -variable Etot equal v_Epot+v_Ekin -variable volume equal vol -variable pressure equal press -variable temperature equal temp -variable mass equal mass(all) -variable density equal v_mass/v_volume/6.022e23*(1e8)^3 # g/cm3 -fix myat1 all ave/time ${thermo} 1 ${thermo} v_Epot file Epot.dat -fix myat2 all ave/time ${thermo} 1 ${thermo} v_Ekin file Ekin.dat -fix myat3 all ave/time ${thermo} 1 ${thermo} v_Etot file Etot.dat -fix myat4 all ave/time ${thermo} 1 ${thermo} v_Ecoul file Ecoul.dat -fix myat5 all ave/time ${thermo} 1 ${thermo} v_Evdwl file Evdwl.dat -fix myat6 all ave/time ${thermo} 1 ${thermo} v_pressure file pressure.dat -fix myat7 all ave/time ${thermo} 1 ${thermo} v_temperature file temperature.dat -fix myat8 all ave/time ${thermo} 1 ${thermo} v_volume file volume.dat -fix myat9 all ave/time ${thermo} 1 ${thermo} v_density file density.dat - -run ${maximum_steps} diff --git a/illustration/Equation-of-state/lammps_tau3.52/pressure.dat b/illustration/Equation-of-state/lammps_tau3.52/pressure.dat deleted file mode 100644 index 651eca5..0000000 --- a/illustration/Equation-of-state/lammps_tau3.52/pressure.dat +++ /dev/null @@ -1,23 +0,0 @@ -# Time-averaged data for fix myat6 -# TimeStep v_pressure -0 316.25 -1000 437.481 -2000 405.325 -3000 424.676 -4000 376.85 -5000 360.7 -6000 308.339 -7000 400.416 -8000 343.638 -9000 454.706 -10000 394.113 -11000 504.971 -12000 485.083 -13000 434.304 -14000 413.118 -15000 421.069 -16000 322.504 -17000 373.537 -18000 354.066 -19000 377.353 -20000 347.605 diff --git a/illustration/Equation-of-state/lammps_tau3.52/variable.lammps b/illustration/Equation-of-state/lammps_tau3.52/variable.lammps deleted file mode 100644 index 9dbced8..0000000 --- a/illustration/Equation-of-state/lammps_tau3.52/variable.lammps +++ /dev/null @@ -1,10 +0,0 @@ -# LAMMPS variable file - -variable neighbor equal 50 -variable thermo equal 1000 -variable dump equal 1000 -variable cut_off equal 8.512537251830942 -variable displace_mc equal 0.6810029801464753 -variable maximum_steps equal 20000 -variable temp equal 328.15 - diff --git a/illustration/Equation-of-state/lammps_tau4.55/Epot.dat b/illustration/Equation-of-state/lammps_tau4.55/Epot.dat deleted file mode 100644 index 1227779..0000000 --- a/illustration/Equation-of-state/lammps_tau4.55/Epot.dat +++ /dev/null @@ -1,23 +0,0 @@ -# Time-averaged data for fix myat1 -# TimeStep v_Epot -0 -66.2625 -1000 -66.3232 -2000 -64.1552 -3000 -64.5485 -4000 -64.2757 -5000 -65.5901 -6000 -65.9053 -7000 -63.0458 -8000 -63.1695 -9000 -65.891 -10000 -61.0168 -11000 -64.2449 -12000 -63.1791 -13000 -64.3465 -14000 -62.103 -15000 -60.2522 -16000 -58.5747 -17000 -52.8854 -18000 -59.245 -19000 -61.417 -20000 -58.8275 diff --git a/illustration/Equation-of-state/lammps_tau4.55/PARM.lammps b/illustration/Equation-of-state/lammps_tau4.55/PARM.lammps deleted file mode 100644 index 8001a35..0000000 --- a/illustration/Equation-of-state/lammps_tau4.55/PARM.lammps +++ /dev/null @@ -1,6 +0,0 @@ -# LAMMPS parameter file - -mass 1 39.948 - -pair_coeff 1 1 0.237987582014826 3.4050149007323767 - diff --git a/illustration/Equation-of-state/lammps_tau4.55/initial.data b/illustration/Equation-of-state/lammps_tau4.55/initial.data deleted file mode 100644 index 67a2b50..0000000 --- a/illustration/Equation-of-state/lammps_tau4.55/initial.data +++ /dev/null @@ -1,211 +0,0 @@ -# LAMMPS data file - -200 atoms -1 atom types - --16.498 16.498 xlo xhi --16.498 16.498 ylo yhi --16.498 16.498 zlo zhi - -Atoms - -1 1 -10.877 -9.020 7.445 -2 1 12.164 15.230 9.285 -3 1 4.921 -13.945 -0.975 -4 1 -7.065 3.115 10.492 -5 1 -15.842 -8.939 10.437 -6 1 -14.156 -2.608 -0.972 -7 1 -2.217 0.889 -10.475 -8 1 1.293 6.491 14.724 -9 1 -12.155 2.439 5.734 -10 1 -6.845 4.510 6.588 -11 1 13.984 -6.437 10.718 -12 1 8.548 -16.282 11.468 -13 1 4.887 15.877 -5.346 -14 1 -5.888 -6.614 -4.326 -15 1 9.944 -11.945 10.986 -16 1 -8.600 13.701 -0.630 -17 1 0.343 -1.859 1.018 -18 1 10.473 12.996 -13.593 -19 1 -2.244 10.894 2.490 -20 1 -13.571 -11.625 -11.628 -21 1 -15.691 -5.299 7.358 -22 1 -3.942 4.679 12.175 -23 1 14.908 -1.952 -9.439 -24 1 -11.725 -11.543 0.243 -25 1 -15.266 -6.377 -7.697 -26 1 -6.078 16.378 9.610 -27 1 9.864 -7.944 9.546 -28 1 1.818 14.962 0.802 -29 1 7.646 12.030 8.284 -30 1 -10.964 -12.808 -7.521 -31 1 -14.941 -13.848 2.867 -32 1 14.608 7.279 14.746 -33 1 -15.323 12.729 -11.010 -34 1 9.746 7.475 -4.331 -35 1 -15.316 5.433 -9.228 -36 1 -13.980 -16.431 5.514 -37 1 14.132 4.469 -16.202 -38 1 2.853 15.548 -14.326 -39 1 15.735 4.380 -12.264 -40 1 7.269 4.273 -8.794 -41 1 -11.665 -10.074 -4.357 -42 1 1.613 -8.731 11.079 -43 1 2.619 0.002 12.079 -44 1 -3.697 -14.298 -4.834 -45 1 -9.356 -15.806 -9.901 -46 1 12.969 2.841 -10.985 -47 1 -2.227 -13.084 -8.525 -48 1 -12.442 13.616 14.211 -49 1 -6.247 -13.417 5.101 -50 1 7.561 -2.139 -14.080 -51 1 5.222 11.177 -5.979 -52 1 10.716 2.057 -8.502 -53 1 3.787 -3.752 -8.160 -54 1 -12.168 13.735 -13.208 -55 1 -6.212 -13.713 -11.635 -56 1 2.665 -16.168 8.962 -57 1 0.671 -2.184 -11.857 -58 1 -0.553 -0.431 4.849 -59 1 -1.297 16.480 0.030 -60 1 -9.150 -11.715 3.776 -61 1 -7.089 6.673 2.196 -62 1 -8.464 11.255 -3.744 -63 1 -3.808 -13.372 -1.215 -64 1 12.971 -15.571 -15.577 -65 1 0.466 -10.724 0.437 -66 1 -3.006 14.155 8.144 -67 1 5.036 4.954 -4.433 -68 1 5.360 9.892 0.026 -69 1 14.253 10.929 13.289 -70 1 -5.867 -6.673 16.372 -71 1 -4.967 3.506 -3.541 -72 1 9.999 -6.194 -3.598 -73 1 -12.561 -9.668 -7.819 -74 1 -15.624 -9.605 -3.805 -75 1 8.200 5.296 6.381 -76 1 1.969 12.774 -8.115 -77 1 9.243 10.764 -8.262 -78 1 -1.670 -0.797 -2.080 -79 1 3.363 12.016 -15.931 -80 1 -9.575 -7.347 -5.452 -81 1 7.218 10.191 -2.786 -82 1 8.183 11.489 13.632 -83 1 6.943 8.159 -10.462 -84 1 3.861 -16.189 14.535 -85 1 4.146 2.926 -10.235 -86 1 -13.739 -5.574 3.978 -87 1 -3.217 3.935 4.408 -88 1 -10.173 -14.917 6.402 -89 1 -0.248 -8.252 4.246 -90 1 5.819 -13.143 -14.207 -91 1 -8.617 1.180 7.188 -92 1 7.045 6.482 -6.267 -93 1 6.182 -13.626 4.445 -94 1 0.037 -13.401 2.529 -95 1 -7.425 5.515 -16.296 -96 1 -1.152 -16.375 -9.106 -97 1 -16.420 5.300 0.555 -98 1 -6.726 -15.498 -6.184 -99 1 -5.650 15.295 -3.535 -100 1 13.107 -3.226 3.346 -101 1 10.866 -0.420 -11.164 -102 1 11.060 6.154 13.370 -103 1 10.761 -16.192 -12.646 -104 1 1.265 -11.329 -13.590 -105 1 -6.875 -12.597 -15.733 -106 1 -4.791 -9.110 8.938 -107 1 0.581 -2.594 10.939 -108 1 -13.557 5.603 4.550 -109 1 -3.731 -6.479 -1.036 -110 1 3.377 -1.047 -16.358 -111 1 -6.367 15.178 -11.331 -112 1 -10.442 -1.389 10.989 -113 1 15.365 -8.013 16.052 -114 1 12.258 -9.159 12.308 -115 1 -11.675 11.340 -1.909 -116 1 15.318 -8.728 5.709 -117 1 -8.610 -15.017 2.743 -118 1 -12.433 15.057 -2.807 -119 1 -12.949 3.228 13.277 -120 1 -2.211 -15.527 7.046 -121 1 2.409 8.969 13.143 -122 1 14.343 -12.578 3.964 -123 1 -10.219 -11.806 -10.788 -124 1 -9.628 1.376 1.095 -125 1 -2.615 -9.806 6.367 -126 1 15.088 -4.248 -4.705 -127 1 -13.319 0.883 2.205 -128 1 3.332 -9.232 3.907 -129 1 -9.141 -1.898 5.595 -130 1 -0.723 10.612 12.788 -131 1 -12.546 -9.644 -15.068 -132 1 -16.440 -12.422 14.787 -133 1 -13.916 11.561 7.455 -134 1 -15.932 12.309 -0.611 -135 1 12.090 11.106 2.518 -136 1 6.191 -12.730 13.730 -137 1 -5.105 -3.008 -8.545 -138 1 12.812 -11.418 15.225 -139 1 6.317 5.229 3.332 -140 1 -10.491 15.439 10.382 -141 1 -8.940 -13.089 -4.344 -142 1 7.268 13.508 -8.237 -143 1 7.825 -4.828 -0.917 -144 1 -8.630 14.855 7.171 -145 1 -2.958 2.377 0.457 -146 1 6.766 -1.691 -10.333 -147 1 6.633 -12.373 8.087 -148 1 -7.343 0.836 -7.147 -149 1 -0.706 14.280 -4.819 -150 1 -0.836 14.701 4.628 -151 1 -3.640 -14.978 4.141 -152 1 7.261 -8.050 -14.734 -153 1 10.148 -10.828 5.910 -154 1 -4.410 -0.674 5.039 -155 1 7.721 -8.987 13.687 -156 1 8.885 14.302 2.210 -157 1 -3.787 -0.836 14.782 -158 1 1.896 9.277 -1.126 -159 1 13.049 -7.628 -6.796 -160 1 -9.150 -5.168 -14.507 -161 1 11.172 8.651 -0.703 -162 1 -13.654 -0.582 6.238 -163 1 -13.045 9.390 2.968 -164 1 -11.473 7.451 8.295 -165 1 8.131 8.853 2.517 -166 1 -13.999 -10.321 3.936 -167 1 -6.481 -1.587 10.437 -168 1 -2.285 -9.728 -6.636 -169 1 -3.013 12.781 -14.447 -170 1 4.235 9.228 -8.906 -171 1 11.032 2.851 16.004 -172 1 14.117 -0.709 8.490 -173 1 4.007 7.067 5.955 -174 1 -3.363 -9.711 -2.379 -175 1 8.018 15.103 5.153 -176 1 2.957 -16.244 4.763 -177 1 13.235 -12.154 9.276 -178 1 -5.670 14.905 -8.126 -179 1 -6.459 3.363 2.058 -180 1 -2.493 8.147 -16.315 -181 1 14.109 5.916 -8.608 -182 1 11.272 7.084 -11.492 -183 1 8.869 -0.664 -6.492 -184 1 9.479 3.873 -12.961 -185 1 -12.171 14.187 3.156 -186 1 0.016 -3.638 -6.442 -187 1 -13.770 -13.178 -3.622 -188 1 -5.268 10.750 -2.319 -189 1 -9.702 10.000 5.163 -190 1 -5.741 15.992 -16.259 -191 1 -6.442 11.975 2.022 -192 1 -15.560 -7.077 -10.647 -193 1 -2.763 -5.824 7.579 -194 1 -6.624 1.990 14.548 -195 1 -15.980 6.687 10.669 -196 1 -11.329 1.894 9.306 -197 1 11.738 -15.729 13.752 -198 1 7.313 -0.039 2.263 -199 1 -4.956 -10.361 -12.963 -200 1 -5.143 -12.161 2.218 diff --git a/illustration/Equation-of-state/lammps_tau4.55/input.lmp b/illustration/Equation-of-state/lammps_tau4.55/input.lmp deleted file mode 100644 index 44f7ad7..0000000 --- a/illustration/Equation-of-state/lammps_tau4.55/input.lmp +++ /dev/null @@ -1,42 +0,0 @@ -# LAMMPS input file - -include variable.lammps - -units real -dimension 3 -atom_style atomic -pair_style lj/cut ${cut_off} -boundary p p p - -read_data initial.data -include PARM.lammps - -neigh_modify every ${neighbor} - -velocity all create ${temp} 4928459 -fix mymc all gcmc 1 0 1 1 29494 ${temp} -0.5 ${displace_mc} - -thermo ${thermo} -dump mydmp all custom ${dump} dump.lammpstrj id type x y z vx vy vz - -variable Ecoul equal ecoul -variable Evdwl equal evdwl -variable Epot equal pe -variable Ekin equal ke -variable Etot equal v_Epot+v_Ekin -variable volume equal vol -variable pressure equal press -variable temperature equal temp -variable mass equal mass(all) -variable density equal v_mass/v_volume/6.022e23*(1e8)^3 # g/cm3 -fix myat1 all ave/time ${thermo} 1 ${thermo} v_Epot file Epot.dat -fix myat2 all ave/time ${thermo} 1 ${thermo} v_Ekin file Ekin.dat -fix myat3 all ave/time ${thermo} 1 ${thermo} v_Etot file Etot.dat -fix myat4 all ave/time ${thermo} 1 ${thermo} v_Ecoul file Ecoul.dat -fix myat5 all ave/time ${thermo} 1 ${thermo} v_Evdwl file Evdwl.dat -fix myat6 all ave/time ${thermo} 1 ${thermo} v_pressure file pressure.dat -fix myat7 all ave/time ${thermo} 1 ${thermo} v_temperature file temperature.dat -fix myat8 all ave/time ${thermo} 1 ${thermo} v_volume file volume.dat -fix myat9 all ave/time ${thermo} 1 ${thermo} v_density file density.dat - -run ${maximum_steps} diff --git a/illustration/Equation-of-state/lammps_tau4.55/pressure.dat b/illustration/Equation-of-state/lammps_tau4.55/pressure.dat deleted file mode 100644 index 9e3068b..0000000 --- a/illustration/Equation-of-state/lammps_tau4.55/pressure.dat +++ /dev/null @@ -1,23 +0,0 @@ -# Time-averaged data for fix myat6 -# TimeStep v_pressure -0 258.983 -1000 259.071 -2000 292.12 -3000 277.404 -4000 278.059 -5000 258.574 -6000 269.663 -7000 304.452 -8000 284.444 -9000 279.952 -10000 323.92 -11000 293.243 -12000 305.01 -13000 297.124 -14000 262.954 -15000 266.125 -16000 302.834 -17000 359.466 -18000 258.926 -19000 249.829 -20000 280.743 diff --git a/illustration/Equation-of-state/lammps_tau4.55/variable.lammps b/illustration/Equation-of-state/lammps_tau4.55/variable.lammps deleted file mode 100644 index 9dbced8..0000000 --- a/illustration/Equation-of-state/lammps_tau4.55/variable.lammps +++ /dev/null @@ -1,10 +0,0 @@ -# LAMMPS variable file - -variable neighbor equal 50 -variable thermo equal 1000 -variable dump equal 1000 -variable cut_off equal 8.512537251830942 -variable displace_mc equal 0.6810029801464753 -variable maximum_steps equal 20000 -variable temp equal 328.15 - diff --git a/illustration/Equation-of-state/lammps_tau5.89/Epot.dat b/illustration/Equation-of-state/lammps_tau5.89/Epot.dat deleted file mode 100644 index 320efc9..0000000 --- a/illustration/Equation-of-state/lammps_tau5.89/Epot.dat +++ /dev/null @@ -1,23 +0,0 @@ -# Time-averaged data for fix myat1 -# TimeStep v_Epot -0 -51.5106 -1000 -54.8431 -2000 -48.733 -3000 -53.493 -4000 -50.5662 -5000 -48.1685 -6000 -51.0392 -7000 -50.6228 -8000 -51.2008 -9000 -47.6827 -10000 -51.9714 -11000 -47.5482 -12000 -50.0901 -13000 -47.6582 -14000 -47.0602 -15000 -51.7184 -16000 -45.3636 -17000 -41.6262 -18000 -46.1127 -19000 -45.6477 -20000 -52.2005 diff --git a/illustration/Equation-of-state/lammps_tau5.89/PARM.lammps b/illustration/Equation-of-state/lammps_tau5.89/PARM.lammps deleted file mode 100644 index 8001a35..0000000 --- a/illustration/Equation-of-state/lammps_tau5.89/PARM.lammps +++ /dev/null @@ -1,6 +0,0 @@ -# LAMMPS parameter file - -mass 1 39.948 - -pair_coeff 1 1 0.237987582014826 3.4050149007323767 - diff --git a/illustration/Equation-of-state/lammps_tau5.89/initial.data b/illustration/Equation-of-state/lammps_tau5.89/initial.data deleted file mode 100644 index d5c82ed..0000000 --- a/illustration/Equation-of-state/lammps_tau5.89/initial.data +++ /dev/null @@ -1,211 +0,0 @@ -# LAMMPS data file - -200 atoms -1 atom types - --17.981 17.981 xlo xhi --17.981 17.981 ylo yhi --17.981 17.981 zlo zhi - -Atoms - -1 1 -11.206 -11.379 4.051 -2 1 14.369 14.912 9.578 -3 1 5.441 -15.080 -0.833 -4 1 -8.897 4.526 11.325 -5 1 -17.955 -11.863 13.543 -6 1 -15.712 -2.747 -0.360 -7 1 -2.261 2.358 -11.254 -8 1 1.089 7.619 15.229 -9 1 -11.206 3.095 6.017 -10 1 -7.357 5.220 5.473 -11 1 14.697 -6.543 11.929 -12 1 10.032 -15.666 13.592 -13 1 6.083 16.393 -8.004 -14 1 -7.129 -8.460 -5.296 -15 1 10.228 -12.122 9.104 -16 1 -9.387 14.626 -0.233 -17 1 0.071 -1.691 1.238 -18 1 11.979 15.398 -15.252 -19 1 -4.473 12.635 2.525 -20 1 16.806 -11.125 -13.208 -21 1 -16.643 -6.647 7.701 -22 1 -4.503 4.976 12.610 -23 1 16.768 -1.362 -11.072 -24 1 -14.308 -12.360 1.021 -25 1 -17.542 -8.143 -7.798 -26 1 -7.251 16.036 10.557 -27 1 13.728 -9.710 10.619 -28 1 1.983 16.941 -0.495 -29 1 8.669 12.477 7.682 -30 1 -12.184 -12.257 -9.214 -31 1 17.801 -14.346 3.466 -32 1 15.933 8.442 15.393 -33 1 -15.807 15.163 -11.014 -34 1 9.509 8.402 -4.650 -35 1 -16.892 7.732 -9.392 -36 1 -16.589 17.816 5.356 -37 1 16.030 5.941 -16.911 -38 1 3.298 -17.867 -15.473 -39 1 16.985 5.849 -11.667 -40 1 8.841 3.170 -9.961 -41 1 -12.548 -10.619 -5.861 -42 1 1.275 -10.145 13.077 -43 1 2.939 -0.294 12.686 -44 1 -3.472 -16.731 -4.298 -45 1 -7.743 16.540 -13.827 -46 1 15.437 2.746 -12.745 -47 1 -1.808 -13.424 -11.275 -48 1 -15.563 15.100 14.907 -49 1 -6.439 -13.458 6.098 -50 1 8.723 -1.890 -15.005 -51 1 7.057 11.059 -7.454 -52 1 12.056 -0.339 -9.449 -53 1 4.240 -4.185 -8.833 -54 1 -12.511 14.667 -13.862 -55 1 -10.277 -16.941 -9.603 -56 1 2.204 -16.947 10.344 -57 1 0.540 -2.251 -12.005 -58 1 -1.494 -4.055 4.913 -59 1 1.280 14.978 2.301 -60 1 -7.166 -9.778 4.368 -61 1 -8.197 6.634 0.766 -62 1 -8.387 12.707 -2.630 -63 1 -4.800 -13.406 -3.736 -64 1 13.679 -17.142 -16.913 -65 1 1.198 -11.288 0.795 -66 1 -4.019 15.596 9.201 -67 1 6.084 6.678 -7.101 -68 1 7.427 8.527 0.029 -69 1 15.094 12.275 14.302 -70 1 -5.810 -7.115 17.782 -71 1 -5.697 4.463 -4.312 -72 1 10.137 -6.901 -3.217 -73 1 -14.869 -9.734 -8.131 -74 1 -17.368 -10.256 -4.493 -75 1 9.548 4.608 7.212 -76 1 1.569 14.634 -9.610 -77 1 10.195 11.748 -9.173 -78 1 -2.445 -0.868 -1.851 -79 1 3.363 14.436 17.327 -80 1 -9.361 -8.199 -8.802 -81 1 7.648 11.683 -2.730 -82 1 9.290 11.765 15.287 -83 1 7.602 9.009 -10.783 -84 1 3.872 17.964 16.202 -85 1 4.223 4.480 -10.473 -86 1 -15.710 -5.670 4.409 -87 1 -4.190 4.614 4.023 -88 1 -11.895 -15.994 7.320 -89 1 -3.244 -9.828 4.747 -90 1 6.219 -14.025 -15.760 -91 1 -8.825 0.534 7.056 -92 1 10.930 6.216 -7.487 -93 1 7.918 -15.933 4.053 -94 1 -0.212 -14.259 2.649 -95 1 -7.319 5.641 -17.348 -96 1 -1.909 -17.793 -10.257 -97 1 16.812 5.985 -0.187 -98 1 -6.556 -17.863 -5.949 -99 1 -6.838 -17.970 -2.424 -100 1 14.150 -3.042 3.557 -101 1 11.453 1.782 -13.383 -102 1 10.693 6.888 15.174 -103 1 11.231 -16.928 -13.846 -104 1 1.742 -12.381 -14.390 -105 1 -6.379 -14.717 -15.714 -106 1 -5.222 -11.577 10.699 -107 1 0.937 -2.953 11.441 -108 1 -13.281 6.258 4.983 -109 1 -3.150 -6.560 -1.167 -110 1 4.028 -1.120 17.898 -111 1 -3.800 -16.686 -12.815 -112 1 -12.219 -0.939 11.849 -113 1 16.239 -8.181 17.562 -114 1 11.204 -11.247 15.291 -115 1 -11.972 11.838 -1.635 -116 1 17.688 -11.480 5.600 -117 1 -6.866 -16.026 3.121 -118 1 -13.238 15.458 -1.281 -119 1 -14.808 2.940 14.313 -120 1 -2.984 -16.657 8.602 -121 1 2.778 10.172 14.235 -122 1 14.491 -11.558 4.327 -123 1 -10.207 -12.179 -11.977 -124 1 -10.712 1.768 -0.470 -125 1 -2.798 -13.082 5.891 -126 1 17.410 -4.694 -3.529 -127 1 -12.860 1.879 2.664 -128 1 3.717 -9.439 4.751 -129 1 -9.824 -2.909 7.184 -130 1 -0.842 10.481 14.052 -131 1 -13.366 -9.474 -13.872 -132 1 -16.067 -11.736 -16.613 -133 1 -17.308 12.981 8.035 -134 1 -17.477 13.555 0.522 -135 1 13.477 13.089 3.676 -136 1 6.030 -14.214 14.760 -137 1 -7.292 -2.563 -8.077 -138 1 14.076 -14.460 14.817 -139 1 6.476 4.460 4.185 -140 1 -11.498 14.862 10.664 -141 1 -10.191 -14.671 -5.456 -142 1 9.164 14.920 -9.622 -143 1 7.610 -4.755 -1.494 -144 1 -7.524 16.786 7.045 -145 1 -3.310 2.603 0.314 -146 1 7.456 -2.634 -11.428 -147 1 5.281 -13.970 10.507 -148 1 -8.814 1.408 -7.576 -149 1 -1.305 15.245 -6.009 -150 1 0.917 16.480 5.968 -151 1 -4.917 -17.372 5.819 -152 1 7.632 -8.404 -15.292 -153 1 12.713 -14.210 5.103 -154 1 -3.312 -1.569 3.056 -155 1 10.495 -8.064 13.353 -156 1 9.737 16.824 3.134 -157 1 -3.639 -1.493 15.168 -158 1 3.318 10.072 -2.545 -159 1 15.174 -10.356 -7.669 -160 1 -9.852 -5.804 -15.531 -161 1 12.681 10.075 -1.889 -162 1 -13.426 0.102 7.114 -163 1 -14.462 10.842 3.644 -164 1 -12.796 8.227 11.618 -165 1 11.402 9.955 2.266 -166 1 -13.942 -10.318 5.908 -167 1 -6.941 -2.135 12.079 -168 1 -4.115 -13.033 -8.109 -169 1 -2.539 13.063 -15.054 -170 1 4.365 9.865 -9.360 -171 1 13.752 1.732 -17.720 -172 1 14.277 -1.816 8.953 -173 1 5.016 8.696 5.829 -174 1 -3.409 -10.356 -1.880 -175 1 7.875 15.511 5.845 -176 1 2.815 -16.677 3.538 -177 1 14.820 -14.950 10.461 -178 1 -6.091 -16.978 -10.011 -179 1 -7.128 3.250 1.474 -180 1 -2.114 7.689 -17.726 -181 1 15.376 5.874 -7.340 -182 1 12.000 5.998 -11.885 -183 1 7.911 -0.023 -6.805 -184 1 11.908 6.658 -16.559 -185 1 -15.012 15.403 2.788 -186 1 -0.778 -4.086 -5.989 -187 1 -15.207 -13.467 -4.921 -188 1 -5.359 11.179 -1.495 -189 1 -10.155 11.898 5.361 -190 1 -5.189 17.355 -17.055 -191 1 -7.717 10.935 1.766 -192 1 -17.166 -6.773 -10.641 -193 1 -1.098 -6.721 7.843 -194 1 -8.622 4.160 15.730 -195 1 -17.057 7.423 11.978 -196 1 -14.594 2.390 9.738 -197 1 14.480 -11.791 16.749 -198 1 7.647 -0.378 3.609 -199 1 -6.128 -11.720 -13.069 -200 1 -5.079 -13.955 1.194 diff --git a/illustration/Equation-of-state/lammps_tau5.89/input.lmp b/illustration/Equation-of-state/lammps_tau5.89/input.lmp deleted file mode 100644 index 44f7ad7..0000000 --- a/illustration/Equation-of-state/lammps_tau5.89/input.lmp +++ /dev/null @@ -1,42 +0,0 @@ -# LAMMPS input file - -include variable.lammps - -units real -dimension 3 -atom_style atomic -pair_style lj/cut ${cut_off} -boundary p p p - -read_data initial.data -include PARM.lammps - -neigh_modify every ${neighbor} - -velocity all create ${temp} 4928459 -fix mymc all gcmc 1 0 1 1 29494 ${temp} -0.5 ${displace_mc} - -thermo ${thermo} -dump mydmp all custom ${dump} dump.lammpstrj id type x y z vx vy vz - -variable Ecoul equal ecoul -variable Evdwl equal evdwl -variable Epot equal pe -variable Ekin equal ke -variable Etot equal v_Epot+v_Ekin -variable volume equal vol -variable pressure equal press -variable temperature equal temp -variable mass equal mass(all) -variable density equal v_mass/v_volume/6.022e23*(1e8)^3 # g/cm3 -fix myat1 all ave/time ${thermo} 1 ${thermo} v_Epot file Epot.dat -fix myat2 all ave/time ${thermo} 1 ${thermo} v_Ekin file Ekin.dat -fix myat3 all ave/time ${thermo} 1 ${thermo} v_Etot file Etot.dat -fix myat4 all ave/time ${thermo} 1 ${thermo} v_Ecoul file Ecoul.dat -fix myat5 all ave/time ${thermo} 1 ${thermo} v_Evdwl file Evdwl.dat -fix myat6 all ave/time ${thermo} 1 ${thermo} v_pressure file pressure.dat -fix myat7 all ave/time ${thermo} 1 ${thermo} v_temperature file temperature.dat -fix myat8 all ave/time ${thermo} 1 ${thermo} v_volume file volume.dat -fix myat9 all ave/time ${thermo} 1 ${thermo} v_density file density.dat - -run ${maximum_steps} diff --git a/illustration/Equation-of-state/lammps_tau5.89/pressure.dat b/illustration/Equation-of-state/lammps_tau5.89/pressure.dat deleted file mode 100644 index ae45f6c..0000000 --- a/illustration/Equation-of-state/lammps_tau5.89/pressure.dat +++ /dev/null @@ -1,23 +0,0 @@ -# Time-averaged data for fix myat6 -# TimeStep v_pressure -0 189.967 -1000 194.545 -2000 223.613 -3000 167.886 -4000 199.59 -5000 200.779 -6000 172.581 -7000 197.234 -8000 194.439 -9000 222.09 -10000 177.129 -11000 192.541 -12000 188.14 -13000 207.898 -14000 205.857 -15000 178.066 -16000 229.635 -17000 247.609 -18000 195.379 -19000 215.599 -20000 136.818 diff --git a/illustration/Equation-of-state/lammps_tau5.89/variable.lammps b/illustration/Equation-of-state/lammps_tau5.89/variable.lammps deleted file mode 100644 index 9dbced8..0000000 --- a/illustration/Equation-of-state/lammps_tau5.89/variable.lammps +++ /dev/null @@ -1,10 +0,0 @@ -# LAMMPS variable file - -variable neighbor equal 50 -variable thermo equal 1000 -variable dump equal 1000 -variable cut_off equal 8.512537251830942 -variable displace_mc equal 0.6810029801464753 -variable maximum_steps equal 20000 -variable temp equal 328.15 - diff --git a/illustration/Equation-of-state/lammps_tau7.62/Epot.dat b/illustration/Equation-of-state/lammps_tau7.62/Epot.dat deleted file mode 100644 index 4753127..0000000 --- a/illustration/Equation-of-state/lammps_tau7.62/Epot.dat +++ /dev/null @@ -1,23 +0,0 @@ -# Time-averaged data for fix myat1 -# TimeStep v_Epot -0 -38.6304 -1000 -42.8812 -2000 -43.3765 -3000 -42.3626 -4000 -40.9832 -5000 -42.6041 -6000 -37.9886 -7000 -42.6507 -8000 -38.525 -9000 -40.417 -10000 -38.3292 -11000 -36.0102 -12000 -42.7872 -13000 -41.4752 -14000 -40.2143 -15000 -37.9847 -16000 -41.8471 -17000 -38.2668 -18000 -41.096 -19000 -41.227 -20000 -38.2318 diff --git a/illustration/Equation-of-state/lammps_tau7.62/PARM.lammps b/illustration/Equation-of-state/lammps_tau7.62/PARM.lammps deleted file mode 100644 index 8001a35..0000000 --- a/illustration/Equation-of-state/lammps_tau7.62/PARM.lammps +++ /dev/null @@ -1,6 +0,0 @@ -# LAMMPS parameter file - -mass 1 39.948 - -pair_coeff 1 1 0.237987582014826 3.4050149007323767 - diff --git a/illustration/Equation-of-state/lammps_tau7.62/initial.data b/illustration/Equation-of-state/lammps_tau7.62/initial.data deleted file mode 100644 index 43215f2..0000000 --- a/illustration/Equation-of-state/lammps_tau7.62/initial.data +++ /dev/null @@ -1,211 +0,0 @@ -# LAMMPS data file - -200 atoms -1 atom types - --19.592 19.592 xlo xhi --19.592 19.592 ylo yhi --19.592 19.592 zlo zhi - -Atoms - -1 1 -15.421 -12.614 6.132 -2 1 16.173 17.278 11.919 -3 1 6.434 -16.771 -0.034 -4 1 -9.798 4.946 13.089 -5 1 17.920 -11.332 14.459 -6 1 -16.878 -3.259 -0.388 -7 1 -2.511 2.871 -12.353 -8 1 0.241 7.191 16.135 -9 1 -12.168 3.771 5.053 -10 1 -8.522 5.486 6.658 -11 1 17.583 -6.699 12.627 -12 1 10.448 -16.488 13.826 -13 1 6.652 16.831 -9.435 -14 1 -7.725 -9.117 -7.025 -15 1 13.015 -12.879 9.341 -16 1 -10.487 15.474 -0.790 -17 1 0.160 -2.222 1.020 -18 1 13.150 17.213 -16.301 -19 1 -4.233 13.931 1.734 -20 1 -17.051 -13.399 -12.729 -21 1 -18.784 -7.453 8.445 -22 1 -4.810 4.720 12.500 -23 1 19.091 -1.429 -11.688 -24 1 -16.102 -13.350 1.762 -25 1 -18.670 -9.129 -8.677 -26 1 -6.412 17.454 11.479 -27 1 12.811 -8.538 13.847 -28 1 0.572 -19.369 0.627 -29 1 11.745 13.955 6.922 -30 1 -14.126 -13.947 -10.186 -31 1 19.358 -14.706 2.914 -32 1 17.175 9.739 17.602 -33 1 -16.705 16.919 -11.888 -34 1 10.113 8.241 -6.765 -35 1 -17.677 7.623 -11.707 -36 1 -18.417 -18.470 4.506 -37 1 17.351 8.010 -16.216 -38 1 4.016 19.371 -16.330 -39 1 18.001 5.066 -12.549 -40 1 9.209 2.728 -10.924 -41 1 -13.843 -11.371 -6.840 -42 1 1.491 -11.531 15.932 -43 1 3.377 0.264 14.429 -44 1 -4.443 -16.514 -5.962 -45 1 -8.402 16.957 -13.851 -46 1 16.381 3.605 -15.810 -47 1 -1.930 -13.777 -11.950 -48 1 -16.215 16.669 16.559 -49 1 -4.012 -13.714 7.275 -50 1 11.451 -1.501 -16.052 -51 1 7.492 11.116 -7.013 -52 1 13.379 2.827 -11.965 -53 1 3.996 -5.248 -8.954 -54 1 -13.388 15.217 -15.294 -55 1 -11.261 -18.081 -13.192 -56 1 3.060 19.338 9.626 -57 1 -0.167 -2.806 -11.266 -58 1 -1.020 -5.180 3.866 -59 1 1.558 16.097 1.853 -60 1 -8.279 -12.620 6.202 -61 1 -9.063 7.914 0.971 -62 1 -8.535 14.720 -3.113 -63 1 -1.602 -16.702 -3.195 -64 1 15.814 -18.898 -19.532 -65 1 1.093 -12.754 0.167 -66 1 -5.465 -19.141 9.544 -67 1 7.327 5.787 -8.680 -68 1 9.716 14.046 -1.467 -69 1 16.126 13.706 14.817 -70 1 -6.746 -8.430 -19.567 -71 1 -5.902 4.564 -3.865 -72 1 10.337 -7.248 -3.418 -73 1 -16.471 -11.512 -8.984 -74 1 -19.432 -11.259 -5.137 -75 1 10.231 4.552 8.032 -76 1 1.604 16.426 -10.577 -77 1 13.110 13.639 -9.902 -78 1 -1.697 -1.030 -2.474 -79 1 4.526 13.914 -19.398 -80 1 -10.538 -8.417 -10.066 -81 1 8.869 10.850 -1.795 -82 1 10.933 12.735 15.777 -83 1 7.833 11.195 -11.317 -84 1 4.628 -18.927 18.581 -85 1 3.342 5.063 -11.827 -86 1 -16.841 -5.252 4.946 -87 1 -4.036 5.322 3.080 -88 1 -11.792 -17.668 9.105 -89 1 -4.772 -10.900 5.253 -90 1 6.879 -15.745 -15.965 -91 1 -10.714 1.203 7.486 -92 1 12.068 5.998 -9.309 -93 1 8.158 -18.406 5.311 -94 1 -0.226 -13.548 3.122 -95 1 -7.334 5.977 -18.438 -96 1 -2.996 18.792 -10.873 -97 1 17.864 7.222 -0.161 -98 1 -7.127 -18.769 -7.106 -99 1 -6.295 -17.022 -2.514 -100 1 15.467 -2.031 4.355 -101 1 10.902 2.612 -14.965 -102 1 11.838 7.118 15.081 -103 1 11.640 -18.927 -13.772 -104 1 2.771 -13.016 -16.316 -105 1 -9.371 -17.414 -18.271 -106 1 -4.481 -11.725 12.097 -107 1 1.524 -2.531 13.165 -108 1 -15.756 6.356 5.604 -109 1 -3.872 -8.329 -1.286 -110 1 4.678 -1.262 -19.559 -111 1 -4.903 -19.573 -13.829 -112 1 -12.732 -2.116 12.835 -113 1 17.187 -8.842 18.921 -114 1 13.969 -13.205 13.976 -115 1 -13.565 13.137 -2.861 -116 1 18.222 -12.642 6.602 -117 1 -8.016 -17.596 4.739 -118 1 -14.387 15.189 -0.444 -119 1 -15.074 4.407 15.326 -120 1 -2.284 -18.322 8.983 -121 1 2.968 11.119 16.077 -122 1 16.373 -15.658 5.725 -123 1 -10.953 -14.465 -12.141 -124 1 -13.325 5.061 1.481 -125 1 -2.511 -15.382 4.871 -126 1 19.344 -5.216 -3.681 -127 1 -11.485 -0.452 2.661 -128 1 4.801 -10.493 4.119 -129 1 -11.554 -4.073 8.159 -130 1 0.030 13.024 16.290 -131 1 -13.062 -10.509 -11.860 -132 1 -18.757 -11.099 -18.776 -133 1 -17.939 14.356 9.715 -134 1 19.299 14.008 -0.026 -135 1 14.274 14.080 3.099 -136 1 6.617 -15.439 15.694 -137 1 -7.405 -2.752 -10.109 -138 1 14.300 -16.240 16.754 -139 1 7.245 4.158 4.429 -140 1 -11.712 15.711 12.057 -141 1 -11.688 -15.726 -6.377 -142 1 10.621 16.034 -10.528 -143 1 7.736 -5.228 -1.801 -144 1 -7.866 18.358 7.832 -145 1 -4.545 1.982 -0.006 -146 1 8.045 -3.342 -13.288 -147 1 8.881 -13.226 10.689 -148 1 -9.705 1.041 -8.418 -149 1 -1.293 16.479 -5.448 -150 1 1.596 18.379 5.595 -151 1 -5.159 -17.188 6.236 -152 1 6.410 -9.882 -16.545 -153 1 11.993 -15.451 6.162 -154 1 -3.866 -1.456 3.741 -155 1 10.642 -11.783 17.219 -156 1 8.759 17.794 3.447 -157 1 -4.785 -2.754 16.305 -158 1 4.868 12.157 -1.915 -159 1 16.441 -9.695 -8.469 -160 1 -10.765 -5.233 -16.387 -161 1 13.832 11.315 -3.135 -162 1 -15.348 1.494 7.939 -163 1 -13.986 11.941 2.580 -164 1 -13.998 8.846 11.128 -165 1 9.658 11.840 1.988 -166 1 -16.429 -8.877 4.273 -167 1 -7.681 -2.251 13.460 -168 1 -4.188 -15.069 -9.999 -169 1 -3.927 14.675 -15.937 -170 1 5.375 12.536 -9.322 -171 1 15.201 1.807 -18.559 -172 1 14.520 -2.528 9.170 -173 1 6.226 9.393 6.299 -174 1 -4.318 -11.726 -3.084 -175 1 9.500 16.355 6.198 -176 1 4.126 -18.169 4.406 -177 1 16.728 -15.648 11.663 -178 1 -7.242 -19.479 -11.159 -179 1 -8.143 4.167 3.553 -180 1 -2.160 9.796 -19.057 -181 1 16.452 6.103 -9.079 -182 1 13.032 8.524 -14.109 -183 1 9.858 -0.173 -8.251 -184 1 10.376 6.536 -15.309 -185 1 -17.214 17.633 3.281 -186 1 -0.671 -4.504 -6.259 -187 1 -16.629 -13.906 -5.323 -188 1 -6.957 11.842 -1.366 -189 1 -11.274 13.547 5.247 -190 1 -6.915 18.427 -17.957 -191 1 -6.921 10.974 2.831 -192 1 -18.395 -7.812 -11.673 -193 1 -0.722 -7.188 9.232 -194 1 -8.436 3.519 18.129 -195 1 -19.438 8.668 13.007 -196 1 -14.338 1.738 11.520 -197 1 16.390 -13.526 17.212 -198 1 8.141 -0.904 3.034 -199 1 -6.978 -12.999 -14.466 -200 1 -5.051 -15.281 1.156 diff --git a/illustration/Equation-of-state/lammps_tau7.62/input.lmp b/illustration/Equation-of-state/lammps_tau7.62/input.lmp deleted file mode 100644 index 44f7ad7..0000000 --- a/illustration/Equation-of-state/lammps_tau7.62/input.lmp +++ /dev/null @@ -1,42 +0,0 @@ -# LAMMPS input file - -include variable.lammps - -units real -dimension 3 -atom_style atomic -pair_style lj/cut ${cut_off} -boundary p p p - -read_data initial.data -include PARM.lammps - -neigh_modify every ${neighbor} - -velocity all create ${temp} 4928459 -fix mymc all gcmc 1 0 1 1 29494 ${temp} -0.5 ${displace_mc} - -thermo ${thermo} -dump mydmp all custom ${dump} dump.lammpstrj id type x y z vx vy vz - -variable Ecoul equal ecoul -variable Evdwl equal evdwl -variable Epot equal pe -variable Ekin equal ke -variable Etot equal v_Epot+v_Ekin -variable volume equal vol -variable pressure equal press -variable temperature equal temp -variable mass equal mass(all) -variable density equal v_mass/v_volume/6.022e23*(1e8)^3 # g/cm3 -fix myat1 all ave/time ${thermo} 1 ${thermo} v_Epot file Epot.dat -fix myat2 all ave/time ${thermo} 1 ${thermo} v_Ekin file Ekin.dat -fix myat3 all ave/time ${thermo} 1 ${thermo} v_Etot file Etot.dat -fix myat4 all ave/time ${thermo} 1 ${thermo} v_Ecoul file Ecoul.dat -fix myat5 all ave/time ${thermo} 1 ${thermo} v_Evdwl file Evdwl.dat -fix myat6 all ave/time ${thermo} 1 ${thermo} v_pressure file pressure.dat -fix myat7 all ave/time ${thermo} 1 ${thermo} v_temperature file temperature.dat -fix myat8 all ave/time ${thermo} 1 ${thermo} v_volume file volume.dat -fix myat9 all ave/time ${thermo} 1 ${thermo} v_density file density.dat - -run ${maximum_steps} diff --git a/illustration/Equation-of-state/lammps_tau7.62/pressure.dat b/illustration/Equation-of-state/lammps_tau7.62/pressure.dat deleted file mode 100644 index f696364..0000000 --- a/illustration/Equation-of-state/lammps_tau7.62/pressure.dat +++ /dev/null @@ -1,23 +0,0 @@ -# Time-averaged data for fix myat6 -# TimeStep v_pressure -0 167.23 -1000 152.369 -2000 147.142 -3000 154.514 -4000 161.693 -5000 146.838 -6000 162.123 -7000 125.168 -8000 155.301 -9000 133.636 -10000 170.152 -11000 173.394 -12000 133.441 -13000 154.758 -14000 144.279 -15000 160.186 -16000 134.903 -17000 158.447 -18000 140.221 -19000 144 -20000 157.959 diff --git a/illustration/Equation-of-state/lammps_tau7.62/variable.lammps b/illustration/Equation-of-state/lammps_tau7.62/variable.lammps deleted file mode 100644 index 9dbced8..0000000 --- a/illustration/Equation-of-state/lammps_tau7.62/variable.lammps +++ /dev/null @@ -1,10 +0,0 @@ -# LAMMPS variable file - -variable neighbor equal 50 -variable thermo equal 1000 -variable dump equal 1000 -variable cut_off equal 8.512537251830942 -variable displace_mc equal 0.6810029801464753 -variable maximum_steps equal 20000 -variable temp equal 328.15 - diff --git a/illustration/Equation-of-state/literature-data/excess-energy.png b/illustration/Equation-of-state/literature-data/excess-energy.png deleted file mode 100644 index 30030e3..0000000 Binary files a/illustration/Equation-of-state/literature-data/excess-energy.png and /dev/null differ diff --git a/illustration/Equation-of-state/literature-data/pv-nrt.png b/illustration/Equation-of-state/literature-data/pv-nrt.png deleted file mode 100644 index 1e32e16..0000000 Binary files a/illustration/Equation-of-state/literature-data/pv-nrt.png and /dev/null differ diff --git a/illustration/Equation-of-state/outputs_tau0.75/Epot.dat b/illustration/Equation-of-state/outputs_tau0.75/Epot.dat deleted file mode 100644 index f73bdf6..0000000 --- a/illustration/Equation-of-state/outputs_tau0.75/Epot.dat +++ /dev/null @@ -1,21 +0,0 @@ -0 -11.347 -1000 56.304 -2000 87.738 -3000 102.595 -4000 108.118 -5000 116.078 -6000 114.447 -7000 120.231 -8000 110.998 -9000 105.135 -10000 97.336 -11000 109.455 -12000 125.138 -13000 122.890 -14000 112.538 -15000 98.695 -16000 108.985 -17000 126.378 -18000 147.055 -19000 117.497 -20000 125.119 diff --git a/illustration/Equation-of-state/outputs_tau0.75/pressure.dat b/illustration/Equation-of-state/outputs_tau0.75/pressure.dat deleted file mode 100644 index 1a21348..0000000 --- a/illustration/Equation-of-state/outputs_tau0.75/pressure.dat +++ /dev/null @@ -1,21 +0,0 @@ -0 30592.707 -1000 34143.012 -2000 35802.062 -3000 36574.989 -4000 36868.989 -5000 37264.267 -6000 37157.673 -7000 37420.811 -8000 36963.542 -9000 36683.269 -10000 36281.089 -11000 36912.517 -12000 37702.108 -13000 37572.211 -14000 37025.843 -15000 36291.860 -16000 36800.997 -17000 37739.428 -18000 38785.370 -19000 37262.805 -20000 37726.371 diff --git a/illustration/Equation-of-state/outputs_tau0.97/Epot.dat b/illustration/Equation-of-state/outputs_tau0.97/Epot.dat deleted file mode 100644 index 12d9e18..0000000 --- a/illustration/Equation-of-state/outputs_tau0.97/Epot.dat +++ /dev/null @@ -1,21 +0,0 @@ -0 -298.922 -1000 -213.298 -2000 -178.755 -3000 -180.142 -4000 -169.811 -5000 -162.372 -6000 -165.959 -7000 -153.126 -8000 -166.303 -9000 -169.558 -10000 -156.051 -11000 -157.261 -12000 -158.473 -13000 -160.370 -14000 -172.317 -15000 -178.548 -16000 -169.023 -17000 -170.959 -18000 -170.331 -19000 -168.365 -20000 -164.937 diff --git a/illustration/Equation-of-state/outputs_tau0.97/pressure.dat b/illustration/Equation-of-state/outputs_tau0.97/pressure.dat deleted file mode 100644 index 5623251..0000000 --- a/illustration/Equation-of-state/outputs_tau0.97/pressure.dat +++ /dev/null @@ -1,21 +0,0 @@ -0 4174.921 -1000 8015.293 -2000 9617.876 -3000 9490.513 -4000 9908.923 -5000 10285.751 -6000 10080.407 -7000 10588.566 -8000 10042.897 -9000 9850.041 -10000 10428.247 -11000 10399.755 -12000 10295.491 -13000 10267.357 -14000 9736.549 -15000 9484.195 -16000 9889.936 -17000 9811.134 -18000 9838.909 -19000 9916.863 -20000 10117.616 diff --git a/illustration/Equation-of-state/outputs_tau1.25/Epot.dat b/illustration/Equation-of-state/outputs_tau1.25/Epot.dat deleted file mode 100644 index 648efa6..0000000 --- a/illustration/Equation-of-state/outputs_tau1.25/Epot.dat +++ /dev/null @@ -1,21 +0,0 @@ -0 -285.040 -1000 -215.544 -2000 -195.357 -3000 -201.221 -4000 -194.619 -5000 -189.086 -6000 -189.268 -7000 -180.977 -8000 -181.135 -9000 -191.871 -10000 -192.686 -11000 -186.545 -12000 -188.647 -13000 -185.250 -14000 -187.552 -15000 -177.516 -16000 -187.811 -17000 -178.379 -18000 -193.761 -19000 -194.960 -20000 -187.004 diff --git a/illustration/Equation-of-state/outputs_tau1.25/pressure.dat b/illustration/Equation-of-state/outputs_tau1.25/pressure.dat deleted file mode 100644 index b5397a0..0000000 --- a/illustration/Equation-of-state/outputs_tau1.25/pressure.dat +++ /dev/null @@ -1,21 +0,0 @@ -0 -94.319 -1000 2589.936 -2000 3320.026 -3000 3145.603 -4000 3352.271 -5000 3560.041 -6000 3436.576 -7000 3733.474 -8000 3717.857 -9000 3277.037 -10000 3209.861 -11000 3451.660 -12000 3350.942 -13000 3466.010 -14000 3378.598 -15000 3681.751 -16000 3350.838 -17000 3659.803 -18000 3081.899 -19000 3047.031 -20000 3344.230 diff --git a/illustration/Equation-of-state/outputs_tau1.62/Epot.dat b/illustration/Equation-of-state/outputs_tau1.62/Epot.dat deleted file mode 100644 index 4c7ae0c..0000000 --- a/illustration/Equation-of-state/outputs_tau1.62/Epot.dat +++ /dev/null @@ -1,21 +0,0 @@ -0 -240.034 -1000 -179.461 -2000 -165.591 -3000 -172.311 -4000 -165.732 -5000 -166.820 -6000 -158.566 -7000 -151.824 -8000 -156.452 -9000 -163.348 -10000 -159.097 -11000 -155.317 -12000 -150.949 -13000 -153.773 -14000 -156.843 -15000 -164.470 -16000 -167.678 -17000 -153.078 -18000 -157.212 -19000 -152.886 -20000 -161.681 diff --git a/illustration/Equation-of-state/outputs_tau1.62/pressure.dat b/illustration/Equation-of-state/outputs_tau1.62/pressure.dat deleted file mode 100644 index ea64c9b..0000000 --- a/illustration/Equation-of-state/outputs_tau1.62/pressure.dat +++ /dev/null @@ -1,21 +0,0 @@ -0 -124.417 -1000 1661.882 -2000 1935.159 -3000 1702.488 -4000 1805.863 -5000 1767.141 -6000 1834.398 -7000 1979.234 -8000 1830.287 -9000 1617.358 -10000 1768.480 -11000 1774.951 -12000 1906.148 -13000 1782.984 -14000 1676.180 -15000 1419.323 -16000 1257.706 -17000 1671.611 -18000 1529.505 -19000 1615.477 -20000 1366.916 diff --git a/illustration/Equation-of-state/outputs_tau2.1/Epot.dat b/illustration/Equation-of-state/outputs_tau2.1/Epot.dat deleted file mode 100644 index b60c343..0000000 --- a/illustration/Equation-of-state/outputs_tau2.1/Epot.dat +++ /dev/null @@ -1,21 +0,0 @@ -0 -208.863 -1000 -158.635 -2000 -135.832 -3000 -134.988 -4000 -137.375 -5000 -131.605 -6000 -138.863 -7000 -130.644 -8000 -132.729 -9000 -134.787 -10000 -132.361 -11000 -129.219 -12000 -130.226 -13000 -130.966 -14000 -127.384 -15000 -126.879 -16000 -131.747 -17000 -129.885 -18000 -138.555 -19000 -129.289 -20000 -129.119 diff --git a/illustration/Equation-of-state/outputs_tau2.1/pressure.dat b/illustration/Equation-of-state/outputs_tau2.1/pressure.dat deleted file mode 100644 index 76880df..0000000 --- a/illustration/Equation-of-state/outputs_tau2.1/pressure.dat +++ /dev/null @@ -1,21 +0,0 @@ -0 122.015 -1000 1193.268 -2000 1544.628 -3000 1440.260 -4000 1256.246 -5000 1364.955 -6000 1133.486 -7000 1306.209 -8000 1138.319 -9000 1025.128 -10000 1055.239 -11000 1112.181 -12000 1044.880 -13000 1014.296 -14000 1071.196 -15000 1004.749 -16000 874.632 -17000 874.264 -18000 713.497 -19000 964.317 -20000 932.414 diff --git a/illustration/Equation-of-state/outputs_tau2.72/Epot.dat b/illustration/Equation-of-state/outputs_tau2.72/Epot.dat deleted file mode 100644 index 6691634..0000000 --- a/illustration/Equation-of-state/outputs_tau2.72/Epot.dat +++ /dev/null @@ -1,21 +0,0 @@ -0 -178.058 -1000 -131.353 -2000 -117.797 -3000 -119.140 -4000 -112.510 -5000 -108.457 -6000 -107.357 -7000 -102.548 -8000 -101.910 -9000 -109.813 -10000 -102.762 -11000 -100.442 -12000 -110.835 -13000 -110.536 -14000 -108.844 -15000 -112.030 -16000 -111.156 -17000 -107.473 -18000 -109.230 -19000 -103.227 -20000 -96.124 diff --git a/illustration/Equation-of-state/outputs_tau2.72/pressure.dat b/illustration/Equation-of-state/outputs_tau2.72/pressure.dat deleted file mode 100644 index 6e288ed..0000000 --- a/illustration/Equation-of-state/outputs_tau2.72/pressure.dat +++ /dev/null @@ -1,21 +0,0 @@ -0 169.799 -1000 903.381 -2000 1016.764 -3000 906.245 -4000 901.598 -5000 953.433 -6000 952.237 -7000 1001.757 -8000 921.580 -9000 732.190 -10000 826.813 -11000 820.766 -12000 646.898 -13000 641.180 -14000 628.409 -15000 549.161 -16000 530.246 -17000 590.367 -18000 531.602 -19000 637.326 -20000 706.851 diff --git a/illustration/Equation-of-state/outputs_tau3.52/Epot.dat b/illustration/Equation-of-state/outputs_tau3.52/Epot.dat deleted file mode 100644 index 27b6f61..0000000 --- a/illustration/Equation-of-state/outputs_tau3.52/Epot.dat +++ /dev/null @@ -1,21 +0,0 @@ -0 -152.338 -1000 -112.968 -2000 -96.872 -3000 -99.609 -4000 -95.994 -5000 -93.775 -6000 -86.407 -7000 -82.520 -8000 -88.819 -9000 -95.867 -10000 -93.753 -11000 -91.415 -12000 -85.890 -13000 -85.282 -14000 -86.740 -15000 -83.587 -16000 -86.423 -17000 -80.854 -18000 -87.444 -19000 -84.636 -20000 -86.483 diff --git a/illustration/Equation-of-state/outputs_tau3.52/pressure.dat b/illustration/Equation-of-state/outputs_tau3.52/pressure.dat deleted file mode 100644 index 74e2286..0000000 --- a/illustration/Equation-of-state/outputs_tau3.52/pressure.dat +++ /dev/null @@ -1,21 +0,0 @@ -0 187.610 -1000 650.322 -2000 751.668 -3000 597.715 -4000 569.684 -5000 577.299 -6000 658.896 -7000 655.649 -8000 548.942 -9000 419.353 -10000 445.974 -11000 459.483 -12000 518.273 -13000 495.497 -14000 475.547 -15000 475.689 -16000 407.039 -17000 435.049 -18000 341.826 -19000 358.580 -20000 316.282 diff --git a/illustration/Equation-of-state/outputs_tau4.55/Epot.dat b/illustration/Equation-of-state/outputs_tau4.55/Epot.dat deleted file mode 100644 index 0290c51..0000000 --- a/illustration/Equation-of-state/outputs_tau4.55/Epot.dat +++ /dev/null @@ -1,21 +0,0 @@ -0 -128.926 -1000 -87.958 -2000 -86.310 -3000 -84.536 -4000 -83.193 -5000 -79.850 -6000 -78.480 -7000 -73.219 -8000 -74.218 -9000 -78.601 -10000 -68.131 -11000 -72.805 -12000 -71.293 -13000 -66.350 -14000 -74.323 -15000 -70.737 -16000 -71.307 -17000 -67.650 -18000 -68.388 -19000 -67.113 -20000 -66.264 diff --git a/illustration/Equation-of-state/outputs_tau4.55/pressure.dat b/illustration/Equation-of-state/outputs_tau4.55/pressure.dat deleted file mode 100644 index b3bd230..0000000 --- a/illustration/Equation-of-state/outputs_tau4.55/pressure.dat +++ /dev/null @@ -1,21 +0,0 @@ -0 167.602 -1000 538.480 -2000 446.426 -3000 387.650 -4000 332.085 -5000 350.723 -6000 366.763 -7000 357.741 -8000 321.841 -9000 266.222 -10000 354.172 -11000 316.174 -12000 330.409 -13000 366.812 -14000 278.997 -15000 300.457 -16000 274.914 -17000 277.317 -18000 282.140 -19000 270.674 -20000 258.930 diff --git a/illustration/Equation-of-state/outputs_tau5.89/Epot.dat b/illustration/Equation-of-state/outputs_tau5.89/Epot.dat deleted file mode 100644 index 82227a8..0000000 --- a/illustration/Equation-of-state/outputs_tau5.89/Epot.dat +++ /dev/null @@ -1,21 +0,0 @@ -0 -109.274 -1000 -72.888 -2000 -64.284 -3000 -65.122 -4000 -67.966 -5000 -65.207 -6000 -59.589 -7000 -53.986 -8000 -60.422 -9000 -64.468 -10000 -56.223 -11000 -57.525 -12000 -48.680 -13000 -54.975 -14000 -57.845 -15000 -56.120 -16000 -51.925 -17000 -50.803 -18000 -51.659 -19000 -52.761 -20000 -51.513 diff --git a/illustration/Equation-of-state/outputs_tau5.89/pressure.dat b/illustration/Equation-of-state/outputs_tau5.89/pressure.dat deleted file mode 100644 index 6101bc9..0000000 --- a/illustration/Equation-of-state/outputs_tau5.89/pressure.dat +++ /dev/null @@ -1,21 +0,0 @@ -0 152.720 -1000 373.280 -2000 360.497 -3000 296.236 -4000 232.235 -5000 250.413 -6000 287.347 -7000 306.686 -8000 227.374 -9000 178.137 -10000 222.357 -11000 209.771 -12000 284.470 -13000 237.147 -14000 214.392 -15000 200.679 -16000 238.069 -17000 223.507 -18000 218.592 -19000 192.753 -20000 189.984 diff --git a/illustration/Equation-of-state/outputs_tau7.62/Epot.dat b/illustration/Equation-of-state/outputs_tau7.62/Epot.dat deleted file mode 100644 index 56fc4e8..0000000 --- a/illustration/Equation-of-state/outputs_tau7.62/Epot.dat +++ /dev/null @@ -1,21 +0,0 @@ -0 -92.919 -1000 -60.064 -2000 -61.413 -3000 -57.050 -4000 -58.870 -5000 -49.704 -6000 -48.341 -7000 -45.899 -8000 -47.944 -9000 -50.911 -10000 -43.185 -11000 -44.825 -12000 -47.152 -13000 -44.602 -14000 -42.426 -15000 -43.605 -16000 -39.916 -17000 -33.102 -18000 -38.112 -19000 -36.952 -20000 -38.639 diff --git a/illustration/Equation-of-state/outputs_tau7.62/pressure.dat b/illustration/Equation-of-state/outputs_tau7.62/pressure.dat deleted file mode 100644 index 9e6bfd9..0000000 --- a/illustration/Equation-of-state/outputs_tau7.62/pressure.dat +++ /dev/null @@ -1,21 +0,0 @@ -0 122.090 -1000 274.464 -2000 213.749 -3000 203.344 -4000 159.089 -5000 221.182 -6000 224.392 -7000 216.742 -8000 177.982 -9000 153.777 -10000 190.712 -11000 174.036 -12000 158.216 -13000 166.910 -14000 167.320 -15000 157.585 -16000 183.672 -17000 218.345 -18000 187.605 -19000 185.467 -20000 167.159 diff --git a/illustration/Equation-of-state/pv-nrt-dm.png b/illustration/Equation-of-state/pv-nrt-dm.png deleted file mode 100644 index eb08733..0000000 Binary files a/illustration/Equation-of-state/pv-nrt-dm.png and /dev/null differ diff --git a/illustration/Equation-of-state/pv-nrt-pyplot.ipynb b/illustration/Equation-of-state/pv-nrt-pyplot.ipynb deleted file mode 100644 index 00b288a..0000000 --- a/illustration/Equation-of-state/pv-nrt-pyplot.ipynb +++ /dev/null @@ -1,193 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 2, - "id": "15134151", - "metadata": {}, - "outputs": [], - "source": [ - "import warnings\n", - "warnings.filterwarnings(\"ignore\")\n", - "\n", - "import numpy as np\n", - "import sys, os, git\n", - "from scipy import constants as cst\n", - "from pint import UnitRegistry\n", - "ureg = UnitRegistry()\n", - "ureg = UnitRegistry(autoconvert_offset_to_baseunit = True)" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "id": "11014d02", - "metadata": {}, - "outputs": [], - "source": [ - "current_path = os.getcwd()\n", - "git_repo = git.Repo(current_path, search_parent_directories=True)\n", - "git_path = git_repo.git.rev_parse(\"--show-toplevel\")\n", - "path_in_folder = current_path[len(git_path)+1:]\n", - "sys.path.append(git_path + \"/pyplot-perso\")\n", - "from plttools import PltTools\n", - "path_figures = current_path[len(git_path):] + '/'" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "Wood1957 = np.loadtxt(\"literature-data/pv-nrt.dat\")" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "id": "d51e3f62", - "metadata": {}, - "outputs": [], - "source": [ - "kB = cst.Boltzmann*ureg.J/ureg.kelvin # boltzman constant\n", - "Na = cst.Avogadro/ureg.mole # avogadro\n", - "R = kB*Na # gas constant\n", - "\n", - "r_star = 3.822*ureg.angstrom # angstrom\n", - "sigma = r_star / 2**(1/6) # angstrom\n", - "N_atom = 200 # no units\n", - "T = (55 * ureg.degC).to(ureg.degK) # 55°C\n", - "volume_star = r_star**3 * Na * 2**(-0.5) " - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "id": "eb775da8", - "metadata": {}, - "outputs": [], - "source": [ - "jump = 10\n", - "N_atom = 200\n", - "T = (55 * ureg.degC).to(ureg.degK) # 55°C\n", - "pressure_vs_tau = []\n", - "for folder in [x[0] for x in os.walk(\"./\")]:\n", - " if \"outputs_tau\" in folder:\n", - " pressure = np.mean(np.loadtxt(folder+\"/pressure.dat\")[:,1][jump:]) # atm\n", - " pressure = (pressure*ureg.atm).to(ureg.pascal)\n", - " tau = np.float32(folder.split(\"./outputs_tau\")[1])\n", - " volume = (volume_star * tau / Na).to(ureg.meter**3)\n", - " pressure_normalized = pressure * volume / (R * T) * Na\n", - " pressure_vs_tau.append([tau, pressure_normalized.magnitude])\n", - "pressure_vs_tau = np.array(pressure_vs_tau)" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "id": "cd60cbf6", - "metadata": {}, - "outputs": [], - "source": [ - "jump = 10\n", - "N_atom = 200\n", - "T = (55 * ureg.degC).to(ureg.degK) # 55°C\n", - "pressure_vs_tau_lmp = []\n", - "for folder in [x[0] for x in os.walk(\"./\")]:\n", - " if \"lammps_tau\" in folder:\n", - " pressure = np.mean(np.loadtxt(folder+\"/pressure.dat\")[:,1][jump:]) # atm\n", - " pressure = (pressure*ureg.atm).to(ureg.pascal)\n", - " tau = np.float32(folder.split(\"./lammps_tau\")[1])\n", - " volume = (volume_star * tau / Na).to(ureg.meter**3)\n", - " pressure_normalized = pressure * volume / (R * T) * Na\n", - " pressure_vs_tau_lmp.append([tau, pressure_normalized.magnitude])\n", - "pressure_vs_tau_lmp = np.array(pressure_vs_tau_lmp)" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "id": "19f9a92f", - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABv4AAAMWCAYAAAA53PFgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAACzt0lEQVR4nOz9bWxUd5rn/39MBzahjY9hmjQjmjqMND/oMS47q+mgxk1ZsyvxC8QGhLalhlRl/6Nh2iYF/Ho0o+AEz6OIguCsWjMbqFCeZu9SDhkJTVbEbizNg4UqQrdITyt2OdZuayV8iqCh2zPgYwyJ7J7U/wFTFdeN7bp1ucrvl2R1neNzvudyuUJHfHJd35pYLBYTAAAAAAAAAAAAgIq2otwFAAAAAAAAAAAAACgcwR8AAAAAAAAAAABQBQj+AAAAAAAAAAAAgCpA8AcAAAAAAAAAAABUAYI/AAAAAAAAAAAAoAoQ/AEAAAAAAAAAAABVgOAPAAAAAAAAAAAAqAJPlbsALE13797V3//93yeOTdPU17/+9TJWBAAAAAAAAAAAsLw8evRIlmUljnft2qWNGzfOeT3BHzL6+7//e3V3d5e7DAAAAAAAAAAAAMzyx3/8x3N+j1GfAAAAAAAAAAAAQBUg+AMAAAAAAAAAAACqAKM+K5xt2wqHwwqFQpqYmJD0ZD++5uZmuVwuGYaR17qmaSYd+3w+NTQ0FFou/tXhw4d1//59rVu3ThcvXix3OUsa79VXltN7MTo6mjRumD+DAADS8vr/QqBS8M8llgI+h8sTv/eli99N6fDe5ob36yvL5b2o1r9TTP25UvObVAR/Fczv98vn8817TXd3t7xeb85rf/3rX086bmho0Pbt23NeB5mtWrUq8b+8r/PjvfrKcn4v+DMIACAt7/8vBJYq/rnEUsDncHni97508bspHd7b3PB+fWW5vhfV+neKqflNKkZ9VqiOjo4FQz/pSaJ98ODBRagIAAAAAAAAAAAA5UTwV4Fs29bAwIAkqa2tTYODgxodHdXo6KgGBwfTOvzC4bCCwWA5SgUAAAAAAAAAAMAiIfirQNFoVJLkdrvV29srp9MpwzBkGIacTqe6u7s1ODiYdE9XV1c5SgUAAAAAAAAAAMAiIfirQJZlSVLSZo6p4gHgbJFIpKR1AQAAAAAAAAAAoHyeKncByF00GpXL5ZJhGPNe53a7k/YBtCxLTqez1OUhCx0dHZqamlJtbW25S1nyeK++wnsBAFju+P9CYOnhn0ssBXwOlyd+70sXv5vS4b3NDe/XV3gvlheCvwrkcDjk8XgWvC4+/tO2bUlSXV1dqUtDljo7O8tdQsXgvfoK7wUAYLnj/wuBpYd/LrEU8Dlcnvi9L138bkqH9zY3vF9f4b1YXgj+KlB7e3te95mmWeRKAAAAAAAAAAAAsFSwx988bNuWz+dTQ0NDomuukti2najbNE2CPwAAAAAAAAAAgCpGx18GlmXp/Pnz6uvrS5ybmJhYcE+9bIRCIfX392t4eFjRaFS2bcswDDkcDu3bt09ut7soz5GkcDiceJ3NaFAAAAAAAAAAAABULoK/WSKRiN5++20NDAyUZO3Ozk5ZliVJcjqdampq0sTEhCKRSOLL5/Pp7NmzRQnqzp07J+lJt5/X6y14PQAAAAAAAAAAACxdyz74s21bfX19CgaDiVCu2ILBoLq6uiRJbrdb3d3dSV19tm3r1VdfTQSOXV1dsixL3d3deT+zv79fkUhEkhQIBAqoHgAW38aNG/Xnf/7nSccAAAAAAAAAMBf+TvGJZRv82batzs7OpHGY0pNg7ujRo9qzZ09R9vULhUKJ0M/r9WYM8wzDUG9vrzo6OhLhn9/vV3Nzs9rb23N+pm3bOnHihKQnoZ/T6SzgJwCAxbdx40b9xV/8RbnLAAAAAAAAAFAh+DvFJ1aUu4ByMQwjEfoZhqHu7m6Njo6qp6dHpmmqvr6+KM85cuRI0jPm89ZbbyUdx8O7XHV2dsq2bXV3d+cVHAIAAAAAAAAAAKDyLNvgT5La2tp09uxZjY6Oyuv1Jo3frKurK3h9v9+f6Bo8duzYgtcbhpG0F59t2woGgzk90+fzKRwOy+12s68fAAAAAAAAAADAMrKsg7/e3l55PJ6SrX/u3LnE67a2tqzu2bdvX9Jxf39/1s8LBoPy+/1qa2tTT09P1vcBAAAAAAAAAACg8i3r4K+U+vv7E91+hmHINM2s7kvdjy91D8K5xPcSdLlc6u3tza1YAAAAAAAAAAAAVDyCvxIJhUKJ101NTTndmxr+zV4rk0gkokOHDsnlcun999/P6VkAAAAAAAAAAACoDgR/JTJ7RKfD4cjp3tSgMBqNznltJBLR7t275XQ6Cf0AAAAAAAAAAACWMYK/ErBtOzHmU3oy6jMXmzdvTjq2LCvjdZZl6Qc/+IFM09Tf/u3f5lwnAAAAAAAAAAAAqsdT5S6gGqV26GW7v19caodgJBJJu8ayLO3Zs0f19fW6evXqvOFiPIScmJjIqx4AAAAAAAAAAAAsfQR/JTA0NJR0XF9fn9P9dXV1837ftm0dOnQoEejt2LEj6XvzaWtrU29vb071AAAAAAAAAAAAYOkj+CuBycnJgu5fu3Zt0nG8U096Euzt2bMnMf5zoaAvVa4hJAAAAAAAAAAAACoDwV8JPHjwoKD7Uzv+ZgeJH3744Zx7/s1mGEbGUHB2iJiL0dHRnK7fuHGjNm7cmNezAAAAAAAAAAAAqtHdu3d19+7drK/PNZ8h+CuB1MBtodGdufB4PPJ4PEVbL1vd3d05Xf/nf/7n+ou/+IsSVQMAAAAAAAAAAFB53n//ff34xz8u2forSrYyEgod/VnM4BAAAAAAAAAAAADVieBvCUrdh499+QAAAAAAAAAAALAQRn0uQfnuw1dKPp9PDQ0NWV/P/n4AAAAAAAAAAADJDh48KJfLlfX1o6OjOW3HRvBXAoZhJB0XGuQthVGfDQ0N2r59e7nLAAAAAAAAAAAAqFgbN24safMUoz5LYO3atUnHue7xl3r9c889V2hJAAAAAAAAAAAAqHIEfyWQ2qE3NjaW0/0PHjxIOnY4HIWWBAAAAAAAAAAAgCpH8FcCzc3NSce5jvpM7fgzTbPQkgAAAAAAAAAAAFDlCP5KILVDb2RkJKf7o9Fo0rHT6Sy4JgAAAAAAAAAAAFQ3gr8SMAxDhmEkji3Lyun+2aNBXS5XscoCAAAAAAAAAABLiG3b5S4BVeapchdQrXbu3KmBgYHEcSQSybpzb3h4OPG6tbW16LUBAAAAAAAAACpTf3+/QqFQUvPJ2rVrE68fPHgg6atA6ejRo1lvJ3Xw4EGFw2GNjo4mrZ9LPfFa4nXEa8mljmoXiUR05coVDQwMyLIsXbp0iSwARUPwVyL79u1LCv7C4XDWwV8kEkm8drvdRa8tH4cPH9aqVavSznd0dKizs7MMFQEAAAAAAADA8jM0NKS+vr6srjUMQ0ePHs3qWtu2FQ6HJT35++z29vas6+nv75+3c80wDL388stZrVeNIpGI3n77bY2MjOQ8ITBbtm3r3Llz6uvr089+9rOsg9uF1gyHw4pGo3rw4IFM01R9fX3Wn43UtT788EPV19errq4uKayWpLq6usTrycnJxOsHDx4kjp1OZ1p4bFmWJicnVVdXp/r6eknK6WePf24nJiYSz3Y4HEV5/3IVCATU29ubdn56ejqndQj+5jD7g5WP1A9+MBiU1+td8L7+/v7E67a2trJ8uDK5f/9+xvNTU1OLXAkAAAAAAAAALF/d3d3q7u5WJBJRZ2dnWpBkGIauXr2ac3fdhx9+mHh95cqVrMOdeD2S0mpyu93q7u5eMn/PXS6WZSkajaqurk6GYRR1vKdlWTp//nxSGDwxMVHQex4KhXT69OmkJqVUbW1t6u7uzvpzNjQ0pK6urrxrkp581lJzlj179hR9XGogEMgr3CzU1NSU7t27V/A67PE3h3i6G5dPEBj/w0568g9fKBRa8J5z585lvL/c1q1bpw0bNqR91dbWlrs0AAAAAAAAAFh2nE6n3nzzzbTz7e3teY3UnN2UMnuaXa417dy5U9KTALKnp2fZh37Sk9/J4OCgBgcHNTo6WpSRp5FIRB0dHWppacm6AzQbHR0dOnTokCKRiFwuly5duqTR0VHdvXtXN2/eTAS5AwMDamlpUTAYLNqzl4pspzcWW21tbcYcZt26dTmtQ8dfBqFQKC0hfvfdd9XT05PTOl6vV8FgMPFfN7z22mu6evXqnH/QBYPBRIJ+9uzZJTXv+OLFi9q+fXu5ywAAAAAAAAAA/Kti7Qs3e8xnXH9/f15dTzdu3JCkRACIdI2NjXmN/LRtW319fUm5Q7HYtq0f/OAHiYwiU3edaZryer1qa2tLdNrFu/g8Hk9R68lWfX19UTv+3G532bKZzs7OjFur3bp1SwcOHMh6nWUf/EUiEYXDYT148EC2bSsajab9ASdJfX19unHjhhobG2WaptauXavGxsYF/2C9evWqduzYIdu2ZVmW9uzZo0AgkJYY+/1++Xw+SU8Cw3L9QwIAAAAAAAAAqBwulyvp77Sj0WjOa2TqGMtl3Gdc/O/BpeKFknjyvnZ2dqZlF263W0ePHi3KuMvOzs55Q7/ZTNPUhQsXdOjQIUlSV1eXXC7XvIHZ7D39vF5v2t56UvrkxdTJjA6HY96fwTCMxB6CuZg90nQpTWLM17IP/sLhcCJwW4hlWUkpeltb24J/eBmGoZ/97Gd69dVXNTAwIMuytHv3bpmmqcbGRk1OTmp4eDjxIS/X7FgAAAAAAAAAQOVxOp1JgVCmxpaFZBrXmM+4z9nP3rt3b873IzPDMBLvrWEYOnbsmNxud2K6YKFdb8FgMGn9+UK/uNbWVjmdzkRo1tnZqcHBwQXvMwyjqOFaPORzu905T22UnuQ+LS0tklQ1+1Eu++DP6/Vm9SEuhGEY6u3tVSQS0bvvvqsbN25oYmJCAwMDMk1TTU1Nam9vp8sPAAAAAAAAAEpoampKr7/+uiTpzJkzqq2tLXNFhXO5XPL7/UnnLMvKelxhasPLbLmO+wyFQpKedIRVQ4CylMQbkTLlCLl2uKU6ffp04vWxY8eyvs/j8SRGfUYiEUUikQX3x6uvr8+rxoXkGybGG8OyDTwrwbIP/haT0+nMK3EGAAAAAAAAABRmaGhIXq9XY2NjkqRf/vKX8vv9am5uLm9hBcpUfyQSyTr4i3f7OZ1ORaPRpM6xXMd9sr9f6fT29pZk3f7+/qTfeWNjY9b37t27NxH8SdK777676BnI5OSkDMPIK2i2LCvR2VpN2c2KchcAAAAAAAAAAECpxGIxvfPOO9q/f38i9JOksbEx7d+/X++8845isVj5CiyQYRhpIV+88y4b8f39PB5PWsiXy7jP2fv7sZ1V5bhy5UrScbaBsaS0wK2/v3/BewrtTsykqakpr/vi3X5Op7OqPrMEfwAAAAAAAACAqjQ+Pi63261Tp05pZmYm7fszMzM6deqU3G63xsfHy1BhcaR2aQ0PD2d1XygUSnR7eTwevfzyy2nXZBPmSMn7+7W2tmZ1D8pvZGQk6TiX4E+SHA5H4rVt2wvuNVjsUZ8TExNJNWQrEokkgu233nqrqDWVG8EfAAAAAAAAAKDqXLt2Tbt27dL169cXvPb69evatWuXrl27VvrCSiA1aItEIlndFx/z2dbWJulJ51PqyMTUjrC5xLsMF9rjDUvLXPs7Zis1dBsaGsp43YMHDwp6zlza29vzCppfffVVSU8++9X2mWWPPwAAAAAAAABA1ZiZmdGZM2fU29ub0wjP8fFxeTwedXR06PXXX9fKlStLWGVxzbXP30KBRrzjyePxJM653W75/f60axYS399v3759WV0f318tFAopGo0mAijTNOVwONTa2qq2tracO9DK9Zy4SCSid999Vzdu3JBlWTIMQw6HQy6XS/v27VvyIVM2n5vZJicn5z1OVexRn/nszdff358Ix7u7u4taz1JA8AcAAAAAAAAAqAq3b9/W0aNH5+w6WkgsFlMgENDPf/5znT9/Xr/3e79X5ApLI1NQMzQ0NG+AE+/2MwwjqWPK4/EkBX/Sk6Bkvj3QZu/v53K55q3Vsiz5fL5EoOh0OtXY2KidO3cqGo0qHA7LsiyFw2H5fD65XC6dPXs252BusZ4TF4lE5PP5kkaeSk/em0gkokgkIr/fX7SAsVQsy8op+EsdKzsxMTHv9bNHfVqWpWAwqHA4rGg0Ktu2E0Hpvn37ihrIznbixAlJktfrXfK/j3wQ/CErhw8f1qpVq9LOd3R0qLOzswwVAQAAAAAAAMBXLl++rJMnT+rRo0cFrzU0NKQXXnhBp0+f1ve///0iVFd6TqczacRnKBRK6uRLFQ/+3G530nnTNGWaZtIIyGAwOG/w9+GHHybVMZf+/v7E3yc7nU4FAoG04MW2bfl8PvX19Ul6sndgS0uLAoHAvDWU4zlScsBomqa8Xq+am5tVV1eX6DAcGBhIvJ+FjtYsNsMwkvblC4VCOf38qXv6LdTxJz15D7q6utJC0vh68aDU5/PJ7Xbn1dU3F5/PlwgYjx07VrR1iyEQCKi3tzft/PT0dE7rsMcfsnL//n3du3cv7WtqaqrcpQEAAAAAAACAzp8/X5TQL+7Ro0c6f/580dYrtdROu5GRkTmvtSwrERJmCgdTz4XD4bSAZ7b4/n7xvQIzCQaDSWHc4OBgxm4rwzDU09Ojs2fPJp3v7OxMhJXzWaznSJLf71dLS4sGBgbk9Xp18+ZNdXd3J/ad83g86u7u1s2bNzOGj0vBzp07k477+vrm/V3PltoZKqXv+RcXDwT7+/vV0tKSMfTLpK+vT7t37866pvlYlpWo+dixY2n7WZbb1NRUxhzm/v37Oa1D8IesrFu3Ths2bEj7qq2tLXdpAAAAAAAAAJBTl1K29u7dW/Q1SyV1nz/LsuYMS+LBltPpzBhGZQrw5gtq4vv7zR4ZOlskElFXV1fiOBAIzLlWnMfjkdfrTTrX1dWV1NVYrudIT6bh+Xw+SU9GRi60V1x7e7tu3ryZ1mFZbpn2ZDx37lxW92a6bqE9/OKfSafTqe7ubgUCAV26dEmBQEButztjGBeJRIoyeTD+2Yh3Zi41tbW1GXOYdevW5bQOwR+ycvHiRf3DP/xD2hdjPgEAAAAAAAAsBaUI/kqxZqlk2ltvrr0O4/vezTUK1DTNtJGdc3XBzQ4Y59rfb/bfI+eyb1t3d3daEPTqq6/Oef1iPScYDCbeQ8MwFgz9Zuvp6clpD71Sa29vT/vZ/X6/+vv757zHtm0dPHgwY7A813s+e++/s2fPanBwUF6vN9Ed2d7erp6eHo2OjmYM5cLhcNadmJnE9xKUpJMnT+a9Til1dnZmzGEuXryY0zoEfwAAAAAAAACAird161Zt2bKlaOtt2bKlqOuVmmEYaQFOpnGfoVAosc/cfHsAZjvuMx6mxPcGTBUMBpP2tZvvmZmkhjSRSCQxWrQcz7FtO6mrMJ994uYah1kuFy5cSDvX2dmpEydOpO1J2N/frx07digcDmcM6Orr6+d8jmEYGhwcXPB3093dnTFMPX369Lz3zcW27cS9TqezogL9fBD8AQAAAAAAAACqQjH/Qr+SxnzGpe7XNldAJs2/H5+U+ef/8MMP087Fn5H67NTnxeW6z12mOjJ1oy3Wc/r6+pKOl9rozny0trZmDPH6+vrU0tKijRs3qqGhQRs3bkx0VQ4ODqZ1eJqmOee+eR6PR6Ojo1l3O3q93rTfoW3baUFkNl599dVEaP3WW2/lfH+lIfgDAAAAAAAAAFSFYgZ/ldgV9NxzzyUdDw8Pp12z0JjPOMMw0oKdTEHYfPv72badtlderoFcNnUs1nMk6cqVK2n3VYPu7m6dPXt2zu/HgzPTNHX16lU5nU5Fo9GkaxYKk3P15ptvpp2bb6/JTEKhUOIz39bWtqTGrJYKwR8AAAAAAAAAoCoUa9xnpY35jEsNrmzbThrPGQ+yDMPIGNSlSg0/U8d9LrS/31x7DOYqNaxJHTm6WM9JDRhzDReXunhXXnd3t5xOZyLUNE1TLpdLZ8+e1c2bNxM/d2pH6b59+4paT2tra9p7nGvH32uvvZZ4nctejJWM4A8AAAAAAAAAUDWK0alXiWM+pfTgSkrukIqPw8x2PGWmrsDZ4z7ja88OiWZL7QjLtzuuubk57dzsUK5cz1lqe/UVg2EY8nq9Ghwc1OjoqO7evaubN2/q/fffT/s8xLs94/eVopuusbEx73t9Pl8iKHS73VUX1M6F4A8AAAAAAAAAUDWKEfxV4pjPuNTwJd4NZ1lWIqhbaMznbKnjG2ePv4y/ztTtJ0mTk5NZP2c+dXV1835/sZ7z4MGDpOOJiYmiPLcSRSKRpFD02LFjJXlOaliXbXhnWZb8fn/ieLl0+0kEfwAAAAAAAACAKlLouM9KHfMZ19TUlHQcD/vi+5w5nc6cOp9SxzfOHvcZ30NwruAvVerozGytXbs27dx8XX2lek5qwFiswLES+Xy+xGvTNOX1ekvynNTfSbZdlp2dnYnXbre7avZizAbBHwAAAAAAAACgqhTSsVepYz7jUvfui+9JFx/zmUu3n5T5vfzwww+TOr7m2i8wU0iT6x5tme5JDXEW6zmF7jdXLSKRSNII2ZMnT5bsWaldltnsTRkMBpP2YlxO3X4SwR8AAAAAAAAAoMoUEvxV8phPKfM+f8FgMBFS5RNspo77DAaDieBnvm6/TJ2FswOZbKXurZf6O1qs52QaBRoKhXJ+TqV3Cr766quJ1y6Xq6T/zMzu3kz9HM51fVdXV+J4uXX7SdJT5S4AAAAAAAAAAIBi2rp1q+7evVvuMsrCNE0ZhpEUmJw+fVrSk+AknxDE4/EkRoVKyaHafB1YmULIK1eu5BwUpXZ9pd6/WM/J9N76/f6sutBmi49IrUQnTpxI/P5N01QgEJjzWsuydOjQIV29ejXv8O3GjRuJ18ePH1/w+tmhpCQdPXo0r+dWMjr+kJXDhw/rD//wD9O+5vuHGgAAAAAAAACw+FL3+YsHVbmO+YxrbW1NC27i4c9CXVipHYGzA8RszR4raZpmxqBtsZ6zc+fOtHty6S7s7+/Pew/CcgsGg+rr65P05P1ZKNCrr6+XZVlJ+wHmwrKsRKeq2+3OGPDOFgqFkn7vLpcrp/0syy0QCGTMYQ4fPpzTOgR/yMr9+/d17969tK+pqalylwYAAAAAAAAAmCVTYGUYRs6dabNl6p4zDGPBYCXT/mq5BEGRSCQpWJtrP7nFes6+ffvyfo5t2zpx4kTWNWVrMUaH+v3+xAhNwzB06dKlBbv4DMNQW1ub+vr68toPMf480zSz2qfvyJEjScderzfnZ5bT1NRUxhzm/v37Oa1D8IesrFu3Ths2bEj7qq2tLXdpAAAAAAAAAIBZGhsb08653e6C1swU/KV2v2XidDrTuvH8fn/WQdDbb7+deO12u+cc37lYz2lvb0/rPAuHwwuGf5Zlac+ePbJtO63OQoO7iYmJoq43m23b6ujoSPx8TqdTV69ezbqTLt5lOnvfvWz4/X6Fw2EZhpHVqFCfz5fUSTlXx+ZSVltbmzGHWbduXU7rEPwhKxcvXtQ//MM/pH11dnaWuzQAAAAAAAAAwCyZAo98x3zOXjM1fMnU/ZZJIBBIu/fQoUMLjrycPbrR5XKpp6dnSTznrbfeSjvn9/t18ODBjEFjMBjUnj17JEk3b95MCw6Hhobmfd58QqFQ2s/37rvv5r3ebP39/dqxY0fivXG73RocHMxpfGb8c5NNOBrn8/nk8/myGicqPenW9Pv9SecK/byXQ2dnZ8Yc5uLFizmt81SJ6gMAAAAAAAAAAGVimmYihDJNsyh7ne3cuTNtD7VsxLu2Dh06lKjJsizt2LFDPT09GbvrgsFgokvM6/VmNepxsZ7jdDp16dIlHTp0KOl8OBxWS0uLTNOUw+HQxMREYnyo0+nU3/7t38owjLSgLt6ZaJqm1q5dK7fbnTHsikQiCofDevDggWzbVjQaTdqXMK6vr083btxQY2NjYs3GxsasO+CCwWBSt6TL5dLZs2fz/gy1t7err69Pfr9ffX19crvdSfvvTU5OyrIshUKhxB6Ibrd7wQA27tVXX007V2iHayUj+AMAAAAAAAAAoMrs3LkzEdy0tbUVZc19+/Ylgj/TNBfsxJot3r3l8/nU19cn6ckYyc7OThmGoZ07d6q+vl4TExO6ceNGYiRmd3d3WofcUnhOa2urBgcH1dnZmdblZ1lW0rm2tjb19vYmjlNHc0pKC1Qz1ZJL11ymGuYL/vr7+3XlypWkOtxut44ePVpwaPzyyy8n/S78fn9ah15crr+L1L0Z43Xn8tmsNjWxWCxW7iKw9Ny6dUsHDhxIHH/wwQfavn17GSsCAAAAAAAAAGRrdifb4OBgTqHWfDZu3ChJOXVkpbIsSwMDA7py5Yqi0ahs25ZhGKqvr5fD4VBra6va2toKDpwW6znxTrXh4eHEc6QnIaTH45HX6y1o/cUQD0p37typffv2zbnHYb5s21ZfX59CoZCi0agmJiZk23aiO7JYv4tqlGteQ/CHjAj+AAAAAAAAAAAAyivXvGbFYhQFAAAAAAAAAAAAoLQI/gAAAAAAAAAAAIAqQPAHAAAAAAAAAAAAVAGCPwAAAAAAAAAAAKAKEPwBAAAAAAAAAAAAVYDgDwAAAAAAAAAAAKgCBH8AAAAAAAAAAABAFSD4AwAAAAAAAAAAAKoAwR8AAAAAAAAAAABQBZ4qdwGoDIcPH9aqVavSznd0dKizs7MMFQEAAAAAAAAAAFSHQCCg3t7etPPT09M5rUPwh6zcv38/4/mpqalFrgQAAAAAAAAAAKC6TE1N6d69ewWvQ/CHrKxbty5jx19tbW0ZqgEAAAAAAAAAAKgetbW12rBhQ9r56enpOZuzMiH4Q1YuXryo7du3l7sMAAAAAAAAAACAqtPZ2Zlxa7Vbt27pwIEDWa+zophFAQAAAAAAAAAAACgPgj8AAAAAAAAAAACgChD8AQAAAAAAAAAAAFWA4A8AAAAAAAAAAACoAgR/AAAAAAAAAAAAQBUg+AMAAAAAAAAAAACqAMEfAAAAAAAAAAAAUAUI/gAAAAAAAAAAAIAqQPAHAAAAAAAAAAAAVAGCPwAAAAAAAAAAAKAKEPwBAAAAAAAAAAAAVYDgDwAAAAAAAAAAAKgCT5W7AAAAAAAAAAAAUL18Pp/8fr8CgYDa29vLXQ4qUCQSUTgcVigUUjQalWVZkiTTNOVwOORwONTU1CSXyyXTNMtcbXkR/AEAAAAAAAAAUCE2btwoSTIMQ5JUX18/57UTExOybVtOp1ODg4OLUV5GfX19kqRz584VJfiLRCLavXt3xvcg/jObpqmbN28W/Kz5tLS0yLIsGYaRVoMk2batwcFBOZ3Oiqy5oaFBtm1L+urzllr7bPE14uvEGYahpqYmOZ1OeTyenIK5/v5+nTt3TpFIJOP3LctKhIDxz5nT6dS+ffvkdruT6l4uCP4AAAAAAAAAAKgQ3d3devDggWzb1vDw8JyBiMvl0s6dO2UYhpqbmxe5yq/09/cnQqBIJKJIJCKn01nQmg6HI/E+WJalgYGBtGssy1J/f3/JOgxDoVAicLJtOynoamtrk2maWrt2rRwOR8XWfPLkSVmWJdu2dePGjaR7M4kHerMDwPj14XBY4XBYfr9fLpdLZ8+enTcAtG1br776auJ9MgxDx44dS9QpPXm/JicndeXKFfX19aV9zsbGxtTT05Pr21TxamKxWKzcRWDpuXXrlg4cOJA4XrdunVatWpV2XUdHhzo7OxezNAAAAAAAAADAvzp48KDC4XDSOa/Xq+7u7jJVlCy1PrfbXfQwJt5Nl6qUHXS7d+/OGLpeunRJra2tC95fiTVnuv/s2bPau3dvxs66eMB57ty5jGHhXM+1bVt79uxJBI1tbW166623FuzeCwaD6urqSqrN4/Es+HMtFYFAQL29vWnnp6endf/+/cTxBx98oO3bt8+5zoqSVIeqc//+fd27dy/ta2pqqtylAQAAAAAAAMCylSk4cblcZagknWVZaaHk7M6sYnE6nXMGT6FQqKjPkr7qKMskmwBNqsya9+3bl3bO5XLNGciZpimv16vR0VG53e607x86dCjjZ+EHP/hBUujX29ub1chOj8ejQCCQOI53LlaKqampjDnM7NAvGwR/yMq6deu0YcOGtK/a2tpylwYAAAAAAAAAy1amcCOXPdRK6fz58xnPx/diK6a59p07ffp00Z/l8/kyns91P7lKq7mQIK2npyfjiNdXX3016TgYDCYCSsMw9NZbb+X0nPb29sTPtFT+OchWbW1txhxm3bp1Oa3DHn/IysWLF+dtHQUAAAAAAAAAYLZ4wGcYRlJnVzAYlNfrLeqz6urqMp6PRCIKhUJZd7UtJFMXY9xcQd5cKrHmQgQCAbW0tCSdS93rcHboeezYsZzDVElqampSOBxe1J+tGDo7OzNurZa6NdtCCP4AAAAAAAAAABXvyyvp+6UVw4p9gyVZt9oFg0FJT0ZaHjt2LCnQiI+zLFawNVtbW1tamOT3+4v2rNmdc6ZpJkZSFqISa86HaZpyuVxpIaRlWTJNU/39/UkBcb4ja+OBaj6hYTVg1CcAAAAAAAAAACgqv98v6cm+a7PHL8bFg8Fia21tTRspGQ6H59zfLhe2bScCOpfLpZ07dxa8plSZNecr07jPyclJSUrb2zDf0aKZ3s/lhOAPAAAAAAAAAAAUTSgUSnSVeTweSZLb7U66ZmBgIKm7q1jq6+t17NixtPNvv/12wWvP7pzr7u4ueL24Sqw5X2vXrk07Fw/4otFo0vmJiYm8nuHxeDQ4uHw7dQn+AAAAAAAAAABA0cS7+WaHffEAcLZz586V5Pnt7e0yTTPp3MDAQEEjLm3bTuxZ6HK5it5RVok15+PBgwdp5+LdoKnBXzE6Hpcjgj8AAAAAAAAAAFAUs0dLHj16NHE+vr/bbPFQqhS8Xm/aufPnz+e93uyQslSdc5VYc65Sg8y2trbE6/jefHGpoz+RHYI/AAAAAAAAAABQFPGwyel0pnWwpQZbtm2rv7+/JHV4PJ60fQX7+vryHi8aDymdTmfJOucqseZc3bhxI+l4didoU1NT0vf6+voI//JA8AcAAAAAAAAAAIoiHjZl2rOutbU1LdiKjwUthUw15DNeNBgMJsK3kydPFlzXfCqx5mz5/f6kENPlcqm1tTVxvHnz5rR7Dh06JJ/PV5L9IKsVwR8AAAAAAAAAAChYPGwyDEPt7e0Zr0kNtsLhcEH72M1n9h6DcanhUzZOnz4t6Unn3OygqhQqseZsWJYln8+XODZNU4FAIOmaTD+79OTnb2hoUEdHh4LBoCKRCEHgPAj+AAAAAAAAAABAwfx+v6S5A5y5vlfIPnbzMQwj4755uewt2N/fnwiZMnXjFVsl1ryQUCikPXv2JI5N09SlS5fSuj8Nw5h3L8KBgQF1dXVp9+7damhoUENDg3bv3q0TJ04oGAyWLECuNAR/AAAAAAAAAACgIJFIJBG8zBc2GYahtra2pHO5hFq5KnR0ZrxzzjTNObsYi60Sa7ZtW6FQKBE4xo87Ojp06NChxPm2tjZdvXo1bf/HOK/XO2/4l/rMSCSivr4+dXV1qaWlRQ0NDXl1SFYTgj8AAAAAAAAAAFCQt99+W9KTfdtSO7lSeTyetHOl2uvPMIy0LkPbtrN6XigUSoSZmbrwSqVSaz506JAaGhq0ceNGNTQ06NChQxoYGJD0JPAbHBxUb2/vgp8Pr9erwcHBtIA4G7Zty+fzaceOHYpEInn9LJXuqXIXAAAAAAAAAAAAKpdt24mAJ5uwqbW1VaZpJo1mDAaDGQPBYjh69GhaV6Hf71/wefHOOcMwSlbbXCqx5kuXLmlkZEQPHjzQ2rVrVVdXp+bmZjmdzpzXcjqd6u3tlW3bCofDCoVCGh4eVjQazaqbz7Zt7d69W4ODg3k9v5IR/AEAAAAAAAAAgLzFx1CapqnW1tas7vF4PPL5fInjSCSiSCRSkpDGNE25XC6Fw+HEOcuy1N/fP+cozHg9Unn2yavEmltbW7P+/WfLMAy1t7cn/cy2bWtoaEgjIyP65JNPdOPGjTnDwM7OTt28ebOoNS11jPoEAAAAAAAAAAB5i3em5dJhljrKUvpqXGgpZNo3Lt4dl0k8lDQMY1FHZs5WiTUvBsMw1NraKq/Xq97eXo2OjioQCGQcIWpZ1rIb+UnwBwAAAAAAAAAA8hIMBhPdVj6fTxs3bszqq6GhIW2tgYGBrMY45sPpdKZ1E1qWpVAolHatZVmJTrtMAeViqcSay6W9vV0/+9nPZJpm2veGhobKUFH5EPwBAAAAAAAAAIC8BIPBxGvDMHL+SpW6r10xnTx5Mu1cpg662SNIyzEyc7ZKrLlcDMNQIBBIOz97L8nlgD3+AAAAAAAAAABAzmbvKTc4OJjX/ny7d+9OGsUYDAZLNqaytbVVpmkmBUGpewvatq2BgQFJTzrnMoWTi6kSay4np9Optra2xPshqWRdpEsVHX8AAAAAAAAAACBn8T35Mo2kzFZqd9pcoyyLJVOoOLtb7ty5c4nXmfbYK4dKrLmcnnvuuaTjzZs3l6WOciH4AwAAAAAAAAAACdl0SM3uMvN4PHk/q729Pa1Dze/3573eQjweT9rzwuGwLMuSbduJZy+lzrlKrDlfxRjL6XA45j2udgR/AAAAAAAAAABA0pNAr6GhYcHwbXaXWSHBn/Qk/JstHA6XdDxjpj3wfD5f0v6CR48eLdnz81GJNecqEomopaWl4I7PiYmJpOPUz1e1Y48/ZOXw4cNatWpV2vmOjg51dnaWoSIAAAAAAAAAQLGFw2FJC3dJxQMnt9td8DOPHj2aFGBJT4LFUo2t9Hq9SaMyJWlgYEA3btyQJLW1tck0zZI8O1+VWHO+otFoQfcPDw8nXre1tRVazqIJBALq7e1NOz89PZ3TOnT8ISv379/XvXv30r6mpqbKXRoAAAAAAAAAoEji3VZ1dXVzXtPf35/oyHv55ZcLfqZpmml7BKYGgdlK7faaS6Z98+I/0/Hjx/N6dr4qseZSKnTcZ39/f+J1Je15ODU1lTGHuX//fk7r0PGHrKxbty5jx19tbW0ZqgEAAAAAAACAZCv2DZa7hKoQ7yCbr3ssPubTMIy0wC5fHo9HXV1diWPbthUMBrMeIzo5OZnT844dO5ZxnKnL5cr6Z0oN7LIN8OIqseZSevDggaSvuk7z4fP5EmGo1+utqC7I2tpabdiwIe389PR0TuEfHX/IysWLF/UP//APaV+M+QQAAAAAAACA8hkaGiraWpZlJbqt5gpM+vv7FYlEJEk7d+4s2rP37t2bdu706dNZ3x8PsLIN0wzDyDimNFNX3VxSn5XrvoSVVnOmEZy5hpfZiEQiCgaDOd8XDAYTwajL5aqobj9J6uzszJjDXLx4Mad1CP4AAAAAAAAAAKhQAwMDaefC4fCCgY5t27IsS5FIRKFQSMFgMNHoYRjGnPecOHGi8KIzMAwj7bm2bafta5dJJBJJ/LxXrlzJ+plHjx5NOjZNU62trVnda9t20l5ycfFRqQupxJozXZdL7QuZHSx2dXWpo6Mjq2DSsiwdPHgw0THqcrn0/vvvF62uSsOoTwAAAAAAAAAAKoxlWerq6sq4H1pXV1fS2MxcORyOpOcMDAxobGwsaW8/6UnouHv3bjU1NWnz5s05jZyUnnRoWZYl27Z148aNjCGP3+9XJBKR0+nUvn375HQ6Zdu2+vr69ODBg0R9cZFIJKkmh8Oh9vb2jM83TVNtbW2J+xcaKxoKhTQyMqJPPvlkznoPHTqktrY2maaptWvXJt6TSqw5GAxqcnJSY2NjGh4eTnR6zjb797N27dp5a19I6md5YGBAAwMDcrlcam9vl8PhkGmaqq+v18TERCK0nr0f5NmzZ7MeD1utamKxWKzcRWDpuXXrlg4cOJA4/uCDD7R9+/YyVgQAAAAAAAAAiNu4cWPJ1na73erp6ZH0JDg6dOhQ2jWzu/PiYVJ3d3dOYyfn+xkyre/1etXd3Z0Iyua7L36PaZq6efPmnM+Zvdbo6Oic3Y6SdOLEiaSQKZvnV3LN2XzGUn9PTqdTg4P57bdpWZbOnz+fFjBnU4Pb7daxY8fmfS8qVa55DcEfMiL4AwAAAAAAAICly7Is1dfX5x10ZApWqjE0ycbBgwdVV1en3t7ecpeStUqsOReRSERXrlyRZVmKRqOKRqOybVuGYai+vl51dXVyuVxyuVxZjzqtVLnmNYz6BAAAAAAAAACgwpimWdD9yzXky6QS94OrxJpz4XQ6cxobi6+sKHcBAAAAAAAAAAAAAApH8AcAAAAAAAAAAABUAYI/AAAAAAAAAAAAoAoQ/AEAAAAAAAAAAABVgOAPAAAAAAAAAAAAqAIEfwAAAAAAAAAAAEAVIPgDAAAAAAAAAAAAqgDBHwAAAAAAAAAAAFAFCP4AAAAAAAAAAACAKkDwBwAAAAAAAAAAAFQBgj8AAAAAAAAAAACgChD8AQAAAAAAAAAAAFWA4A8AAAAAAAAAAACoAgR/AAAAAAAAAAAAQBUg+AMAAAAAAAAAAACqAMEfAAAAAAAAAAAAUAUI/gAAAAAAAAAAAIAqQPAHAAAAAAAAAAAAVAGCPwAAAAAAAAAAAKAKEPwBAAAAAAAAAAAAVYDgDwAAAAAAAAAAAKgCBH8AAAAAAAAAAABAFXiq3AWgMhw+fFirVq1KO9/R0aHOzs4yVAQAAAAAAAAAAFAdAoGAent7085PT0/ntA7BH7Jy//79jOenpqYWuRIAAAAAAAAAAIDqMjU1pXv37hW8DsEfsrJu3bqMHX+1tbVlqAYAAAAAAAAAAKB61NbWasOGDWnnp6en52zOyoTgD1m5ePGitm/fXu4yAAAAAAAAAADLRCgU0sjIiD755BONjIxoYmJCtm1LkgzDkMPhUH19vRwOhwzDkMvlUnNzswzDKHPlQO46Ozszbq1269YtHThwIOt1CP4AAAAAAAAAAKgQkUhEu3fvToRb9fX1ie/FgzHTNHXz5s2S1tHS0iLLsmQYRloNkmTbtgYHB+V0OnNaNxQKKRgMamBgYN7rbNtWJBJJOuf3+yVJpmmqra1NLpdLra2tOT0fqHQEfwAAAAAAAAAAVAiHw6Hu7m49ePBAlmVlDMgsy1J/f7/a29tLUkMoFJJlWZKeBHDxLjxJamtrk2maWrt2rRwOR05rnj59OinMMwxD7e3tam9vl2maqq+vl2EYsm1bExMTsixLIyMjunLlStJ9lmXJ7/fL7/drdHSUDkAsKwR/AAAAAAAAAABUCMMw5PV6E8fxDsBUp0+fLlnwd/r06YznL126lFeH3YkTJ9TX15c4Nk1Tb7755pxrGYYhwzBkmqZaW1vl9Xpl27b6+vp07ty5pHGghH5YblaUuwAAAAAAAAAAAJAfp9OZMdyyLEuhUKjoz4tEImkjNuNyDf1s29bu3buTQr/u7m7dvHkz57XigejPfvYzmaYpSWpqasppDaAaEPwBAAAAAAAAAFDBZu+xN9tcnXmF8Pl8Gc/n2lkXiUS0Y8eOpBAxEAgkdTPmwzAMvfnmm5KU06hRoFoQ/AEAAAAAAAAAUMHq6uoyno9EIkXt+rMsS+FwOOP35gofM7FtWz/4wQ+S9gY8e/Zs0UaTxjv+Nm/eXJT1gEpC8AcAAAAAAAAAqHqfPH6svxkf15/duaMOy9Kf3bmjvxkf1yePH5e7tKJpa2tLO+f3+4u2/uxuv3i4lo/Ozs6k0K+trU0ej6eg2jKZKxAFqtlT5S4AwNLwyePH+vjRI336xRd6/OWXWr1ihbY9/bSe//rX9dzq1eUuDwAAAAAAAMjZv8Ri+pt/+ied+81v9OkXX8x53bann9axZ5/VD7/xDX2tpmYRKyyu1tZWRaPRpPGZ4XBYkUhETqezoLVt29bAwIAkyeVyyeFwyLKsnNfx+XxpXYNvvfVWQbXNJZcuRKBaEPwBy8SXV3annfsX1ehvVj8vf+139enKb85577aZX8s79XP98PHH+ppiSd9bsW+w6LUCAAAAAAAAhRr9/HP9/8bG9IssOvo+/eILvRKN6uI//ZP+++bNanjmmUWosPjq6+t17NgxdXZ2Jp1/++231dvbW9Das7v9uru79e677+a8hmVZaR2IXq835/0BF2KapgYHB9njD8sSoz6BZWr0qfVqWX9ER9funzf0k6RPV35TR9fuV8v6Ixp9av0iVQgAAAAAAADkJ/Twob77v/93VqHfbL94/Fjf/d//W6GHD0tUWem1t7enjeEcGBjIqzsvzrZt9fX1SXrS7Zdv9+D58+fTzh07dizvuubjdDqLHigClYDgD1iGQqs2q2X9Ef1i1bdyuu8Xq76llvVHFFq1uTSFAQAAAAAAAAX69PPP1fZ//68efvllXvc//PJLtf/f/6vRzz8vcmWLx+v1pp3LFLpl69y5c4nX3d3dea8TDw/jTNMknAOKjOAPWGY+fepZ7f2d/6iHK57O6/6HK57Wvt95mc4/AAAAAAAALDm/jcX0x2Njmsoz9It7+OWX+uOxMf1LLLbwxUuQx+NJC9T6+vpk23Ze68UDO6fTmXe3XygUSju3c+fOvNYqB9u2FQwGtXv37qSxp9KTEaYdHR1qaWnRxo0b1dDQkLhuvvfctm2dOHFCu3fv1saNG7Vx40a1tLQseF+24qNVDx48mKgt/oyDBw/K7/cX1AlaDrZty+fzJf1MDQ0NiZ+nGO9bpWOPP2AZ+a1W6E/W/gdNrfg3Ba3zcMXT+pO139dH4xf4rwcAAAAAAACwZPzkn/4p5/Gec/n48WP95J/+SZ3rK/M/gD927FhaQHXu3LmcO/aCwWAiTDl58mTe9YTD4bRzra2tea9XapZlKRKJKBQKaXh4WJFIJPG9pqamxGufz5e2b6Ft24pEIopEIvL7/bp06VLazxoMBtXV1ZXxuX6/X319fbpw4UJe75FlWfL5fBoYGJD0JLBtbGzUzp07FY1GFQ6HZVmWwuGwfD6fXC6Xzp49mzYiNq6jo0MjIyOSpLq6uozXTE5OSpICgUBaOOz3+xUMBjPeH7/vzTffnPdnTf2ZXC6Xdu7cKYfDoXA4nPjy+Xzq7u7O2PW6XBD8AcvIT1Z/J+fxnnP5eNW39JPV39ErRVkNAAAAAAAAKNzbv/lN0der1ODP7XanBX9+v1/Hjh3Labzm6dOnJT0JjwoJ6mYHZ3FzBU3lZlmWWlpaFrzuxIkTSeNLDcPI2HF26NAhDQ4OJgIxv9+f9LvJdJ9t2zp06FDG0HA+/f396uzslPTkdxYIBNLe53jXXLz2cDislpYWBQIBtbe3p625b98+PffccwoGgxl/j21tbXruueckSQ6HI+37LpdLkjQ2NpY27jV+73yfhdnvl9vtVnd3d9pnePbvwufz6ZNPPlFvb++ca1YzmnWAZeR87XeLvN6Ooq4HAAAAAAAA5OuTx481+sUXRV3z0y++0FCROggXm2EYGbueUoOX+fT39ycCqWPHjhVUTzQaTTs3V/dYuZmmqbt372p0dFQ3b97MGEp1dHSor69PLpdLly5d0ujoaOIr0/seD+NOnDghn88n0zQVCASS7svUjfnaa69lXXcwGEwK/QYHBzPWbhiGenp6dPbs2bQa4515s7W3t8vr9ermzZtpgZtpmurt7ZXX65XX680YKjudTnm9XvX09CS9N93d3Yl75wr+Dh48mAj9zp49q56enozP6OnpUVtbW+J4YGAgLfheLgj+gGXik5W/q9GV3yzqmp+u/GbF/osPAAAAAAAAqsvHjx6VZt0K/vuvTGHduXPnsr4/3u1nmmbGTrBcTExMpJ2rr68vaM1SMwxDpmnK4/Ekne/r69PAwIACgYDef/99tba2JsIowzDU3d2dFuJZlqWGhgb19fWpu7tbN2/eVHt7e9J9Xq9XgUAg7b7+/v4Fa41EIkmjQ1PXycTj8aSFlF1dXRm7+uJSP1O57hEYD5JN01xwHGdHR0diRKzL5Ur7PaRKfc+X655/BH/AMvHxyo2lWbeC/8UHAAAAAAAA1ePTInf7xY18/nlJ1l0MhmHI7XYnnbNtO2NXV6pQKJQIdYqxX1olBzCZOhPnGosZl6n7zbbtBfefa29vT9sjLxQKLVhjvNNPejI+M9sxqpnGZr766qtzXp/6ecq2vrjh4WFJC+8XGQwGE/v5xetciGmaSV1/Um5Bd7Ug+AOWidGVz5Zk3Ur+Fx8AAAAAAABUj8dfflmSdT8v0bqL5ejRo2nn/H7/gvfFu/0Mw1iw0yobmcYzZhr/uRSldiY6nc6sOiBTQ7K5xq+mSn2/F3qfgsFgUuddrr+v1BAuEonMGeYZhpEWrmXzeZKeBJ+RSCSrDtLZaxqGkRaGziV1P8R4x+ByQvAHLBOPa1aVZN1K/xcfAAAAAAAAVIfVK0rz193PlGjdxWKaplwuV9K5hcZHRiKRxLjHQvf2i3M4HGnnHjx4UJS1F1tTU1NW1zU3NxflvmyCv9my7faL27t3b9q5+T4fx48fTzoOh8NZjfyM7y+5UPgZiUSS1sv2fZPSP2eVEi4XU2X/iQUga6tj0yVZt9L/xQcAAAAAAADVYdvTT5dk3cZnninJuosp05jEeEdfJj6fT1L2HWrZyLSf38jISFHWXqpyDeDiUsOrTPsjxsW76Ap5rmEYaeHwfMGf0+lM68DLZnxsMBjMqoM0tUsv06jVuaxduzbpuJJHzObrqXIXAGBxNMz8piTrVsO/+AAAAAAAAKDyPf/1r5dm3dWrS7LuYooHNbMDIsuyFAqF0kYjWpaVCF4y7eeWr0wdf6FQqGjBYjXJNBZ1LkNDQ0V5ptPpTArcFgrMjh07lrSvYF9f37z78MX3jMxmr76xsbGk44GBAe3evVv19fWJEDA1SI6Ho8uxwy8VwR+wTDw/c7c061bBv/gAAAAAAACg8j23erW2Pf20Pv3ii6Kt2fj002qukr//OnnypA4dOpR07vTp02nBX7zbTyremE9Jam9vT4x6jFuO+68VW2rQlUtoOFvqeFHpSfg313rt7e0yDCMRENq2rf7+/jn37ot3BGYTJmfqcEztaswkXqvT6ZTD4ZBpmnl3XVYygj9gmXhu5h+1bebX+nTlN4u2ZuPMPTWv/sOirQcAAAAAAAAU4tizz+qVInb8HHv22aKtVW6tra0yTTNp77T4Xn7xsY22bWtgYEDSk4Am3xBprudnMl9YhIVNTk4WZZ1cxmnGud1u+f3+xPG5c+cy/i7jn6tsP1OpYabb7VZPT0/O9S1XbM4FLCPeqZ8v6fUAAAAAAACAQvzwG9/Qd4rUoff86tX60298oyhrLRWZxmrO7vA7d+5c4nU2IxlzlbqPXOozUbh897RL3RtPWrh7MLUjNB4kp4p3eh49ejSrWuYa44nsEPwBy8gPH3+s70x/VpS1np/+TH/6+BdFWQsAAAAAAAAohq/V1Oi/b96sNSsK+6vvNStW6L9t3qyv1dQUqbKlwePxpIU54XBYlmXJtu1E91axu/3iMoWJkUhEoVCo6M9aLjLtnTi7qzNbqfdk8/s3DENtbW1J59599920686dO6e2trasx26mdh+yb19uCP6AZeRrium/PrisNV8WNud8zZdf6L88uKyvKVakygAAAAAAAIDiaHjmGfX//u/nHf6tWbFC/b//+2p45pkiV7Y0ZNq3z+fzJe2/l21nVq6cTmdaUCRJR44cybtTbbnLFKZlsx9eqtRwLdvxq8ePH086Tt3Hsb+/X7Ztp103n9SfKZ+fZzkj+AOWmYbfjuvKP7+bd/i35ssvdOWf31XDb8eLXBkAAAAAAABQHK1r1ujn3/52zmM/n1+9Wj//9rfVumZNiSorv0zjPgcGBhIjN3PpzMpHpq4/27bV2dlZsmdWs/j+jLNduXIl53UePHiQdJxt8Od0OtNqCAaDidfnzp3LeM18mpub087NXhPzI/gDlqHW6THdHL+Q89jP56c/083xC2qdHitNYQAAAAAAAECRNDzzjH7+7W/rgsOhbU8/Pe+1255+WhccDv3s29+u6E6/bPdCyxT+xTvucunMyodpmgoEAmnnw+GwOjo6SvrsapW6d+LAwEDOa4TD4cRr0zTV2tqa9b2pXaTxkbHxPf8ydZnOJ1PoSPCXPYI/YJlq+O24bo5fkP/B/9S2mV/Pe+22mV/L/+B/6qPxC3T6AQAAAAAAoGJ8raZGnevXa2TbNn3yB3+gvzFN/ejZZ9XxjW/oR88+q78xTX3yB3+gkW3b1Ll+fcXu6Tc5OZnT9XMFMS6XK+vOrNSQMdvQUXoS7GTq/BsYGNDu3buLNvYzvndhtcv0Xvp8vqzvjwd0cSdPnszp+e3t7Ul7AlqWpVAopLffflumaWbdPThb6kjYSCSSCBQxP4I/YBn7mmLqfPyxhn/zn/XLX7+twIMP9P9NfaQfPrql/2/qIwUefKBf/vptDf/mP6vz8cfs6QcAAAAAAICK1bx6tf70G9/QX23apIBp6q82bdKffuMbas5xHOhSFA/dsg0ADcOQ2+1OO5+pE3Auqc/KNWDzer0ZnxeJRLRjx46CQh7btuXz+dTS0pK2d10+Cgk5i3HfQpxOZ1rXn9/vl2VZWd3/9ttvJ1673e68grrUz9Pp06c1MDCQ02dqtrnCzP7+/qzX8Pl8y3J/wKfKXQCAxbFi3+C83/+3//oFAAAAAAAAoHJEIpFE6HblypWsg5ajR4+qr68vcZzLeEfbtjU8PJx2PhQK5TQisru7Wy6XS0eOHEkKDuPB3blz5+R2u+VyubJaNxQKKRgMJkZd5tLBOJ/UnzXbMHFoaCiv+1LZti3btpO66lIFAgHt2LEj6X08dOiQrl69Ou99oVAo6f3q6enJq8Zjx44lhbXxwG3v3r15rRcfCZu692NnZ6fa2trU3d09516UwWBQp0+flm3b8ng8eT2/ktXEYjFaeJDm1q1bOnDgQOL4gw8+0Pbt28tYEQAAAAAAAADAtm319fXpwYMHsiwrbT83p9OppqYmbd68WQ6HY97urY6OjsT93d3d84aGoVBIIyMj+uSTT3Tjxo05O/za2tpkmqbWrl2bdfAWD/pmB5GZOJ1OORwO1dfXyzAM2batiYkJjYyMpHW3OZ1OBQKBOcOhheqZ7z2WvgoV165dm/iZpSeddg8ePEiskelncLlcWrt2rRobG+cMNDdu3Jh0bJqmdu7cOe/v1bIsHTp0KOm9MAxDPT09c+6b19XVJelJB2amLrtczP48SU8+C729vQWtObvGVPHPQ/y9tywr6bN59uzZqgj+cs1rCP6QEcEfAAAAAAAAACw9kUhEu3fvzvi9eGdXPPgwTVM3b97Maq3R0dF5O8NOnDixYDCX+vxcwyTbtnXu3Dn19fXltTefYRjauXOnjh8/XlCn33zvcfw58Xol6dKlS2ptbZVt22poaJj3ntn3zReMpQZ/s5853+91rhA1/t7U19drYmIiEZC5XC51d3cXpTMy9X2Lvy+FsixLXV1dCofDWV3vdrt19OjRvELfpYjgD0VB8AcAAAAAAAAA1e/gwYOqq6sruDOr2CzLUjgcVigUUjQa1eTkpCYmJhKhmWEYcjgccjgceu6554o21rNaxDsVr1y5omg0mhgVWl9fL4fDodbW1qROxWLZvXu3IpGIDMPQ6OhoUde2LEvBYFDhcFiTk5OyLCvpc7Bv37689idc6gj+UBQEfwAAAAAAAAAAAOWVa16zYjGKAgAAAAAAAAAAAFBaBH8AAAAAAAAAAABAFSD4AwAAAAAAAAAAAKoAwR8AAAAAAAAAAABQBZ4qdwGoDIcPH9aqVavSznd0dKizs7MMFQEAAAAAAAAAAFSHQCCg3t7etPPT09M5rUPwh6zcv38/4/mpqalFrgQAAAAAAAAAAKC6TE1N6d69ewWvQ/CHrKxbty5jx19tbW0ZqgEAAAAAAAAAAKgetbW12rBhQ9r56enpOZuzMiH4Q1YuXryo7du3l7sMAAAAAAAAAACAqtPZ2Zlxa7Vbt27pwIEDWa+zophFAQAAAAAAAAAAACgPgj8AAAAAAAAAAACgChD8AQAAAAAAAAAAAFWA4A8AAAAAAAAAAACoAgR/AAAAAAAAAAAAQBUg+AOQ0dTUlI4fP67jx49ramqq3OUAAAAAAAAAAIAFPFXuAgAsPUNDQ/J6vRobG5Mk/fKXv5Tf71dzc3N5CwMAAAAAAAAAAHOi4w9AQiwW0zvvvKP9+/cnQj9JGhsb0/79+/XOO+8oFouVr0AAAAAAAAAAADAngj8AkqTx8XG53W6dOnVKMzMzad+fmZnRqVOn5Ha7NT4+XoYKAQAAAAAAAADAfAj+AOjatWvatWuXrl+/vuC1169f165du3Tt2rXSFwYAAAAAAAAAALJG8AcsYzMzM3rjjTfk8Xhy6uIbHx+Xx+PRG2+8kbE7EAAAAAAAAAAALD6CP2CZun37tvbv369AIJDXvn2xWEyBQED79+/X7du3S1AhAAAAAAAAAADIBcEfsAxdvnxZL7zwgoaGhgpea2hoSC+88IIuX75chMoAAAAAAAAAAEC+CP6AZej8+fN69OhR0dZ79OiRzp8/X7T1AAAAAAAAAABA7gj+gGWovb296Gvu3bu36GsCAAAAAAAAAIDsEfwBy1Apgr9SrAkAAAAAAAAAALJH8AcsQ1u3btWWLVuKtt6WLVuKuh4AAAAAAAAAAMgdwR+wTBWzQ48xnwAAAAAAAAAAlB/BH7BMFTP4Y8wnAAAAAAAAAADlR/AHLFPFGvfJmE8AAAAAAAAAAJYGgj9gGStGpx5jPgEAAAAAAAAAWBoI/oBlrBjBH2M+AQAAAAAAAABYGgj+gGWs0HGfjPkEAAAAAAAAAGDpIPgDlrlCOvYY8wkAAAAAAAAAwNJB8Acsc4UEf4z5BAAAAAAAAABg6Xiq3AUAKK+tW7fq7t275S4DAAAAAAAAAAAUiI4/AAAAAAAAAAAAoAoQ/AEAAAAAAAAAAABVgOAPAAAAAAAAAAAAqAIEfwAAAAAAAAAAAEAVIPgDAAAAAAAAAAAAqgDBHwAAAAAAAAAAAFAFCP4AAAAAAAAAAACAKkDwBwAAAAAAAAAAAFQBgj8AAAAAAAAAAACgChD8AQAAAAAAAAAAAFWA4A8AAAAAAAAAAACoAgR/AAAAAAAAAAAAQBUg+AMAAAAAAAAAAACqAMEfAAAAAAAAAAAAUAUI/gAAAAAAAAAAAIAqQPAHAAAAAAAAAAAAVAGCPwAAAAAAAAAAAKAKEPwBAAAAAAAAAAAAVYDgDwAAAAAAAAAAAKgCT2V74UsvvSSHw6GmpiY5HA41NzdrzZo1pawNAAAAAAAAAAAAQJayDv5CoZBqamrU19eXOFdXVyfTNLVv3z4dOXKkJAUiN5ZlyefzSZJ6e3vLXA0AAAAAAAAAAAAWS9bBX1wsFlNbW5vq6+slSRMTExobGytyWchVJBKRz+dTOByWJLlcrjJXBAAAAAAAAAAAgMWUc/B39OhRvf7666WoBTmybVt9fX0KBoOyLKvc5QAAAAAAAAAAAKCMsg7+DMPQ5OSkmpubS1kPsnTixInE2FXTNHX27FlJUldXVznLAgAAAAAAAAAAQJnk3PFXV1dXijqQo2g0KqfTqZMnT6q1tVXSk30YAQAAAAAAAAAAsDzlHPzF9/ZDeb3//vvlLgEAAAAAAAAAAABLyIpyFwAAAAAAAAAAAACgcAR/AAAAAAAAAAAAQBXIOviLj/g0DKNUtQAAAAAAAAAAAADIEx1/87BtWz6fTw0NDbJtu9zlAAAAAAAAAAAAAHN6Ktcbbty4ofb2dq1Zs6YU9czp4cOHi/ZMy7J0/vx59fX1Jc5NTEwUpdsxFAqpv79fw8PDikajsm1bhmHI4XBo3759crvddFUCAAAAAAAAAAAgZzl3/J04cUINDQ3atGmTXnzxRb322mt67733dOPGDT18+LAUNWpgYEANDQ0lWXu2SCSijo4OtbS0JIV+xVq7paVFhw4dSqzd1NQkp9Mp27YViUQS3YXBYLCozwYAAAAAAAAAAED1y7njLxaLJV4PDw8rEokkhWR1dXUyTVNNTU1qamqSw+FQc3NzQd16ExMTkkrT9Wfbtvr6+hQMBmVZVlHXjgsGg+rq6pIkud1udXd3J3X12batV199VQMDA5Kkrq4uWZal7u7uktQDAAAAAAAAAACA6pNz8BdXU1OTeD07DLRtO6tAsKmpSaZpZhXkTU5O5lvmnGzbVmdnp8LhcNJ5t9uto0ePas+ePUXZ1y8UCiVCP6/XmzHMMwxDvb296ujoSIR/fr9fzc3Nam9vL7gGAAAAAAAAAAAAVL+cg7+2tjZNTk5qeHg4YzCWTyDY3Nwsh8MxZyD4ySef5FrmggzDSIR+hmHo2LFjSfvr1dfXFyX4O3LkSOIZC3XwvfXWW4ngT3oyVpXgDwAAAAAAAAAAANnIOfj7y7/8S23atEnSk068aDSqoaEhDQ8PKxqN5hUIxgO4TB2Ctm3LsizV1NQUfcxnW1ubWltb5fF40r5XV1dX8Pp+vz/xXhw7dmzB6w3DkNfrld/vl/TkvQkGgxnrAwAAAAAAAAAAAGbLOviL77M3W11dnRobG9XY2Ci32530vZGREQ0NDcmyLEUiEUWj0Yx76C3UIVhKvb29JV3/3LlziddtbW1Z3bNv375E8CdJ/f39BH/AEjA1NaXXX39dknTmzBnV1taWuSIAAAAAAAAAAJLlvcffQuKBYKqRkRFZlqWhoaG8AsFK0d/fn+j2MwxDpmlmdZ/T6Uw6Tt2DEMDiGxoaktfr1djYmCTpl7/8ZWIfTgAAAAAAAAAAloqSBX9ziQeCqR1w0WhUkUgk0SUYDwgrVSgUSrxuamrK6V6n06lIJJK0Vmtra9FqA5CdWCymCxcu6OzZs5qZmUmcHxsb0/79+9XV1aUjR44k/YcKAAAAAAAAAACUS87Bn23biT3+isnhcMjhcCQFgpOTk7py5Ypee+21oj+v1Pr7+xOvHQ5HTvc2NTUlBX/RaLRodQHIzvj4uH70ox/p+vXrGb8/MzOjU6dOKRwO66//+q+1fv36Ra4QAAAAAAAAAIBkK8pdwHzq6urk8Xj00ksvlbuUnNi2nRjzKT0Z9ZmLzZs3Jx1XcucjUImuXbumXbt2zRn6zXb9+nXt2rVL165dK31hAAAAAAAAAADMI+vgLx5klaP77Pd+7/cW/ZmFSH2Pst3fLy61Q3B29x+A0pmZmdEbb7whj8ej8fHxrO8bHx+Xx+PRG2+8kTQSFAAAAAAAAACAxZRzx9/ExEQJyphfXV3doj+zEENDQ0nH9fX1Od2f7887O3BkPCiQm9u3b2v//v0KBAKKxWI53x+LxRQIBLR//37dvn27BBUCAAAAAAAAADC/nPf4CwaD2rdvn2pra0tRT0bNzc0575NXTpOTkwXdv3bt2qTj+cJW27YVjUZlWZb8fn/ivGVZ8vl82rdvn+rq6lRfX5/zyNHZRkdHc7p+48aN2rhxY97PAxbT5cuXdfLkST169KjgtYaGhvTCCy/o9OnT+v73v1+E6gAAAAAAAAAA1eLu3bu6e/du1tfnms/kHPxFIhH9wR/8gdrb2+VyueRyubRp06Zcl8lJY2OjPvroo5I+o5gePHhQ0P2pHX9zBYknTpxQX1/fnOv4/f5EGGgYRs4fjtm6u7tzuv7P//zP9Rd/8Rd5Pw9YTOfPny9K6Bf36NEjnT9/nuAPAAAAAAAAAJDk/fff149//OOSrZ918Ldz507duXNHlmVJkj788EN9+OGHqqmpkcvl0nvvvVeyIitNfD/EuFKNKu3p6VFPT09J1gaWk/b29qL/Qbt3796irgcAAAAAAAAAwEKyDv7ef//9pOP4eMloNJrzHnbLTaGjPyttj0Og0pQi+Gtvby/qegAAAAAAAAAALCTnUZ9xDoejovbdqySpQepSCFZ9Pp8aGhqyvp79/VBJtm7dqi1btuhXv/pVUdbbsmWLtmzZUpS1AAAAAAAAAADV4+DBg3K5XFlfPzo6mtN2bHkHfyidiYmJcpeQpqGhQdu3by93GUDJFLPrjzGfAAAAAAAAAIBMNm7cWNLmqYoI/gYGBnTkyBHduXOn3KVkxTCMpONCgzxGfQKlV8zgr1rHfH55ZXdJ1l2xb7Ak6wIAAAAAAADAcrOi3AVk48qVK+UuISdr165NOs51j7/U65977rlCSwKwgPi4z0Ix5hMAAAAAAAAAUC55d/zduXNHkUhEExMTcjgcam5u1po1a4pZmyTppz/9qQYGBlRTU1P0tUsltUNvbGwsp/sfPHiQdMxeisDiKEbX33Ie8/nJyt/Vxys3anTls3pcs0qrY9NqmPmNnp+5q+dm/rHc5QEAAAAAAABA1cs5+BsZGVFnZ6ei0Wja91pbW+X1evW9732vKMWdOXNGfr+/KGstpubm5qTjXEd9pnb8maZZaEkAslCM4K9ax3zO5V9Uo79Z/bz8td/Vpyu/Oed122Z+Le/Uz/XDxx/ra4otYoUAAAAAAAAAsHzkNOpzZGREe/bsUTQaVSwWS/u6fv26Dh48qDNnzhRU1MjIiL73ve/J7/crFqu8vyBO7dAbGRnJ6f7UUNXpdBZcE4CFFTrus5rHfA4NDaWdG31qvVrWH9HRtfvnDf0k6dOV39TRtfvVsv6IRp9aX6oyAQAAAAAAAGBZyyn4e/XVVxNBXE1NTeJr9nEsFpPf79crr7ySV0FnzpzRnj17ZFmWYrFYRY34jDMMQ4ZhJI4ty8rp/tmjQV0uV7HKApCFQjr2qnHMZywW0zvvvKP9+/cnnQ+t2qyW9Uf0i1Xfymm9X6z6llrWH1Fo1eYiVgkAAAAAAAAAkHII/sLhsCKRSCKIi3f5ORwOuVwuORyORCgYi8XU39+fU+dfapff7CBRkk6ePJnLz1V2O3fuTDqORCJZ3zs8PJx43draWrSaACyskOCv2sZ8jo+Py+1269SpU5qZmUmc//SpZ7X3d/6jHq54Oq91H654Wvt+52U6/wAAAAAAAACgyLLe4y8YDEpSIojr7u5O6+qbnJzUlStXdObMGdm2Lb/fr3379mnbtm3zrh3fy292N2H8dVtbm9566y3V1dVl/1MtAfv27dPAwEDiOBwOZz2yc3ZI6Ha7i15bPg4fPqxVq1alne/o6FBnZ2cZKgJKY+vWrbp79265yyi7a9eu6c/+7M80Pj6edP63WqE/WfsfNLXi3xS0/sMVT+tP1n5fH41fyK31HAAAAAAAAACqUCAQUG9vb9r56enpnNbJOviL7ztXU1OjCxcuqK2tLe2auro6eTwe7d27Vz/4wQ80MjKiEydOJAVgs42MjKizszOxZ+DsbkLTNPXmm2+WbdTl5ORkQfendv4Eg0F5vd4F7+vv70+8bmtrSxoZWk7379/PeH5qamqRKwFQSjMzMzpz5ox6e3sz7rH6k9XfyXm851w+XvUt/WT1d5TfYGgAAAAAAAAAqB5TU1O6d+9ewetk3WgxOTmpmpoaOZ3OjKHfbIZhaHBwUA6HQ8PDw7px40baNZn28ouPDz169Kg++uijsu5vNzExkXScTxDY3d2deG1ZlkKh0IL3nDt3LuP95bZu3Tpt2LAh7au2trbcpQEoktu3b2v//v0KBAIZQz9JOl/73aI+83ztjqKuBwAAAAAAAACVqLa2NmMOs27dupzWybrjz7Is1dTU6NixY1kv/uabb+qll17SwMBAYs+7+br8nE6nAoGAHA5HTj9EsYVCIdm2nXTu3XffVU9PT07reL1eBYNBWZYlSXrttdd09erVObv4gsFgYszn2bNnZZpmHtWXxsWLF7V9+/ZylwGgRC5fvqyTJ0/q0aNHc17zycrf1ejKbxb1uZ+u/KaGHj9W8+rVRV0XAAAAAAAAACpJZ2dnxq3Vbt26pQMHDmS9TtbBX1wuoVxra6tefPHFRKfb6dOn9c4772Tcyy/TnoGLIRKJKBwO68GDB7JtW9FoVOFwOO26vr4+3bhxQ42NjTJNU2vXrlVjY6NaW1vnXf/q1avasWOHbNuWZVnas2ePAoFA2n5/fr9fPp9P0pPA0OPxFO+HBFCVpqam9Prrr0t60kVdSAfu+fPn5w39JOnjlRvzXn/edQn+AAAAAAAAAKAocg7+cu1C83g8eumll/S9731vSXb5hcPhROC2EMuyEt170pM9+BYK/gzD0M9+9jO9+uqrGhgYkGVZ2r17t0zTVGNjoyYnJzU8PJzoMAwEAmn7AwJAqqGhIXm9Xo2NjUmSfvnLX8rv96u5uTmv9drb2/XjH/943mtGVz6b19oLGfn885KsCwAAAAAAAADLTdbBn2EYmpyc1Jo1a3J6QDwYmx36lbvLbzav1yuv11vSZxiGod7eXkUiEb377ru6ceOGJiYmNDAwINM01dTUpPb2drr8ACwoFovpwoULOnv2rGZmZhLnx8bGtH//fnV1denIkSOJ/8AiW9kEf49rVuVV80I+//LLkqwLAAAAAAAAAMtNzh1/Dx8+zDn8i4uHfuXu8isXp9OZ8z6BABA3Pj6uH/3oR7p+/XrG78/MzOjUqVMKh8P667/+a61fvz7rtbdu3aotW7boV7/61ZzXrI5N51xzNp5ZsaIk6wIAAAAAAADAcpPz37bOHnWZLcMwJD3pVOnu7tbVq1eXXegHAIW4du2adu3aNWfoN9v169e1a9cuXbt2LadnLDRmuGHmNzmtl63GZ54pyboAAAAAAAAAsNxkHfzV19dLks6dO6eRkZGcH+RwODQ4OFj20Z4AUElmZmb0xhtvyOPxaHx8POv7xsfH5fF49MYbbySNBJ3PQsHf8zN3s35+Lp5fvbok6wIAAAAAAADAcpNzx9/AwID27NmjTZs26cUXX9Rrr72m9957b94wsKenRx999JEaGxvzKjIajerChQt53QsAler27dvav3+/AoFAYm/UXMRiMQUCAe3fv1+3b99e8Pr4uM+5PDfzj9o28+uc65hP48w9NRP8AQAAAAAAAEBR5Bz8xWKxxNfw8LD6+vrU1dWVCAO3bduml156SWfOnNFPf/pT3blzR21tbQUVGYlE5PP5CloDACrJ5cuX9cILL2hoaKjgtYaGhvTCCy/o8uXLC167UNefd+rnBddTyvUAAAAAAAAAYDl7Ktcbampq0s7N7kSxbVvhcFjhcDjpGofDIafTqeeee06NjY0yTVObNm3K6pnRaDTXMlFkhw8f1qpVq9LOd3R0qLOzswwVAdXt/PnzevToUdHWe/Tokc6fP6/vf//7817X3t6uH//4x3N+/4ePP9Z//fof6hervlVwTc9Pf6Y/ffyLgtcBAAAAAAAAgEoXCATU29ubdn56ejqndbIO/iYmJiQ9CflM09TExIRs2067bnYwODsQtCxL0WhUAwMDSdc7nU41NTWpqalJDodDzc3NWrNmTdI1Y2Nj2ZaJErl//37G81NTU4tcCbA8LBTA5WPv3r0LXhMf9/mrX/0q4/e/ppj+64PLall/RA9XPJ13LWu+/EL/5cFlfU25jzAFAAAAAAAAgGozNTWle/fuFbxOzh1/o6OjqqurkyRNTk4qGo1qaGhIlmUpEoloeHg4LRBM7RKcHQgODw8rEomor68vca6urk7Nzc1yOByamJhQf39/xk5DLJ5169Zl7Pirra0tQzVA9StF8LfQGM9sn93w23Fd+ed3te93Xs4r/Fvz5Re68s/vquG34znfCwAAAAAAAADVqLa2Vhs2bEg7Pz09PWdzViY1sdkp3Dy2bdsm0zT105/+dMFrZweCw8PDGh4eVjQanTcQTC0j9Xs1NTW6c+dONqWiCG7duqUDBw4kjj/44ANt3769jBUBy8+/+3f/bs7Ou1xt2bJF/+t//a+srv0//+f/6N//+3+/4HUzmzZp4s/+TDP/z/+TdR3Pr16t/7Z5sxqeeSbrewAAAAAAAABguco1r8m648+2bdXX12d1bV1dnRobG9XY2Ci32504Pzk5qaGhIY2MjOiTTz5RNBpVJBJJu5/uPgAobtdfNmM+47Zu3aq7d+9mde2/xGL6yT/9k97+zW/06RdfzHndtqef1vFnn9WffuMb+lqOf8ZPTU3p9ddflySdOXOGTmMAAAAAAAAAmENOoz7jIz7zVVdXJ5fLJZfLlXQ+HgBGo1F98sknGhkZkWVZBT0LACpdMYO/bMd85uprNTXqXL9enevXa+jxY338+LFGPv9cn3/5pZ5ZsUKNzzyj51evVvPq1XmtPzQ0JK/Xm9jr9Ze//KX8fr+am5uL+FMAAAAAAAAAQHXIOvj77LPPSlaEw+GQw+FIOz8yMqL/8T/+h957772SPRsAlqqtW7dqy5YtBY/73LJli7Zs2VKkqubWXEDAlyoWi+nChQs6e/asZmZmEufHxsa0f/9+dXV16ciRI3SIAwAAAAAAAMAsK8pdwHwaGxvV09OjF198sdylAEBZFKNTL5cxn0vB+Pi43G63Tp06lRT6xc3MzOjUqVNyu90aHx8vQ4UAAAAAAAAAsDQt6eAv7t/+239b7hIAoCyKEfyVasxnKVy7dk27du3S9evXF7z2+vXr2rVrl65du1b6wgAAAAAAAACgAlRE8Ffo3oIAUKni4z7ztVhjPgs1MzOjN954Qx6PJ6cuvvHxcXk8Hr3xxhsZuwMBAAAAAAAAYDmpiODP5XLplVdeKXcZAFAWhXTsVcKYz9u3b2v//v0KBAKKxWI53x+LxRQIBLR//37dvn27BBUCAAAAAAAAQGWoiODP4XDo5MmT5S4DAMqikOBvqY/5vHz5sl544QUNDQ0VvNbQ0JBeeOEFXb58uQiVAQAAAAAAAEDlearcBQAA5rd161bdvXu33GWUxPnz5/Xo0aOirffo0SOdP39e3//+94u2JgAAAAAAAABUioro+AMAVKdSdCRWwnhTAAAAAAAAACgFgj8AQNmUIvhb6uNNAQAAAAAAAKBUGPWJrBw+fFirVq1KO9/R0aHOzs4yVASgGmzdulVbtmzRr371q6Kst2XLFm3ZsqUoawEAAAAAAADAYgkEAurt7U07Pz09ndM6BH/Iyv379zOen5qaWuRKAFSb9vZ2/fjHPy7KWoz5BAAAAAAAAFCJpqamdO/evYLXySr4u3PnjjZt2lTww1C51q1bl7Hjr7a2tgzVAKgmxQz+GPMJAAAAAAAAoBLV1tZqw4YNaeenp6fnbM7KZMHgb3JyUi0tLWpvb9fRo0fV2NiYW6WoChcvXtT27dvLXQaAKlSscZ+M+QQAAAAAAABQqTo7OzNurXbr1i0dOHAg63VWZHNRLBZTf3+/9uzZoxdffFFXr17NvlIAABZQjE49xnwCAAAAAAAAWO4WDP7q6uq0c+dOxWIxxWIxRSIRdXR0aNu2bbpw4YIePny4GHUCAKpYMYI/xnwCAAAAAAAAWO6y6vh7//33dfPmTb300kuJANC2bfl8PjU0NOj111/XnTt3Sl0rAKBKxcd95osxnwAAAAAAAACQZfAnSQ6HQz09PRodHdXJkydlGEYiBAwGg2ppaZHb7dZHH31UynoBAFWqkI49xnwCAAAAAAAAQA7BX1xdXZ28Xq8+/fRTXbhwQU6nMxEAhkIhHTx4UN/73vd06dKlUtQLAKhShQR/jPkEAAAAAAAAAOmpQm5ub29Xe3u7RkZG9J//83/WT3/6U0lSNBrViRMndOrUKXk8Hh07dkxr1qwpSsEAgOq0detW3b17t9xlAAAAAAAAAEDFyrnjL5PGxkb19vZqdHRUr7zyStI+gH6/Xw0NDXrllVc0MjJSjMcBAAAAAAAAAAAASFGU4C+urq5O3d3d+uyzz/Tmm2/KNM1ECNjf3689e/aora2NfQABAAAAAAAAAACAIitq8Debx+PRRx99lLYP4PDwMPsAAgAAAAAAAAAAAEVWsuAvrr29XVevXtXg4KBefPHFRAAY3wdw06ZNOnPmjO7cuVPqUgAAAAAAAAAAAICqVfLgLy51H8C6urpECOj3+9XS0sI+gAAAAAAAAAAAAECeFi34i4vvA/jpp5/OuQ/giy++qKtXry52aQAAAAAAAAAAAEDFqonFYrFyFxEKheT3+3Xjxg1JUk1NjaQnIeHx48fldru1Zs2acpa47Ny6dUsHDhxIHK9bt06rVq1Ku66jo0OdnZ2LWRoAAAAAAAAAAEBVCQQC6u3tTTs/PT2t+/fvJ44/+OADbd++fc51nipJdTlqbW1Va2urotGozp07p/fee0+SZNu2fD6ffD6fPB6PvF6vNm3aVOZql6fZH6rZpqamFrkSAAAAAAAAAACA6jI1NaV79+4VvM6ij/qcj8PhUE9Pj0ZHR3Xy5EkZhpEYAxoMBtXS0iK3262PPvqo3KUuO+vWrdOGDRvSvmpra8tdGgAAAAAAAAAAQEWrra3NmMOsW7cup3WWxKjP+fT39+v8+fOKRCKSvhoD6nA4dOzYMR06dKic5VWt1FGfC7WOAgAAAAAAAAAAoLhyzWuWVMdfJu3t7bp69aoGBwf14osvJjoAo9GoTpw4oddff73cJQIAAAAAAAAAAABlt+SDv7jGxkb19vbq5s2beuWVVxIB4BJvWAQAAAAAAAAAAAAWRcUEf3EOh0Pd3d367LPP1N3drc2bN5e7JAAAAAAAAAAAAKDsnip3AYV45ZVXyl0CAAAAAAAAAAAAsCRUXMcfAAAAAAAAAAAAgHQEfwAAAAAAAAAAAEAVIPgDAAAAAAAAAAAAqgDBHwAAAAAAAAAAAFAFsg7+3nvvPd25c6eUtQAAAAAAAAAAAADIU9bB34kTJzQwMFDKWgAAAAAAAAAAAADkKevgzzAMXblypZS1AAAAAAAAAAAAAMhTTnv8RSIRvfLKK6WqBQAAAAAAAAAAAECesg7+6uvrJUn9/f1qbGzU1atXS1UTAAAAAAAAAAAAgBzl1PEXNzExoY6ODrndbn322WfFrgkAAAAAAAAAAABAjnIO/mKxWOJ/Q6GQduzYoTNnzhS9MAAAAAAAAAAAAADZyzr4m5iYkCQNDg5qdHRUJ0+eVCwWUywWk9/vZ/wnAAAAAAAAAAAAUEY1sXgL3wK2bdsml8ulCxcuJM5NTk7q1KlTeu+9954sVlOjpqYm9fT0aNu2baWpGIvi1q1bOnDgQOJ43bp1WrVqVdp1HR0d6uzsXMzSAAAAAAAAAAAAqkogEFBvb2/a+enpad2/fz9x/MEHH2j79u1zrpN1x59t23ruueeSztXV1amnp0cfffSRdu7cqVgspqGhIe3evVuvv/66Hj58mO3yWOLu37+ve/fupX1NTU2VuzQAAAAAAAAAAICKNjU1lTGHmR36ZSPr4M8wDDkcjozfM01T77//vt577z05HA7FYjEFg0F997vf1aVLl3IqCEvTunXrtGHDhrSv2tracpcGAAAAAAAAAABQ0WprazPmMOvWrctpnaxHfebC7/fr9OnTTx5QUyPTNBUIBBj/WUFSR30u1DoKAAAAAAAAAACA4so1r8m64y8XXq9Xo6OjeumllxSLxTQ2Nqbdu3frlVdeYfwnAAAAAAAAAAAAUAIlCf6kzPv/9ff3q6GhQRcuXCjVYwEAAAAAAAAAAIBlqWTBX9zs/f82bdqkWCwmn8+nnTt36qOPPir14wEAAAAAAAAAAIBloeTBX1xra6tu3rypkydPJsZ/Hjx4UG63W5999tlilQEAAAAAAAAAAABUpUUL/uJS9/+7fv26duzYoTNnzix2KQAAAAAAAAAAAEDVWPTgT8q8/5/f71djY6OuXr1ajpIAAAAAAAAAAACAilaW4C8udf+/iYkJdXR0MP4TAAAAAAAAAAAAyFFZg7+41P3/GP8JAAAAAAAAAAAA5Cbr4O/OnTulrENS+v5/fr9f27Zt06VLl0r+bAAAMLepqSkdP35cx48f19TUVLnLAQAAAAAAAJBB1sFfS0uL3nvvvVLWoocPHyoajeqP/uiP1NbWplgsJtu2deLECbW1tenTTz8t6fMBAEC6oaEhvfDCC/q7v/s7/d3f/Z1eeOEFDQ0NlbssAAAAAAAAACmeyvbCWCxW8MMePnwoy7IUjUYVjUY1NjamaDSaOJeqpqYm8eyhoSHt2bMn43UAAKD4YrGYLly4oLNnz2pmZiZxfmxsTPv371dXV5eOHDmS+P9rAAAAAAAAAOWVdfBnGIYsy1rwujt37iSCPMuykl5PTk5mvCdTqJjpLxGLET4CAICFjY+P60c/+pGuX7+e8fszMzM6deqUwuGw/vqv/1rr169f5AoBAAAAAAAApMo6+JOkYDCo1tZWGYahaDSqoaGhogR7NTU1adfEjw3DUFNTkxwOhzZv3pxLuQAAIA/Xrl3Tn/3Zn2l8fHzBa69fv65du3bpr/7qr/RHf/RHpS8OAAAAAAAAwJyyDv7q6+sVjUZ18ODBtO/N1YkXD/fmC/YkyTRNORwOORyORMgXPwcAABbHzMyMzpw5o97e3py67MfHx+XxeNTR0aHXX39dK1euTLvmyyu7i1lqwop9gyVZFwAAAAAAAKhEOXX8ScmB3exgL9P3Z3ftxYM90zQToV5zc7Pq6uryLh4AABTH7du3dfToUQ0NDeV1fywWUyAQ0M9//nOdP39ev/d7v1fkCgEAAAAAAAAsJOfgb3b33uyQLx7uNTU1afPmzUlde4R7AAAsXZcvX9bJkyf16NGjgtcaGhrSCy+8oNOnT+v73/9+EaoDAAAAAAAAkK2sg7+JiQlJUl1dndrb2xnJCQBAlTh//nxRQr+4R48e6fz58wR/AAAAAAAAwCLLqePP4XDoo48+KlUtAACgDNrb2/XjH/+4qGvu3bs3p+s/Wfm7+njlRo2ufFaPa1ZpdWxaDTO/0fMzd/XczD8WtTYAAAAAAACgWuUU/LW3t5eqDgAAUCalCP6y+XeGf1GN/mb18/LXflefrvzmnNdtm/m1vFM/1w8ff6yvKTbndQAAAAAAAMBytyLbC23blmmapawFAACUwdatW7Vly5airbdly5YF1xt9ar1a1h/R0bX75w39JOnTld/U0bX71bL+iEafWl+0OgEAAAAAAIBqk3XHX3d3t1wuVylrwRJ2+PBhrVq1Ku18R0eHOjs7y1ARAKCYitn1t9CYz9Cqzdr3Oy/r4Yqnc1r3F6u+pZb1R3Tln99V6/RYARUCAAAAAAAAS0sgEFBvb2/a+enp6ZzWyTr4e+WVV3JaGNXl/v37Gc9PTU0tciUAgFIoZvA335jPT596Vnt/5z9qasW/yWvthyue1r7feVk3xy+o4bfj+ZYIAAAAAAAALClTU1O6d+9ewevktMcflq9169Zl7Pirra0tQzUAgGKLj/v81a9+VdA68435/K1W6E/W/oe8Q7+4hyue1p+s/b4+Gr+Q/cxyAAAAAAAAYAmrra3Vhg0b0s5PT0/P2ZyVCcEfsnLx4kVt37693GUAAEqoGF1/8435/Mnq7+gXq75V0PpxH6/6ln6y+jtiHgEAAAAAAACqQWdnZ8at1W7duqUDBw5kvQ7/oTwAAJA0/4jOYqxxvva7Ba+fvN6Ooq4HAAAAAAAAVDqCPwAAIOmrcZ/5mm/M5ycrf1ejK7+Z99qZfLrymxp6/LioawIAAAAAAACVrCSjPh8+fKgPP/xQoVBI0WhUtm3LNE3V1dXJNE25XC41NzdrzZo1pXg8AADIUyHjPucb8/nxyo35ljSvjx8/VvPq1SVZGwAAAAAAAKg0RQ/+wuGwXnrppaRzsVhM0Wg0cez3+yVJDodDL7/8stra2rRp06ZilwIAAHJUSPA335jP0ZXP5lvSvEY+/7wk6wIAAAAAAACVqOjB32uvvaZYLCZJqqmpSbyO/+9s0WhUPp9PPp9PTqdTx48f1549e4pdEgAAyNLWrVt19+7doq/7uGZV0deUpM+//LIk6wIAAAAAAACVqOjB38TEhGpqaiQ9CftcLpccDkfie9FoNDH+c3YYGIlE1NHRoaamJp08eVLf+973il0aAAAok9Wx6ZKs+8wKtisGAAAAAAAA4ooe/DU1NSkcDqumpkY3b95MhH6potGowuGwQqGQBgYGEiHg8PCwDh48qO7ubh05cqTY5QEAgDJomPlNSdZtfOaZkqwLAAAAAAAAVKKi/2fybrdbkuR0OucM/aQn+/u53W4FAgF99tlnevPNN+V0OhWLxRSLxeTz+XTmzJlilwcAAMrg+Znijw+VpOdXry7JugAAAAAAAEAlKnrw197errq6OkUikZzu83g8unr1qq5evaqdO3cqFovJ7/fr6tWrxS4RAAAssudm/lHbZn5d1DUbZ+6pmeAPAAAAAAAASCjJxjg9PT2KxWK6dOlSzvc6nU69//77eu+997Rp0yZ1dHTos88+K0GVAABgMXmnfr6k1wMAAAAAAAAqXUmCv/b2dr300ks6deqUpqam8lqjtbVVN2/e1J49e3Tw4MEiVwgAABbbDx9/rO9MF+c/5nl++jP96eNfFGUtAAAAAAAAoFqUJPiTnnT9bdq0SZ2dnQWt09vbm3f3IAAAWBpW7BvUyn1X9d+f+3+1ZkVh//qxZsUK/bfn/l+t3Mc4cAAAAAAAAGC2kgV/kvS3f/u3un37ttxud0HruN1unTp1qkhVAQCAcml45hn1//7v5x3+rVmxQv2///tqeOaZIlcGAAAAAAAAVL6SBn+GYejq1av653/+Z7344ot579XndDpl27YuXLhQ5AoBAMBia12zRj//9rf1ndWrc7rv+dWr9fNvf1uta9aUqDIAAAAAAACgspU0+JOehH+Dg4NqbGzUjh07dObMmZzXWLt2rSTpww8/LHZ5AACgDBqeeUY///a3dcHh0Lann5732m1PP60LDod+9u1v0+kHAAAAAAAAzOOpYi/42muv6cMPP1R9fb1M05TT6VRzc7OOHz+uvXv36rXXXlMwGNR/+k//SXv27MlqTcuyJEnDw8PFLhcAAJTJ12pq1Ll+vTrXr9fQ48f6+PFjjXz+uT7/8ks9s2KFGp95Rs+vXq3mHDsDAQAAAAAAgOWq6MHfhx9+KNu2Zdu2otGowuFw0vedTqcsy1JHR4fq6urk8Xjk8Xi0adOmOdcMhUKSJIfDUexyAQDAEtBMwAcAAAAAAAAUrOjB30svvaR33nlHNTU1kqRYLJb0/UgkopqaGsViMdm2Lb/fL7/fr7q6OjU3N8vpdMo0TTU1NamxsVGTk5Pq6+tTTU2Njh49WuxyAQAAAAAAAAAAgKpQ9ODv+PHjeu+99zQ5OalYLCan06nJycnEuM7UIDB+zrZthcPhtA7B2RwOh+7cuTNvdyAAAAAAAAAAAACwHBU9+Kurq9Prr7+u1157TX/5l3+pI0eOJL4XjUZlWZZGRkY0Njam4eFhRSKRxPczhYKSEt2Dhw4dSpxzOp1yOBx67rnn5HA45HQ6CQQBAAAAAAAAAACwbBU9+JMkj8ej/v5+DQ0NJZ13OBxyOBxyuVxJ5ycnJzU0NKRoNKrh4eHE/9q2LSlzIBiJRBSJRDQwMJD2DNM05XQ6dezYMa1Zs6bIPx0AAAAAAAAAAACw9JQk+JOkQCCglpYWffTRR/re974377V1dXWJMNDtdifOT05OKhqNamhoSJZlKRKJJALB2WFgfM9A6auuwnA4LNM09dJLL5XgpwMAAAAAAAAAAACWlpIFf4Zh6OzZs+ro6NCnn36a1xp1dXVqbGxUY2Nj0vl4h2A4HFYkEknaF3B2IDg8PEzwBwAAAAAAAAAAgGWhZMGfJLW3t8u2bd25c6eo++/FOwRnjwyNRqMKh8MaHh7WjRs3El1/AAAAAAAAAAAAwHJQ0uBPSh7dWUoOh0NutzvxvPiYUAAAAAAAAAAAAGA5WFHuAkolPiYUAAAAAAAAAAAAWA5K3vGH6nD48GGtWrUq7XxHR4c6OzvLUBEAAAAAAAAAAEB1CAQC6u3tTTs/PT2d0zoEf8jK/fv3M56fmppa5EoAAAAAAAAAAACqy9TUlO7du1fwOgR/yMq6desydvzV1taWoRoAAAAAAAAAAIDqUVtbqw0bNqSdn56enrM5KxOCP2Tl4sWL2r59e7nLAAAAAAAAAAAAqDqdnZ0Zt1a7deuWDhw4kPU6K4pZFAAAAHI3NTWl48eP6/jx44zRBgAAAAAAQN7o+AMAACijoaEheb1ejY2NSZJ++ctfyu/3q7m5ubyFAQAAAAAAoOLQ8QcAAFAGsVhM77zzjvbv358I/SRpbGxM+/fv1zvvvKNYLFa+AgEAAAAAAFBxCP4AAAAW2fj4uNxut06dOqWZmZm078/MzOjUqVNyu90aHx8vQ4UAAAAAAACoRAR/AAAAi+jatWvatWuXrl+/vuC1169f165du3Tt2rXSFwYAAAAAAICKR/AHAACwCGZmZvTGG2/I4/Hk1MU3Pj4uj8ejN954I2N3IAAAAAAAABBH8AcAAFBit2/f1v79+xUIBPLaty8WiykQCGj//v26fft2CSoEAAAAAABANSD4AwAAKKHLly/rhRde0NDQUMFrDQ0N6YUXXtDly5eLUBkAAAAAAACqDcEfAABACZ0/f16PHj0q2nqPHj3S+fPni7YeAAAAAAAAqgfBHwAAQAm1t7cXfc29e/cWfU0AAAAAAABUPoI/AACAEipF8FeKNQEAAAAAAFD5CP4AAABKaOvWrdqyZUvR1tuyZUtR1wMAAAAAAED1IPgDAAAosWJ26DHmEwAAAAAAAHMh+AMAACixYgZ/jPkEAAAAAADAXJ4qdwEAAADVLj7u81e/+lVB6yz3MZ9fXtk97/c/Wfm7+njlRo2ufFaPa1ZpdWxaDTO/0fMzd/XczD/Oed+KfYPFLhUAAAAAAKAsCP4AAAAWQXt7u3784x8XtAZjPtP9i2r0N6ufl7/2u/p05TfnvG7bzK/lnfq5fvj4Y31NsUWsEAAAAAAAYPEw6hMAAGARFGNEJ2M+k40+tV4t64/o6Nr984Z+kvTpym/q6Nr9all/RKNPrV+kCgEAAAAAABYXwR8AAMAiiI/7zNdyH/OZKrRqs1rWH9EvVn0rp/t+sepball/RKFVm0tTGAAAAAAAQBkR/AEAACySQjr2GPP5lU+felZ7f+c/6uGKp/O6/+GKp7Xvd16m8w8AAAAAAFQdgj8AAIBFUkjwx5jPJ36rFfqTtf9BUyv+TUHrPFzxtP5k7ff1L6opUmUAAAAAAADl91S5CwAAAFgutm7dqrt375a7jIr2k9XfyXm851w+XvUt/WT1d/RKUVYDAAAAAAAoPzr+AAAAUDHO1363yOvtKOp6AAAAAAAA5UTwBwAAgIrwycrf1ejKbxZ1zU9XflNDjx8XdU0AAAAAAIByIfgDAABARfh45cbSrEvwBwAAAAAAqgTBHwAAACrC6MpnS7LuyOefl2RdAAAAAACAxUbwBwAAgIrwuGZVSdb9/MsvS7IuAAAAAADAYiP4AwAAQEVYHZsuybrPrOBfiQEAAAAAQHXgbzkAAABQERpmflOSdRufeaYk6wIAAAAAACw2gj8AAABUhOdn7pZm3dWrS7IuAAAAAADAYiP4AwAAQEV4buYftW3m10Vds3HmnpoJ/gAAAAAAQJUg+AMAAEDF8E79fEmvBwAAAAAAUE4EfwAAAKgYP3z8sb4z/VlR1np++jP96eNfFGUtAAAAAACApYDgDwAAABXja4rpvz64rDVfflHQOmu+/EL/5cFlfU2xIlUGAAAAAABQfgR/AAAAqCgNvx3XlX9+N+/wb82XX+jKP7+rht+OF7kyAAAAAACA8iL4AwAAQMVpnR7TzfELOY/9fH76M90cv6DW6bHSFAYAAAAAAFBGBH8AAACoSA2/HdfN8QvyP/if2jbz63mv3Tbza/kf/E99NH6BTj8AAAAAAFC1nip3AQAAAEA2VuwbTD8n6ZV//Rp6/FgfP36skc8/1+dffqlnVqxQ4zPP6PnVq9W8+g8lvbjIFQMAAAAAACwugj8AAABUhebVq9W8enW5ywAAAAAAACgbRn0CAAAAAAAAAAAAVYDgDwAAAAAAAAAAAKgCjPpEVg4fPqxVq1alne/o6FBnZ2cZKgIAAADy8+WV3SVZN9M+lAAAAAAAZCMQCKi3tzft/PT0dE7rEPwhK/fv3894fmpqapErAQAAAErrk5W/q49XbtT/v707jK3qvvOE/4MAmxCXC2mTMKLCmTdk5WDIPi0oRcXaNxF07YKijTRU9ux0Jy3OOMnuaKuGtn5eVXGzSaXujoKd2G2mu4qtUInNzGbMlpeJnaERZB/FucETVV3F1xNUGqeBC8Ygm+LnRda3tjFg+97re+/x5yNVPef4nN/9XWNzw/me//8/uPqeGFuxJtZOjkfNxMexY+JMPDjx21K3BwAAQAKNjo7G2bNn864j+GNe7rrrrjlH/FVVVZWgGwAAKKw/xIr46dod0VH1UJxefe8Nz3tg4nfRMvp2fHvsVNwWk0vYIQAAAElWVVUVGzduvO74+Pj4DQdnzUXwx7y8/PLLsXPnzlK3AQAABTe46u749xsejXfWfPGW555efW88sWF//PzOL8XPzx2NmqsjS9AhAAAASdfc3Dzn0monT56MRx55ZN51VhayKQAAoHRGR0fjqaeeiqeeesqU7PPUt+a+2HX34/MK/aZ7Z80XY9fdj0ffmvuK0xgAAAAsguAPAAASYGBgIPbs2ROvvfZavPbaa7Fnz54YGBgodVtl7fSqe+Lrn/93cXHl7Yu6/uLK22Pf5/88BlfdXeDOAAAAYHEEfwAAUMEmJyfjxRdfjP3798fQ0FDu+NDQUOzfvz9efPHFmJy0Ft1sV2Nl/OWGfxujK/9FXnUurrw9/nLDo/GHWFGgzgAAAGDxBH8AAFChRkZGorGxMZ555pmYmJi47usTExPxzDPPRGNjY4yMWItuup+t/fKCp/e8kVNrvhg/W/vlgtQCAACAfAj+AACgAr3xxhvx8MMPx5tvvnnLc9988814+OGH44033ih+YxWiveqhAtf7SkHrAQAAwGII/gAAoIJMTEzED3/4w2hqalrQKL6RkZFoamqKH/7wh3OODlxO3l39JzG4+t6C1jy9+t4YGBsraE0AAABYKMEfAABUiA8//DD2798fnZ2di1q3b3JyMjo7O2P//v3x4YcfFqHDynBq9abi1BX8AQAAUGKCPwAAqABHjx6NPXv2xMDAQN61BgYGYs+ePXH06NECdFZ5BlffU5S671++XJS6AAAAMF+CPwAAqADt7e1x6dKlgtW7dOlStLe3F6xeJRlbsaYodS9fu1aUugAAADBfgj8AAKgADQ0NBa/59a9/veA1K8HayfGi1L1jpX9eAQAAUFr+ZQoAABWgGMFfMWpWgpqJj4tSd+sddxSlLgAAAMyX4A8AACrA/fffH1u2bClYvS1bthS0XiXZMXGmOHXXri1KXQAAAJgvwR8AAFSIrVu3FqzWcp3mMyLiwYnfxgMTvytoza0TZ2O74A8AAIASW1XqBgAAgJubmJiIZ599Nv7u7/6uYDWX6zSfU1pG344nNuwvaL2I+oLVo/K9OzYWpy5ditNXrsTYtWuxduXKeOD222PHnXfGg0JiAACgSAR/AABQxj788MN44oknYmBgoGA1l/M0n1O+PXYqfn7nl+KdNV/Mu9aO8Y/iW2PvFKArKt0fJifjp598Eoc//jhOX7lyw/MeuP32ePKee+LbX/hC3LZixRJ2CAAAJJ2pPgEAoEwdPXo09uzZU9DQL2J5T/M55baYjJ+fOxqfu3bjcGY+PnftSvztuaNxW0wWqDMq1eDly/HQBx/EXw0P3zT0i4g4feVK/NXwcDz0wQcxePnyEnUIAAAsB4I/AAAoU+3t7XHp0qWC113u03xOqbk6Eq///pVFh3+fu3YlXv/9K1FzdaTAnVFp+i5ejIc++CDeGRtb0HXvjI3FQx98EH0XLxapMwAAYLkR/AEAQJkqRkD3+c9/ftlP8zld3fhQnBh5Kb48/tGCrtsx/lGcGHkp6saHitMYFeP05ctR/5vfxMVr1xZ1/cVr16LhN78x8g8AACgIa/wBAECZamhoiJ/85CcFrWmaz4iV+47P2N8aEW9PTsbPPvkkXpjH2mxP3XNPfOsL/0/ctmJ/kTul3F2dnIxvDg3F6CJDvykXr12Lbw4Nxa/+5b+05h8AAJAXwR8AAJSp+++/P7Zs2RK//vWvC1bzL/7iLwpWK0luW7Eimu++O5rvvjsGxsbi1NhYvH/5cly+di3uWLkytt5xR+xYuza2r11b6lYpIz/75JMFT+95I6fGxuJnn3wSzXffXZB6AADA8iT4AwCAMlbIUX/f+c53TPM5D9sFfMzDtdf3xgv3/IeI1fcWrOYL/+dUNN/9bwpWDwAAWH6s8QcAAGWskOv8FWPNQFiu3l39JzFYwNAvIuL06ntjoEAjCAEAgOVJ8AcAAGVsarrPfG3ZssVoPyigU6s3Faeu4A8AAMiD4A8AAMpcIUbqff3rXy9AJ8CUwdX3FKXu+5cvF6UuAACwPAj+AACgzBUi+DPNJxTW2Io1Ral7+dq1otQFAACWB8EfAACUuXyn+zTNJxTe2snxotS9Y6V/pgMAAIvnXxQAAFAB8hmxZ5pPKLyaiY+LUnfrHXcUpS4AALA8CP4AAKAC5BP8meYTCm/HxJni1F27tih1AQCA5WFVqRsAAABu7f77748zZ4oTNAAL9+DEb+OBid/F6dX3Fqzm1omzsX3tlwpWDwAAWH4EfwAAALAILaNvxxMb9he0XkR9wepR+d4dG4tTly7F6StXYuzatVi7cmU8cPvtsePOO+NBo0MBAJiD4A8AAAAW4dtjp+Lnd34p3lnzxbxr7Rj/KL419k4BuqLS/WFyMn76ySdx+OOP4/SVKzc874Hbb48n77knvv2FL8RtK1YsYYcAAJQza/wBAADAItwWk/Hzc0fjc9duHM7Mx+euXYm/PXc0bovJAnVGpRq8fDke+uCD+Kvh4ZuGfhERp69cib8aHo6HPvggBi9fXqIOAQAod4I/AAAAWKSaqyPx+u9fWXT497lrV+L1378SNVdHCtwZlabv4sV46IMP4p2xsQVd987YWDz0wQfRd/FikToDAKCSCP4AAAAgD3XjQ3Fi5KX48vhHC7pux/hHcWLkpagbHypOY1SM05cvR/1vfhMXr11b1PUXr12Lht/8xsg/AAAEfwAAAJCvmqsjcWLkpeg49/fxwMTvbnruAxO/i45zfx//OPKSkX7E1cnJ+ObQUIwuMvSbcvHatfjm0FD8YdKUsQAAy9mqUjcAAAAASXBbTEbz2KloHjsVA6s2xqk1X4zTq++JyytWxx2TE/HAxMexY/yj2H71bKlbpYz87JNPFjy9542cGhuLn33ySTTffXdB6gEAUHkEfwAAAFBg26+eFfBxS9de3xsv3PMfIlbfW7CaL/yfU9F8978pWD0AACqLqT4BAAAASuDd1X8SgwUM/SIiTq++NwYKNIIQAIDKI/gDAAAAKIFTqzcVp67gDwBg2RL8AQAAAJTA4Op7ilL3/cuXi1IXAIDyZ40/AAAAgBIYW7GmKHUvX7tWlLpUnnfHxuLUpUtx+sqVGLt2LdauXBkP3H577Ljzznhw7dpStwcAFIHgDwAAAKAE1k6OF6XuHStN8LSc/WFyMn76ySdx+OOP4/SVKzc874Hbb48n77knvv2FL8RtK1YsYYfAcuMhBFhagj8AAABYoJX7jpe6BRKgZuLjotTdescdRalL+Ru8fDn+Ymgo3pnHOo+nr1yJvxoejpc/+ST++333RY2fG6CAPIQApSP4AwAAoCKMjo7G97///YiIePbZZ6OqqqrEHUF+dkycKU5doyeWjWuv781t9625L/Z9/s/j4srbF1TjnbGxeOj9/y9e//0rUTc+FBEebgDy4yEEKC1zPyRMJpOJdDod2Wy21K0AAAAUzMDAQOzZsydee+21eO2112LPnj0xMDBQ6rYgLw9O/DYemPhdQWtunTgb2wV/y87pVffE1z//7xYc+k25uPL22Pf5P4/BVXcXuDNguem7eDEe+uCDeYV+070zNhYPffBB9F28WKTOYPkQ/CVAOp2OAwcOxKZNm2LXrl2xd+/eqKmpiZqammhrayt1ewAAAIs2OTkZL774Yuzfvz+GhoZyx4eGhmL//v3x4osvxuTkZOkahDy1jL5d1vUof1djZfzlhn8boyv/RV51Lq68Pf5yw6PxhzDVHjO9OzYWPx0Zib/+53+Og5lM/PU//3P8dGQk3l1gsEPynb58Oep/85u4eO3aoq6/eO1aNPzmNzF4+XKBO4PlRfBX4dra2mLv3r2xbt26OH78eJw5cyYGBwejtbU1stlsdHR0xK5du4wABAAAKs7IyEg0NjbGM888ExMTE9d9fWJiIp555plobGyMkZGREnQI+fv22Kn48vhHBam1Y/yj+NbYOwWpReX42dovxztrvliQWqfWfDF+tvbLBalFZfvD5GS8NDISW0+fjn/1T/8UB4eH428+/jh++skn8TcffxwHh4fjX/3TP8XW06fjpZGR+IOHcJa9q5OT8c2hoRhdZOg35eK1a/HNoSE/U5AHwV8F6+7ujo6Ojqivr4+urq6ora2NiIhUKhUtLS3R2dkZEZ9N/9nc3FzKVgEAABbkjTfeiIcffjjefPPNW5775ptvxsMPPxxvvPFG8RuDArstJuPn547G565dyavO565dib89dzRuCzdKl5v2qocKXO8rBa1H5Rm8fDke+uCD+Kvh4Th95eZ/N02tz/bQBx8YpbXM/eyTTxY8veeNnBobi5998klBasFyJPirUJlMJg4dOhQRET/+8Y/nPKehoSF2794dERH9/f2RTqeXrD8AAIDFmJiYiB/+8IfR1NS0oFF8IyMj0dTUFD/84Q/nHB0I5azm6ki8/vtXFh3+fe7alXj9969EzVUjX5ebd1f/SQyuvregNU+vvjcGTOG4bFmfjcV64eOPy7oeLCeCvwrV3t4eERG7d++OVCp1w/Oamppy2y+88ELR+wIAAFisDz/8MPbv3x+dnZ2LWrdvcnIyOjs7Y//+/fHhhx8WoUMonrrxoTgx8tKCp/3cMf5RnBh5KerGh4rTGGXt1OpNxakr+FuWrM/GYr07NhaDtxgdulCnr1zxEAIskuCvQvX09ERE5Kb3vJGpEX8REW+99VZRewIAAFiso0ePxp49e2JgYCDvWgMDA7Fnz544evRoATqDpVNzdSROjLwUHef+Ph6Y+N1Nz31g4nfRce7v4x9HXjLSbxkbXH1PUeq+L7hZdqzPRj5OXbpUnLqCP1iUVaVugIXr6+vLbW/fvv2m56ZSqUilUpHNZiObzUYmk4nq6upitwgAALAg7e3tcamAN40uXboU7e3t8eijjxasJiyF22IymsdORfPYqRhYtTFOrflinF59T1xesTrumJyIByY+jh3jH8X2q2dL3SplYGzFmqLUvZxn+EPlKcb6bM13312QepS/W60FuVgeQoDFEfxVoP7+/tz2fEK8bdu25a5Jp9OCPwAAoOw0NDTET37yk4LW/PrXv17QerDUtl89K+DjptZOjhel7h0rTRK23BRjfTbB3/IxVqSHBTyEAIvjU7wCZTKZ3Pa6detuef7mzZtz28PDw0XpCQAAIB9r1hR+1EoxagKUk5qJwoY1U7becUdR6lKerM9GvtYW6WEBDyHA4vjNuYlsNhttbW1RU1MT2Wy21O3kTA/v1q9ff8vzU6lUbvvcuXPFaAkAACAvr732WsFr/o//8T8KXhOgnOyYOFOcumvXFqUu5cn6bOTrgdtvL0pdDyHA4pjqcw6ZTCba29ujp6cnd+z8+fMzArTF6uvri97e3njvvfdieHg4stlspFKp2Lx5c+zbty8aGxtv+ToXLlzIbc+npw0bNuTdNwAAQDGZ6hNg4R6c+G08MPG7OL363oLV3DpxNrav/VLB6lH+rM9GvnbceWdx6noIARbFiL9p0ul0HDx4MHbt2jUj9CtU7V27dsU3vvGNXO1t27ZFbW1tZLPZSKfTudGF3d3dN611/vz5RfdRTiMXAQAApjQ0NFRETYBy0zL6dlnXo/xZn418Pbh2bcFH/W29/fbYLviDRVn2wV82m42Ojo7YtWtX7N27N44dO1bw1+ju7o69e/dGJpOJxsbGGBwcjOPHj8eRI0fi+PHjMTg4GPX19bnzDx06FG1tbTfteSGmrwNYiFGLAAAAhXb//ffHli1bClZvy5YtBa0HUK6+PXYqvjz+UUFq7Rj/KL419k5BalE57hj6n8Wpa322ZeXJe+4p63qwnCzbqT6z2Ww0NzdHf3//jOONjY3xxBNPxNe+9rWCjI7r6+uLQ4cORURES0tLtLa2XndOKpWKrq6uOHjwYC547OjoiO3bt8/5hGoqlcr1NjVV6HyZ9hMAAChXhZzu0zSfVIKV+47ntgcGBqKlpSWGhoYiIuK+++7L3RuAm7ktJuPn547Grrsfj4srFz/i5nPXrsTfnjsat8VkAbujEtRMfFyUutZnWz6uvb43HosV8fLdj8c7a76Yd70d4x/FX/7q/43Y98sCdAfLz7J97CKVSuVCv1QqFa2trTE4OBjPP/98VFdXx/r16wvyOo8//viM17iZH//4xzP2n3766YL0MH1NwOmj/wAAAMpJIafmNM0nlWJycjJefPHF2L9/fy70i4gYGhqK/fv3x4svvhiTk4IYbq7m6ki8/vtX4nPXFrdW2+euXYnXf/9K1FwdKXBnVIIdE2eKU9c0jcvK1EMIi/17aIqHECB/yzb4i4ior6+P5557LgYHB6OlpWXGyLlCBGQdHR25kXlPPvnkLc9PpVLR0tKS289ms3Ou9zc9lFzoen+bN29e0PkAAABLpVDTfZrmk0oxMjISjY2N8cwzz8TExMR1X5+YmIhnnnkmGhsbY2REIMPN1Y0PxYmRlxY87eeO8Y/ixMhLUTc+VJzGKHsPTvw2Hpj4XUFrbp04a322ZchDCFAelnXw19XVFU1NTUWrf/jw4dz29DX8bmbfvn0z9nt7e687Z3p4l8lkblnz3Llzue3q6up59QEAAFAKhRipZ5pPKsEbb7wRDz/8cLz55pu3PPfNN9+Mhx9+ON54443iN0ZFq7k6EidGXoqOc39/yyDngYnfRce5v49/HHnJTXaiZfTtsq5H5fAQApTesl3jr9h6e3tzo/1SqdS8A7fa2toZ+7PXIIyYGfwNDw/fsub0cFDwBwAAlLNCrPNnmk/K2cTERDz77LPR1dW1oCk8R0ZGoqmpKQ4ePBjf//73Y/Xq1UXskkp2W0xG89ipaB47FQOrNsapNV+M06vvicsrVscdkxPxwMTHsWP8o9h+9WypW6WMfHvsVPz8zi8VbH22b429U4CuqFRTDyH8bO2Xo73qK3F69b03PPeBid/FE6O/im+NvWN6TygQwV+R9PX15ba3bdu2oGtra2sjnU7PqFVXVzejXk9PT0TMb8TfVDi4e/fuBfUBAACw1Kam+/z1r3+9qOtN80k5+/DDD+OJJ56IgYGBRV0/OTkZnZ2d8fbbb0d7e3v86Z/+aYE7JGm2Xz2byIBvdHQ0vv/970dExLPPPhtVVVUl7qjyTa3Ptuvux+PiytsXXcf6bEzxEAKUzrKe6rOYpk/RudB19WYHhbNH9U0P8OYaETjbVIg4PTwEAAAoV/mM2DPNJ+Xq6NGjsWfPnkWHftMNDAzEnj174ujRowXoDCrL1M//a6+9Fq+99lrBfq+wPhvFs/3q2fjW2DvxX7L/K146/z/jv2T/V3xr7B2hHxSJEX9FkM1mc9N8Rnw21edC3HfffTP2Z4/qq66ujurq6shkMpFOpyObzd7wNaaPPGxsbFxQHwAAAKWQz3SfpvmkXLW3t8elS5cKVu/SpUvR3t4ejz76aMFqUnlW7jte6haWzOTkZLz00kvx3HPPxcTERO740NBQ7N+/Pw4dOhSPP/54rFixooRdVr6p9dn+/YZHFzTt547xj+Jvzx0V+gGUAcFfEcweobfQdfVmjxCcPu3nlB/84AfR3NwcERGHDx+O1tbWOWt1d3dHRERLS8uCA0gAAIBSuP/+++PMmTOlbgMKqhDrV85mhCvLxcjISPzH//gf480335zz6xMTE/HMM89Ef39//M3f/E3cfffdS9xhslifDaCyCf6KYPb0AuvXr1/Q9evWrbvlOQ0NDbF79+7o7++Pjo6O2LdvX9TW1s44p6+vL44dOxa1tbU3DAYBAACA4itG8GeEK8vBG2+8EX/9138dIyO3Hkn25ptvxsMPPxz/9b/+1/jX//pfF7+5BLM+G0DlEvwVwYULF/K6fsOGDTP2z58/P+d5R44ciQMHDkR/f3/s3bs3Wlpacuv/9fb2Rk9PT9TW1sYvfvGLvPoBAAAA8nP//ffHli1b4te//nVB6m3ZsiW2bNlSkFpQjiYmJuLZZ5+Nrq6umJyc/0iykZGRaGpqioMHD8b3v//9WL16dRG7XB62Xz0r4AOoIIK/Ijh37lxe188e8XezIPHIkSPR19cXHR0d0dPTEx0dHZFKpWLbtm3R2dlZsKf/BgcHF3T+pk2bYtOmTQV5bQAAAEiCQo76M80nSfbhhx/GE088cd2sWvM1OTkZnZ2d8fbbb0d7e3v86Z/+aYE7BIDFO3PmzIKWNlhoPiP4K4JsNjtjfz5Td+ajrq4u6urqivoaC50q9D/9p/8U3/nOd4rUDQAAAFSeQgZ/pvkkqY4ePRo/+MEP4tKlS3nXGhgYiD179sSPfvSjePTRRwvQHQDk78iRIwWfAn66lUWrTE6+U38WOzgEAAAAim9qus98meaTJGtvby9I6Dfl0qVL0d7eXrB6AFDuBH9laP369TfdBwAAACpTIUbqmeaTJCvGaFa/MwAsJ6b6LEPnz58vdQvXaWtri5qamnmfb30/AAAAuF4hpvs0zSdJVsgpcafXBIByceDAgdi9e/e8zx8cHFzQcmyCvyJIpVIz9vMN8sphqs+amprYuXNnqdsAAACAijY13eevf/3rRV1vmk+SLt/fkdn8zgBQbjZt2lTUwVOm+iyCDRs2zNhf6Bp/s89/8MEH820JAAAAKBP5jD4yZSHLQSFH6PmdAWC5EfwVwewRekNDQwu6/ty5czP2N2/enG9LAAAAQJnIJ9QwZSHLQSF/zv3OALDcmOqzCLZv3z5jf6FTfc4e8VddXZ1vSwAAAECZuP/+++PMmTOlbgPKVqGm+zTNJwDLkRF/RTB7hN7777+/oOuHh4dn7NfW1ubdEwAAAABUikKM1DPNJwDLkRF/RZBKpSKVSkU2m42IiEwms6Drp08Nunv37kK2BgAAAABlr6GhIX7yk5/kXYNbW7nveKlbAKCABH9F8tWvfjWOHTuW20+n0/Meuffee+/ltuvq6greGwAAAACUs3yn+zTNJywd4TGUF8Ffkezbt29G8Nff3z/v4C+dTue2GxsbC97bYjz22GOxZs2a644fPHgwmpubS9ARAAAAAEmWz6g/03wCUGk6Ozujq6vruuPj4+MLqiP4u4ELFy7kdf3sqQS6u7ujpaXlltf19vbmtuvr6yOVSuXVR6F8+umncx4fHR1d4k4AAAAAWA7yCf5M8wlApRkdHY2zZ8/mXUfwdwPnz5+fsb+YILC1tTXa2toi4rN1/vr6+m45defhw4dnXF8u7rrrrjlH/FVVVZWgGwAAAACS7v77748zZ86Uug0AWBJVVVWxcePG646Pj4/fcHDWXAR/c+jr64tsNjvj2CuvvBLPP//8guq0tLREd3d3ZDKZiIj43ve+F7/85S9vOIqvu7s7N83nc889F9XV1Yvovjhefvnl2LlzZ6nbAAAAAAAASJzm5uY5l1Y7efJkPPLII/Ous+yDv3Q6Hf39/XHu3LnIZrMxPDwc/f39153X09MTb731VmzdujWqq6tjw4YNsXXr1luO4PvlL38ZX/nKVyKbzUYmk4mvfe1r0dnZed16fx0dHbnRgS0tLdHU1FS4NwkAAAAAAEDiLfvgr7+/Pxe43Uomk8mN3ov4bA2+WwV/qVQqfvWrX8V3v/vdOHbsWGQymdi7d29UV1fH1q1b48KFC/Hee+/lRhh2dnaagxwAAAAAAIAFW/bBX0tLS7S0tBT1NVKpVHR1dUU6nY5XXnkl3nrrrTh//nwcO3YsqqurY9u2bdHQ0GCUHwAAAAAAAIu27IO/pVRbW7vgdQIBAAAAAABgPlaWugEAAAAAAAAgf4I/AAAAAAAASADBHwAAAAAAACSA4A8AAAAAAAASQPAHAAAAAAAACbCq1A1QGR577LFYs2bNdccPHjwYzc3NJegIAAAAAAAgGTo7O6Orq+u64+Pj4wuqI/hjXj799NM5j4+Oji5xJwAAAAAAAMkyOjoaZ8+ezbuO4I95ueuuu+Yc8VdVVVWCbgAAAAAAAJKjqqoqNm7ceN3x8fHxGw7Omovgj3l5+eWXY+fOnaVuAwAAAAAAIHGam5vnXFrt5MmT8cgjj8y7zspCNgUAAAAAAACUhuAPAAAAAAAAEkDwBwAAAAAAAAkg+AMAAAAAAIAEEPwBAAAAAABAAgj+AAAAAAAAIAEEfwAAAAAAAJAAgj8AAAAAAABIAMEfAAAAAAAAJIDgDwAAAAAAABJgVakboDI89thjsWbNmuuOHzx4MJqbm0vQEQAAAAAAQDJ0dnZGV1fXdcfHx8cXVEfwx7x8+umncx4fHR1d4k4AAAAAAACSZXR0NM6ePZt3HcEf83LXXXfNOeKvqqqqBN0AAAAAAAAkR1VVVWzcuPG64+Pj4zccnDUXwR/z8vLLL8fOnTtL3QYAAAAAAEDiNDc3z7m02smTJ+ORRx6Zd52VhWwKAAAAAAAAKA3BHwAAAAAAACSA4A8AAAAAAAASQPAHAAAAAAAACSD4AwAAAAAAgAQQ/AEAAAAAAEACCP4AAAAAAAAgAQR/AAAAAAAAkACCPwAAAAAAAEgAwR8AAAAAAAAkgOAPAAAAAAAAEkDwBwAAAAAAAAkg+AMAAAAAAIAEWFXqBqgMjz32WKxZs+a64wcPHozm5uYSdAQAAAAAAJAMnZ2d0dXVdd3x8fHxBdUR/DEvn3766ZzHR0dHl7gTAAAAAACAZBkdHY2zZ8/mXUfwx7zcddddc474q6qqKkE3AAAAAAAAyVFVVRUbN2687vj4+PgNB2fNRfDHvLz88suxc+fOUrcBAAAAAACQOM3NzXMurXby5Ml45JFH5l1nZSGbAgAAAAAAAEpD8AcAAAAAAAAJIPgDAAAAAACABBD8AQAAAAAAQAII/gAAAAAAACABBH8AAAAAAACQAII/AAAAAAAASADBHwAAAAAAACSA4A8AAAAAAAASQPAHAAAAAAAACSD4AwAAAAAAgAQQ/AEAAAAAAEACCP4AAAAAAAAgAQR/AAAAAAAAkACCPwAAAAAAAEiAVaVugMrw2GOPxZo1a647fvDgwWhubi5BRwAAAAAAAMnQ2dkZXV1d1x0fHx9fUB3BH/Py6aefznl8dHR0iTsBAAAAAABIltHR0Th79mzedQR/zMtdd90154i/qqqqEnQDAAAAAACQHFVVVbFx48brjo+Pj99wcNZcBH/My8svvxw7d+4sdRsAAAAAAACJ09zcPOfSaidPnoxHHnlk3nVWFrIpAAAAAAAAoDQEfwAAAAAAAJAAgj8AAAAAAABIAMEfAAAAAAAAJIDgDwAAAAAAABJA8AcAAAAAAAAJIPgDAAAAAACABBD8AQAAAAAAQAII/gAAAAAAACABBH8AAAAAAACQAII/AAAAAAAASADBHwAAAAAAACSA4A8AAAAAAAASQPAHAAAAAAAACSD4AwAAAAAAgAQQ/AEAAAAAAEACCP4AAAAAAAAgAQR/AAAAAAAAkACCPwAAAAAAAEgAwR8AAAAAAAAkwKpSN0BleOyxx2LNmjXXHT948GA0NzeXoCMAAAAAAIBk6OzsjK6uruuOj4+PL6iO4I95+fTTT+c8Pjo6usSdAAAAAAAAJMvo6GicPXs27zqCP+blrrvumnPEX1VVVQm6AQAAAAAASI6qqqrYuHHjdcfHx8dvODhrLoI/5uXll1+OnTt3lroNAAAAAACAxGlubp5zabWTJ0/GI488Mu86KwvZFAAAAAAAAFAagj8AAAAAAABIAMEfAAAAAAAAJIDgDwAAAAAAABJA8AcAAAAAAAAJIPgDAAAAAACABBD8AQAAAAAAQAII/gAAAAAAACABBH8AAAAAAACQAII/AAAAAAAASADBHwAAAAAAACSA4A8AAAAAAAASQPAHAAAAAAAACSD4AwAAAAAAgARYVeoGAGC2M2fOxJEjR3L7Bw4ciE2bNpWwIwAAAACgnLmn+BnBHwBl58yZM/GTn/wkt7979+5l+SENAAAAAMyPe4qfMdUnAAAAAAAAJIDgDwAAAAAAABJA8AcAAAAAAAAJIPgDAAAAAACABFhV6gZgOers7IzR0dGoqqqK5ubmUrdT1nyv/sj3AoDlzmchlB+/l5QDP4fLkz/38uXPpnh8bxfG9+uPfC+WlxWTk5OTpW6C8nPy5Ml45JFHcvt/93d/Fzt37ixhR8nypS99Kc6ePRsbN26M//2//3ep2ylrvld/tJy+F/4OAmAuy+mzECqF30vKgZ/D5cmfe/nyZ1M8vrcL4/v1R8vle5HUe4oLfV+m+gQAAAAAAIAEEPwBAAAAAABAAgj+AAAAAAAAIAEEfwAAAAAAAJAAq0rdAOXp0qVLM/YHBwdL1EkyjY+P5/7/5MmTJe6mvPle/dFy+l7M/jvH30EARCyvz0KoFH4vKQd+Dpcnf+7ly59N8fjeLozv1x8tl+9FUu8pzn4fs/Ob2VZMTk5OFrMhKtN/+2//LVpbW0vdBgAAAAAAAP9XW1tbfPOb37zh1031CQAAAAAAAAkg+AMAAAAAAIAEsMYfc3r44Ydn7FdXV8edd95Zom4AAAAAAACWn0uXLkUmk8ntz85vZrPGHwAAAAAAACSAqT4BAAAAAAAgAQR/AAAAAAAAkACCPwAAAAAAAEgAwR8AAAAAAAAkgOAPAAAAAAAAEkDwBwAAAAAAAAkg+AMAAAAAAIAEWFXqBgBgKWUymbhw4UJs3rw5UqlUqdsBAAAAACgYwR8AiZdOp6OtrS36+/tnHE+lUtHY2Bitra0l6gwAAAAAqASZTCba2toiIqKrq6vE3dyYqT4BSLS2trbYu3dvrFu3Lo4fPx5nzpyJwcHBaG1tjWw2Gx0dHbFr167IZrOlbhUAAAAAKDPpdDoOHDgQu3btimPHjsWFCxdK3dJNGfEHQGJ1d3dHR0dH1NfXz3gKJ5VKRUtLS2zevDmam5sjk8lEc3NzHDlypITdAgAAAADlIJvNRk9PT3R3d0cmkyl1OwuyYnJycrLUTQBAoWUymdi1a1dERAwODt5wPb8DBw7kpgA9fvx41NbWLlmPAAAAAEB5efrpp6OnpyciIqqrq6OlpSUiIg4dOhQREbt37y7rAQSm+gQgkdrb2yPisw/iG4V+ERFNTU257RdeeKHofQEAAAAA5Wt4eDhqa2vj1VdfjRMnTkRTU1Ns3ry51G3Nm6k+AUikqadybjWCb/fu3bntt956q6g9AQAAAADlrZxH882HEX8AJE5fX19ue/v27Tc9N5VK5UYEZrPZipuzGwAAAABgiuAPgMSZWrMv4rN5uG9l27Ztue10Ol2UngAAAAAAik3wB0DiTB+1t27dulueP32O7uHh4aL0BAAAAABQbII/ABYtm81GW1tb1NTURDabLXU7OdPDu/Xr19/y/KmpPiMizp07V4yWAAAAAID/q1zvKybBqlI3AEDlyWQy0d7eHj09Pblj58+fnxGgLVZfX1/09vbGe++9F8PDw5HNZiOVSsXmzZtj37590djYeMvXuXDhQm57Pj1t2LAh774BAAAAgJsr9/uKSSD4A2De0ul0vPDCC3Hs2LGi1G5ubs5N01lbWxvbtm2L8+fPRzqdzv2vra0tnnvuuWhqarphrfPnzy+6D08YAQAAAEBhVcp9xSQQ/AFwU9lsNnp6eqK7u3vG2nmF1N3dHYcOHYqIiMbGxmhtbZ3x9E02m43vfve7uf8wOHToUGQymWhtbb1hzwsxfR3A5fDUDwAAAAAUWyXeV0wCa/wBMKdsNhsHDhyImpqaaGtry304NzY2xokTJwoWkPX19eU+nFtaWuL555+/rnYqlYqurq6or6/PHevo6Ije3t45a87+cF8I034CAAAAwOJV8n3FJBD8ATCnVCoV/f39ue3W1tYYHByM559/Pqqrq2P9+vUFeZ3HH398xmvczI9//OMZ+08//XRBepi+JuD00X8AAAAAwMIsp/uK5UjwB8AN1dfXx3PPPReDg4PR0tIy44mZQgRkHR0duRF5Tz755C3PT6VS0dLSktvPZrPR3d193XnT/+Nhoev9bd68eUHnAwAAAAAzVep9xSQQ/AFwQ11dXUVd7Pbw4cO57enD7W9m3759M/bnGpY/Pbybz/zh586dy21XV1fPqw8AAAAAYG6Vel8xCQR/AJREb29v7qmcVCo178CttrZ2xv7UtAHTTQ/+hoeHb1lzejgo+AMAAACA8lXM+4pJIPgDoCT6+vpy29u2bVvQtbM/pKfXml1vPiP+psLB3bt3L6gPAAAAAGBpFfO+YhII/gAoielD6Re6rt7sD/TZo/qmB3jzeXInnU5HRERdXd2C+gAAAAAAllYx7ysmgeAPgCWXzWZzw/EjYsbivvNx3333zdifPaqvuro6N8Q/nU7PeK3Zpj/V09jYuKA+AAAAAIClU+z7ikkg+ANgyc1+kmah6+rNfpJnasTedD/4wQ9y29MX+52tu7s7IiJaWloW/B8KAAAAAMDSWYr7ipVO8AfAkhsYGJixv379+gVdv27dulue09DQkJvys6OjY84P8b6+vjh27FjU1tZGa2vrgnoAAAAAAJbWUtxXnMv0wLHcpwddVeoGAFh+Lly4kNf1GzZsmLF//vz5Oc87cuRIHDhwIPr7+2Pv3r3R0tKSCwN7e3ujp6cnamtr4xe/+EVe/QAAAAAAxbdU9xUjPptWdHh4ODKZTHR0dOSOZzKZaGtri3379sW6deti/fr1ZTWTmOAPgCV37ty5vK6f/WTOzT7wjxw5En19fdHR0RE9PT3R0dERqVQqtm3bFp2dndHQ0JBXLwAAAADA0liq+4pPP/109PT03LBOR0dHLgxMpVIxODiYV1+FJPgDYMlNX4A3YvFD7Oerrq4u6urqivoaAAAAAEBxLdV9xeeffz6ef/75otQuNmv8AVBy+Q7RL3ZwCAAAAACUH/cVryf4A6DizF60d6GL+AIAAAAAy89yuK8o+AOg4txs0V0AAAAAgLksh/uKgj8AllwqlZqxn+8HbhKH5AMAAAAAM7mveGuCPwCW3IYNG2bsL3Qu7tnnP/jgg/m2BAAAAACUOfcVb03wB8CSm/0kzdDQ0IKuP3fu3Iz9zZs359sSAAAAAFDm3Fe8NcEfAEtu+/btM/YXOiR/9pM51dXV+bYEAAAAAJQ59xVvTfAHwJKb/STN+++/v6Drh4eHZ+zX1tbm3RMAAAAAUN7cV7w1wR8ASy6VSs1YiDeTySzo+ulD+Hfv3l2otgAAAACAMua+4q0J/gAoia9+9asz9tPp9Lyvfe+993LbdXV1BesJAAAAAChv7ivenOAPgJLYt2/fjP3+/v55Xzv9w7yxsbFgPQEAAAAA5c19xZsT/AGwKLMXwl2ohoaGGfvd3d3zuq63tze3XV9fP2NoPwAAAABQ3txXLC7BHwCLcv78+Rn7i/nAbm1tzW1nMpno6+u75TWHDx+e83oAAAAAoPy5r1hcgj8AFqyvry+y2eyMY6+88sqC67S0tER1dXVu/3vf+951dafr7u7ODcd/7rnnZlwLAAAAAJQ39xWLb8Xk5ORkqZsAoHyl0+no7++Pc+fORTabjeHh4RvOm11dXR1bt26N6urq2LBhQ2zduvWWi+Rms9n4yle+kvtgrq6ujs7OzqitrZ1xXkdHR7S1tUXEZx/sSX4qBwAAAAAqnfuKpSH4A+Cmpn8wLlR9fX10dXXd8rxsNhvf/e5349ixY7ljUx/2Fy5ciPfeey/3Ad7Z2XndPN4AAAAAQHlxX7E0BH8AlI10Oh2vvPJKvPXWW3H+/PnIZrNRXV0dmzdvjoaGhmhqaip1iwAAAABAmXFf8Y8EfwAAAAAAAJAAK0vdAAAAAAAAAJA/wR8AAAAAAAAkgOAPAAAAAAAAEkDwBwAAAAAAAAkg+AMAAAAAAIAEEPwBAAAAAABAAgj+AAAAAAAAIAEEfwAAAAAAAJAAgj8AAAAAAABIAMEfAAAAAAAAJIDgDwAAAAAAABJA8AcAAAAAAAAJIPgDAAAAAACABBD8AQAAAAAAQAII/gAAAAAAACABBH8AAAAkUjabjWw2W+o2AAAAlozgDwAAgMQ5cOBA1NTURE1NTWQymVK3M6eOjo6oqakRTgIAAAUj+AMAACBRMplM9Pf3R0REfX19VFdXl7ijub377ruRzWZjeHi41K0AAAAJIfgDAAAgUdrb23PbTz31VAk7ubn169dHRMTmzZtL2wgAAJAYgj8AAAASI5vNRk9PT0RE1NbWRm1tbYk7+qynjo6O66b0vO+++yIiIpVKzTje19cXvb29S9UeAACQIII/AAAAEmMq9IuIePLJJ0vYyR/19PREW1tbfOUrX4m+vr7c8XXr1l0X+j399NPxjW98I5qbm5e6TQAAIAEEfwAAACTG4cOHI+KzUXQNDQ0l7uYzjY2N0dLSEtlsNr7xjW/E008/HRGfTfE5Nd1nOp2OXbt2RU9PT1RXV8err75awo4BAIBKJfgDAAAgEXp7e3PTaZbLaL+Iz0LI1tbWGBwcjNbW1ujt7Y1du3bF8PBwrFu3Ljo6OmLv3r2xbt26ePXVV+PEiRNRV1dX6rYBAIAKtGJycnKy1E0AAABAvvbu3RvpdDoiIgYHB6+bRrOcdHd3x49+9KPIZrOxe/fuaGlpEfYBAAB5M+IPAACAipdOp3OhX2NjY1mHful0esZaf8PDw/H++++XsCMAACApBH8AAABUvBdeeCG3/cQTT5SwkxtLp9Nx4MCB2Lt3b0REvPTSS1FbWxv/+T//5zh8+HBs2rQp2tractOVAgAALJTgDwAAgIqWzWbj2LFjERGxe/fuqK6uLnFHM2Uymdi7d2/s3bs33nvvvejs7Iyurq64cOFCXLhwIerq6uJXv/pV1NfXR0dHR9TU1ERbW1up2wYAACrQqlI3AAAAQOXo6+uL7u7uWL9+faRSqdiwYUOsW7cuLly4EOfOnYtjx47Fq6++OiN8y2az0dzcHP39/VFfXx9dXV0F7enw4cO57ZaWlkXXKdZ7O3bsWKTT6aitrY1f/OIXuWlIz58/H5lMJiIiUqlUdHV1RXd3dxw6dCg6OjqitbV10e8FAABYnlZMTk5OlroJAAAAyls6nY7m5uZcUHUj1dXVceLEidx+JpOJr33tazOmr2xsbIznn3++YL1t2rRpzteer6V4b319fVFXVzfjWFtbW3R0dMSZM2dmHM9ms3H+/PmyG7kIAACUP1N9AgAAcEttbW23DMYiIjo7O3PbcwVjERE9PT0F66u7uzu3vdjRfkvx3maHfhGRu3b2a6dSKaEfAACwKKb6BAAA4Kay2Wz09/dHRERtbW1s27Ytzp8/n/v6+vXr47333ot9+/ZFbW3tjONf/epXo66uLrq7uyOdTue+NjX1Zb46Ojoi4rOwrKmpacHXl/K9Tb3OhQsXFtw3AADAXAR/AAAA3NQ//MM/RETE8ePH5wy0MplMNDc3XzfibmrduoiIpqam3JScU9fkG/z19vbmRss1NjYuqkYp39u+ffsiIgoSgAIAAESY6hMAAIBb6Ovri8bGxjkDqmw2G1/72tfixz/+8S3r7N69O7c9fVTdYh0+fDi3/eSTTy6qRinfW0NDQy48BAAAKAQj/gAAALip999/P1599dU5v/Znf/ZnsW3btnmNWtu8efOc24uRTqdz02vW19dHKpVaVJ1yfG8AAACLJfgDAADgpk6cODHn8aeffjrS6XQcP358XnWmj4Srrq7Oq6cXXnght/3UU08tuk45vjcAAIDFMtUnAAAAC9bX1xc9PT1RX18/7zXqhoeHc9v5hGPZbDaOHTsWEZ+tj1foNfJK+d4AAADyIfgDAABgwR5//PGIiGhqapr3NRcuXIiIz6bmzMf0tf1+8IMf5FVrLqV8bwAAAPkQ/AEAALAgbW1tkc1mIyKirq5uXtdks9nIZDIREbFv3768Xr+npyciPhtZN9/Xn69SvzcAAIB8CP4AAABYkI6OjohY2Oi2gYGB3HZDQ8OiX7u7uzsXzLW0tCy6zo2U8r0BAADkS/AHAADAvPX29ua2FzK6beq6fKfCnArmIhY2Fed8lPq9AQAA5EvwBwAAwLx1d3fntqurq+d93VQ41trauujX7uvry02pWYzRfqV8bwAAAIUg+AMAAGDe+vv7c9vr1q2b1zV9fX2RzWajsbFxQYHabMUc7RdR2vcGAABQCII/AAAA5mVqtN2U+QZdP/rRjyIivxFxmUwmF8zV19cXPGQr5XsDAAAoFMEfAAAA8zI7HJuPvr6+SKfT0draGqlUatGv3d7entt+6qmnFl3nRkr53gAAAApF8AcAAMC8DA8Pz9jPZrO3vOZ73/teVFdX57UmXzabjZ6enoiIqK2tjdra2kXXupFSvTcAAIBCEvwBAAAwL+vXr5+xPzssm+3pp5+OTCYTr776al6vOxX6RUQ8+eSTedW6kVK9NwAAgEIS/AEAADAvs0favfDCCzc8t7u7O3p6euLVV1/Nez2+w4cPR0REKpWKhoaGvGrdSKneGwAAQCEJ/gAAAJiX6urqGWvZHTt2LPr6+q47r62tLQ4dOhSdnZ1RV1eX12v29vbmpt0s1mi/iNK8NwAAgEJbMTk5OVnqJgAAAKgM3d3dcejQoRnH6uvro66uLjKZTBw7diwymUx0dnYWZHTe3r17I51OR0TE4ODgjHCu0Jb6vQEAABSa4A8AAIAFOXjwYBw7dmzOr1VXV0dnZ+d1U2cuRjqdjr1790ZERGNjYzz//PN517yVpXpvAAAAxSD4AwAAYMG6u7ujt7c3+vv7I5VKxbZt26KpqamgI+Gmh3AnTpxYsvX0luK9AQAAFIPgDwAAgLKTyWRi165dERGxe/fuOHLkSIk7AgAAKH8rS90AAAAAzNbd3Z3bbmlpKWEnAAAAlcOIPwAAAMrOpk2bIuKzdfVOnDhR4m4AAAAqgxF/AAAAlJWOjo7cttF+AAAA87eq1A0AAADAbI2NjRER0dTUVOJOAAAAKoepPgEAAAAAACABTPUJAAAAAAAACSD4AwAAAAAAgAQQ/AEAAAAAAEACCP4AAAAAAAAgAQR/AAAAAAAAkACCPwAAAAAAAEgAwR8AAAAAAAAkgOAPAAAAAAAAEkDwBwAAAAAAAAkg+AMAAAAAAIAEEPwBAAAAAABAAgj+AAAAAAAAIAEEfwAAAAAAAJAAgj8AAAAAAABIAMEfAAAAAAAAJIDgDwAAAAAAABJA8AcAAAAAAAAJ8P8DyAOYVNBaN50AAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABv4AAAMWCAYAAAA53PFgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAACeI0lEQVR4nOz9y49r6Xkn6L68BoPBuO1bKmG1oYGBFjIFSAdWAiodwGOjq0seVE2rTrVhQbJd3eePqSpDgHXK3fDUg4JODTwWUC4BqQNIgDOhgRsQDBlK7R13kou3xbXOYJtUkMGIICPIiCDjeYANRazN9a2Pi4y9U/zt930LeZ7nAQAAAAAAAKy14mNvAAAAAAAAALg/wR8AAAAAAABsAMEfAAAAAAAAbADBHwAAAAAAAGwAwR8AAAAAAABsAMEfAAAAAAAAbADBHwAAAAAAAGyA8mNvgKcpTdPo9Xrj70ulUhSLcmIAAAAAAICHkmVZDIfD8fdbW1tRLl8f7wn+mKnX68XFxcVjbwMAAAAAAIB/tre3d2Pwp4QLAAAAAAAANoDgDwAAAAAAADaAVp9rLsuy6PV60e/3I8uyiHg/j69SqcTW1tad5/KVSqWJ7/f29qJSqdx7v7x3cnISeZ5HoVCIFy9ePPZ2njT36ree070YDAYT7Yb9GQRAxPP6uxDWhZ9LngLvw+fJ6/50eW1Wx71djPv1W8/lXmzqZ4rTz2s6v5km+FtjrVYrms3mjY/Z3d2NRqOx8NrTgWGlUolqtbrwOsxWKBTGf9C6rzdzr37rOd8LfwYBEPG8/y6Ep8rPJU+B9+Hz5HV/urw2q+PeLsb9+q3nei829TPF2wq+tPpcU6enp7eGfhERzWYzjo+PH2BHAAAAAAAAPCYVf2soy7LodrsREVGr1aLRaIxLO4fDYXQ6nWi32+PH9/v9SJIk6vX6o+wXAAAAAACA1RP8raHhcBgREfV6Pfb39yd+r1gsRqVSie3t7Tg6OhofPz8/F/wBAAAAAABsMK0+11CaphHxfn7fdSqVypXfHwwGK90XAAAAAAAAj0fF3xoaDodRrVZvHeBYr9cn5gCmaRqVSmXV22MOOzs742Gq3My9+i33AoDnzt+F8PT4ueQp8D58nrzuT5fXZnXc28W4X7/lXjwvgr81VCqV5mrbWSwWo1AoRJ7n4+95GhqNxmNvYW24V7/lXgDw3Pm7EJ4eP5c8Bd6Hz5PX/eny2qyOe7sY9+u33IvnRfC3hra3t+90XqlUWvJOAAAAAAAAeCqUgN0gy7K4uLiIL774IrIse+ztLCzLsnG1X6lUinJZzgsAAAAAALCpJEEzpGka7XY7kiQZH8uybCmtMnu9XnS73ej3+zEcDsd9dUulUmxvb0e9Xl9aS85erzf+ep7WoAAAAAAAAKwvwd8lg8EgWq1WdLvdlax9enoaw+EwIiLK5XJUKpXIsizSNI00TaPZbEaz2Yz9/f2lBHWtVisi3lf76eELAAAAAACw2Z598JdlWSRJEkmSjEO5ZUuSJM7PzyPifeXd7u7uRFVflmVxfn4+DhzPz88jTdPY29u78zU7nU6kaRoREYeHh/fYPcDDm/4HC2aUAgAAAAA38Znie882+MuyLE5PT6Pf708cr9frsbOzE0dHR+P5ePfR6/XGod/Ozs7MMK9YLMbh4WGcnp6Ow792ux2VSiW2t7cXvuYoSIyIODg4iEqlco9nAPDwSqVS7O7uPvY2AAAAAIA14TPF955t8FcsFsehX6FQiEajMTFfr1gsLqUC8PT0dHyN2yr49vf3J9qMnp+f3yn4Oz09jTzPY3d3907nAwAAAAAAsH6ebfAXEVGr1WJra2vmPL1CoXDv9Vut1rhqcJ4Ze8ViMXZ2dqLdbkdERJ7nkSTJQvP+Li4uot/vR71eN9cPAAAAAADgGSne/pDNdXh4uFCotqhWqzX+ularzXXOdIVep9OZ+3pJkkS73Y5arRb7+/tznwcAAAAAAMD6e9bB3yp1Op1xtV+hUIhyeb7iyul5fNMzCK8zmiVYrVbj8PBwsc0CAAAAAACw9gR/K3I5sJsO824zHRL2er0bHz8YDOLk5CSq1Wq8fPlyoWsBAAAAAACwGQR/K3K5Ree81X4j1Wp14vvhcHjtYweDQRwdHUW5XBb6AQAAAAAAPGOCvxXIsmzc5jPifavPRZRKpYnv0zSd+bg0TeP4+DhKpZLQDwAAAAAA4JlbrBSNuUxX6C1a8Tcd/A0GgyuPSdM0jo6OolgsxqtXr6JYvD7DzbJs4n8X3Q8AAAAAAABPnwRoBaaDukUr/m4K8SLeB3gnJyeR53lkWRZv374d/97lSsNZarVaHB4eLrQfAAAAAAAAnj7B3wqMKuvuajr4u7xelmVxdHQ0riq8Lei7bW0AAAAAAAA2g+BvBe4b/E1XCF4O97rd7pVWotetMSsUvOveZrUbvUmpVLrSshQAAAAAAOA5Gw6Hc+U8I4vmM4K/FZgO3JZZZVev16Nery9tvXldXFws9PhGoxG7u7sr2g0AAAAAAMD6SZIkWq3WytbX9/EBLLsCEAAAAAAAAKYJ/p6g6QpBc/kAAAAAAAC4jVafT9B9KwRXYW9vLyqVytyPN98PAAAAAABgUr1ej62trbkfPxgMFhrHJvhbgenWnNMz/xb1FCr+KpVKVKvVx94GAAAAAADA2iqVSistnnr8RGkDTQd1i1bwTQeFi1TaAQAAAAAA8DwJ/lZgOvgbDocLnT8dFGqbCQAAAAAAwG0EfyswXaG3aMXf9OPLZR1ZAQAAAAAAuJngbwWmK/QGg8FC509XCGr1CQAAAAAAwG0EfytQLBajUCiMv1+01eflx1er1aXtCwAAAAAAeDoW7RgIt9FDckW2trai2+2Ovx8MBnNX7vX7/Yl1AAAAAAAgIqLT6US/358oPikWf1vjMwqS8jyPiIidnZ25x0kdHx9Hv9+PDz74YGLNRfYzOu9yoJXn+UL72HSDwSA6nU50u90YDofx4sULWQBL46dsRWq12kTw1+v15g7+0jQdf12v15e+t7s4OTmZ+ItkZGdnJxqNxiPsCAAAAADg+RkMBpEkyVyPLRQKsbOzM9djsywbF6X0er3Y3t6eez+dTmccNF63j6fyWfdjGAwG0Wq1YjAYLNwhcF5ZlkWr1YokSeLNmzdzB7e3rdnr9WI4HEaWZVEul6NQKMz93pheq9vtRqFQiGKxeGV/l/OHy++lLMvGIXKlUrkSHqdpGnmej9eNiIWe+2jty4F5qVRayv1bVKvVina7feX4TT9bswj+rrHojZy2vb0dZ2dn4++TJJkrIOt0OuOva7Xao7y5ZsnzfOY9ue99AgAAAABgfnt7e7G3txeDwSBOT0+vBEmFQiFevXq1cHXd5UKWbrc7d7gz2k9EXNlTvV6P3d3dJ/M592NJ0zTSNI1CoRCFQmGpn6unaRrtdnsiDM6y7F73vNfrxcXFxUSR0mVnZ2dRq9Vid3d37vfZYDCI8/PzO+8pImJ3d/dKznJ0dLT0nOLg4OBO4eZ95Xm+lNavgr9rTN/cu7xxdnd3o9lsRsT7uX29Xu/Wct1WqzVx/lMx+gNp1nEAAAAAAB5WpVKJ/f39ODk5mTi+vb19p5aal4tSLoeAi+5pa2srkiSJQqEQ+/v7d1pn02xvb08ESW/fvr135d+oivCur9V1Tk9Px2tWq9VoNBpRqVSiWCxGmqbR7XbH1+12u7G/v79x1Zzzdm9ctstVi5ddV5h1HcHfDL1e78pNTJJk4T+kGo1GJEky/gE+Pz+PV69eXZu0J0kyTtD39/efVL/jFy9eRLVafextAAAAAADwz5Y1F+5ym8+RTqdzp6qnXq+31L1tokqlcqfgL8uySJJkIndYlizL4vj4eJxRzKquK5fL0Wg0olarjSvtRlV8jxX+FYvFpd6Ler3+aNlMo9GY2Tmy3+/H8fHx3Os8nWTpkQwGg+j1epFlWeR5HmmaXvkDLuJ9KDea0zfq7zr61ws3efXqVbx9+zbyPI/hcBhHR0dxeHh4JTFutVrj6sCdnZ2NS8gBAAAAAFi+arU68Zn2de0ZbzJrZuAi7T5HsiwbhzCCv+XJsixOT0+vZBf1ej12dnaW0u7y9PT0xtDvsnK5HIeHh+Nq0/Pz86hWqzcGZpcLonZ2dsb7vdx9cboT4/T3pVLpxucwqphbtFPh5Z+Zp9SJ8a6effDX6/XGgdtthsPhRHJcq9Vu/cOrWCzGmzdv4vz8PLrd7jj8K5VKUalUIsuyGAwG4zf5Y/WOBQAAAABg/VQqlYlAaFZhy22uC/4WNar2i3j/+TnLUSwWx69roVCIRqMR9Xp9HKbdt+otSZIr699ma2sryuXyODQ7PT2N169f33peoVAYz4RchlHIV6/X79RaNk3TePfuXUTExsyjfPbB33Wlk8tULBbj8PAwBoPBuHIwy7LodrvjAHB7e1uVHwAAAADACmVZFhcXFxERsbe3txEf8m9tbUW73Z44lqbp3O0K0zS9NjRatN3nKDwadc1jeUaFSLNyhEUr3KaNfiYiYqG8ZGdnZ9zqM03TGAwGt87HW9X74q6VeqPCsHkDz3Xw7IO/hzQatgoAAAAAwMPq9/txdnY2Drn6/X4cHBxEtVp95J3dz6ygZTAYzB38jar9yuVyDIfDiZaRi7b7NN9vdQ4PD1eybqfTmXjNbwvuLqvVauPgL+L9e+mhM5A8z8ctPheVpum4snWTshuROwAAAAAAGyvP82i1WnF8fDxR2TYcDuP4+Dharda956M9pmKxeGX22SLtPkfB387OzpWQb5F2n5fn+2nzuT6mX+Pb5uhdNj1Pr9Pp3HrOfasTZ1kkrLxsVO1XLpc3agSb4A8AAAAAgI00HA7j5ORk/AH/LM1mM05OTu41I+2xTQcf8wZ/vV5vHHrW6/WZbSTnCXNGa42o+Fsfg8Fg4vt5K0VHLgeFeZ5HlmU3Pn7ZrT6zLFt4zxHvn/co9Dw4OFjqnh6b4A8AAAAAgI3T6/Xi6OhorhCs3+/H0dHRRHi1TqaDtjRN5zpvVO03qtCrVCpXKrLmrfob3ee7hDA8nvsG3tOv93SQOHJbIHhX29vbd2rXe3Z2FhHv3/t3rRh8qvwEAgAAAACwMfI8j2azGe12e6HzsiyLk5OT2NnZid3d3ZW0JFyV6+b83RZojEK9y5V+9Xp94t7NG/yNQtN5WyaO5qv1er0YDofjAKpUKkWpVIqtra2o1Wr3DhIf6jojg8EgkiQZX69QKIyvs729/eRDpnneN5dNB3oPXfF3l9l8nU5nHI7v7u4udT9PgeAPAAAAAICNkKZpnJ2dXVt1NI92ux39fj8ODg7WpnrtLsHfqNqvUChMVAxOB38R74OSmwK9y/P9bmvzmaZpNJvNcaBYLpejUqnE1tZWpGka/X4/hsNh9Pv9aDabUa1WY39/f+HX4qGuMzIYDOLi4uJKhWme55GmaaRpGu12e6EZeo8hTdOFgr/pn7Xb5mVeDv7SNJ0ISfM8Hwel29vbSw1kLzs/P4+I93Mt1+VnfBGb94xYiZOTk5n/wmVnZycajcYj7AgAAAAA4LeSJImLi4tbg4d5DAaDODo6ir29vZlz756icrk80eKz1+vduPdRuDf9mHK5HKVSaaIFZJIkNwZ/l6sCbwqNOp3OuMViuVyOw8PDK8FLlmXRbDbHwWS/3493797FwcHB3NWED3WdiMmAsVQqxc7OTlQqlSgWizEcDscVh6P7+dRmSRYKhYmfmX6/v9Dzn/55m6elZ5qmcX5+PrMN7ygobTab0Ww2o16v36mq7zqjPyMKhcKTyzZardbMSuVF/0wT/DGXPM9nvrmW8ZcoAAAAAMB9tdvtpX5emed5tNvttQn+RpVsIzdVPY4q0CKuBn+jY81mc/x9v9+PLMuubdM4avM5mhU4S5Ik40qrcrkcr1+/nvm4YrEY+/v7UalUxo+PeD+TLc/zW1+Ph7pOxPugZnSfdnZ2Ym9vb+bj9vb2otPpRLPZfHLB39bW1kRwmyRJ7O7uztWSs9VqXTl2XUXjKBDsdDrjsHUeSZJEv9+Ply9f3rtN6KjqMiKi0Wgsve3ofeV5vpRZiE/rWfFkFQqFKBaLV36tU59rAAAAAGBz3RQ6PaU1V2W60m44HF4bIoyCl3K5PLPV4aznPQr3Zhn93nVtPgeDwUS4dnh4eO1aI/V6PXZ2diaOnZ+f3xhoPtR1IiJOT0/nCv1Gtre3482bN08uSJ71Ws8K9GaZ9bjbwrRROF8ul2N3dzcODg7ixYsXcXBwEPV6fWbmkKZpnJ6ezrWnm4zeG6VS6clV+0UsL4dR8cdcXrx4EdVq9bG3AQAAAAAwU61WmzuwWGTNdTErdBsMBjOPjyq8pgOvkVEgeLmC8Lp2n2majsOc6z5DvhzaLDK3bW9vL5IkmajkPDs7u7aK76GukyTJ+B4WCoVbQ7/L9vf3o9/vT9zbx7S9vR3n5+cTz73dbkelUrm25WeWZXF6ejqzwva6ir/Lj93f358ZgG5vb8f+/n5cXFxcaXnZ7/cjSZI7B6ejysGIiN3d3TutsWqNRmNmINnv9+P4+HjudVT8AQAAAACw9iqVytxBzzzK5fKN8+qemlmVQbOq1nq93rjd5E0hynQoOGr3OW0UppRKpZn3P0mSifaWiwY306FamqYzqw8f6jpZlk1UFd6lcmyZ79NlmFUZeXZ2Fufn51cCyk6nE2/fvo1+vz8zOL6p4q9QKMSrV69ufW329vZmhnMXFxc3nnedLMvG55bL5YVmGK4jwR8AAAAAABthmRV661TtNzJd3XddQBZx+/Ob9fuXZ8FNX+O6Np/TlVvXVYTddx8PdZ3p+XRPrXXnXWxtbc0M8ZIkiXfv3sWvf/3r+OKLL+LXv/51nJ2dRUTEq1evrrzmpVLp2uCvXq/Hl770pbnD9EajceU1zPP8TpWSlysaDw4OFj5/3Qj+AAAAAADYCM89+JsOVWZV/I3CrNsCq2KxeKV1Z6fTufK4UfA3q81nlmVXgppFq93m2cdDXWfWsdtm2q2Lvb292N/fv/b3R8FZqVSKV69eRaVSmaiwjFj+z8ys/YwqTOfV6/XG7/larbZWVbx3tRnvSAAAAAAAnr1ltftctzafI9MVWHmeT7TnHIVWhULh2gq9y6ZbIk63+7w83++6GYPLMP1aTM+We6jrTAeMi1YVPnX1ej0++OCD2N3djXK5PG4dWyqVolqtxv7+frx582b8MzZdUbrsFppbW1tX7vGiFX+X27I+1dl+y/a0GskCAAAAAMA91Gq1aLVa915jHc0KK3u93jiQGbWpnLc9Zb1enwhOIt5XDI7OH1VflcvlmZVv0xVh0zMI5zXreWVZNr7mY11n04K/iPcVjI1GY67ZhZeDv0KhsJKwfFZl4bwuLi4m5lk+tdmKq6LiDwAAAACAjbGM0G5dg7+Iqy0uR9VwaZqOg7pF5tJN34vLrS5HX19XPXi5OvA+bmun+VjXWdZ119FgMJioiJwnKLyL6XB13vAuTdOJuY/PpdovQvAHAAAAAMAGuW+7z3Vt8zkyPaduVJU1mnNWLpcXuj/Twd/ldp+jUHGetqERV1tnzmtWIHdTSLeq60wHfXe9zia4uLgYf10qlVYW/E2/JvNWWZ6eno6/rtfrGzOLcR7P55kCAAAAAPAs3Kdib52r/SKuBn+jmWijNp87OzsLrTdrblu3252o+Lou+JsV0iw6o23WOdOtPB/qOtOB6V1bUK67wWAwrh6NWG013XTYOk/InCTJxGv5nKr9IgR/AAAAAABsmOcc/M2qVkySZBxS3eX5TZ/TbrfHlYTTQeNlsyoLR1WCi5gO2KbDyIe6zqzZgZfn3M1r3VuEnp2djb+uVqszw+FluVxVOc97N8uyibmUz63aLyLieUwyBAAAAADg2ahUKvHhhx8+9jYeRblcjkKhMBGYjNoy1mq1O4Ug9Xp93Co04n1l3G3z/SJmh5DdbnfhoGg6KJsOgB7qOrPubavVmrvV6chdQsmn4vz8fFxNVyqV4vDw8NrHpmkaJycn8erVqzuHb5eD1XnaiV4O/SIWr3DdBII/5nJycjLzXzPs7OysrHcvAAAAAACLq1QqE60YR0FVvV6/03pbW1tXAq9R+HNbFVa1Wp3Yy+UAcV6Xw59SqTQzaHuo62xtbU2s3e/3YzAYzD0XstPprO1swCRJxi1jS6XSrYFesViM4XAYzWYz9vf3F75emqbjKsx6vX7rPe71ehOvTbVavde8z4fWarWi3W5fOb7o++V51TdyZ3meR5ZlV36t6x9QAAAAAACbalZgVSgUFq5Mu2xW9VyhULg1WNnb27tybFSBOI/BYDDXvLaHus6soHPe60y3oVyWh/icvtVqjfdeKBTixYsXt1bxFYvFqNVqV2buzWt0vVKpNNecvtPT04nv161oaVk5jOCPuRQKhSgWi1d+zaoCBAAAAADg8cyqjLprtd/IrMBrniCxUqlcmQPYbrfnDoJardb463q9fm37zoe6zvb29pWws9/v3xr+pWkaR0dHkef5lX3ed+bf9PnLDAKzLIvT09NoNpsR8b7d6atXr+aupBu97xYNPFutVvT7/SgUCnO1Cr24uJh43tdVbD5ly8ph1qfGkUf14sWLG4e0AgAAAADwNMwKPO4b/M1q93lbm8+Rw8PDePv27cS588x+u9y6sVqt3tou8qGuc3BwEEdHRxPH2u12DAaD2N/fvxKKJUkSFxcXUSwW4/Xr15EkyURb0sFgsPA8wst7nw76kiS5U2vNaZ1OJ87PzydaxS667uh9MwpHZ1VmTru4uIh2ux2lUmmuysLBYHClReZ93++PodFozKxS7Pf7cXx8PPc6gj8AAAAAANgwpVJpPB+tVCotZdbZ9Hy7eSuqisVivHr1Kk5OTsZ7Gg6H8fbt29jf358ZeiVJMq4S29nZmSsweqjrVCqVePHiRZycnEwc7/f78e7duyiVSlEqlSLLsnHFYblcjpcvX0axWLwS1LXb7RgOh1EqlaJYLEa9Xp8Zdg0Gg+j1euP2j2maTgSIl59Tr9eLSqUyXrNSqcz9eiVJEq1Wa3wPR2HoXd9D29vbkSRJtNvtSJIk6vV6bG1tRalUioiYeC6jGYiLhIxnZ2dXjq1j8Lcsgj8AAAAAANgwW1tbkSRJRMxfmXebWq02Dv5GgdK8Ri0im83meF95nsfZ2Vmcn5/H1tZWFIvFyLJsXMVWrVZjb29vZuvSx77O1tZWvHr1Kk5PT8cB2chwOJw4VqvV4vDwcPz9rNae04HqrHvb6/XGLTdvM2sPNwV/nU4nut3uxD7q9Xrs7OzcOzSu1+sTr0W73b5SoTey6GsxPZtxdL1F3pubppA/xNRH1s506ejLly+1+gQAAAAAWBOXK9levXq1UKh1k1//+tcRcbe2jyNpmka3241OpxPD4TDyPB/PNxvNZqvVavcOnB7qOqNWof1+f3ydiPfhaL1en9m+8am5uLiIJEnG9+SurUevk2XZuBJxOByOqxZH1ZHLei020aJ5jeCPmQR/AAAAAAAAj2vRvOb51joCAAAAAADABhH8AQAAAAAAwAYQ/AEAAAAAAMAGEPwBAAAAAADABhD8AQAAAAAAwAYQ/AEAAAAAAMAGEPwBAAAAAADABhD8AQAAAAAAwAYQ/AEAAAAAAMAGKD/2BlgPJycnUSgUrhzf2dmJRqPxCDsCAAAAAADYDK1WK9rt9pXjeZ4vtI7gj7nkeT7zzbXoGw4AAAAAAIBJeZ5HlmX3Xkfwx1wKhcLMir9ZxwAAAAAAAJhfoVCIYvHqhL7rCrOuI/hjLi9evIhqtfrY2wAAAAAAANg4jUZj5mi1fr8fx8fHc69zNToEAAAAAAAA1o7gDwAAAAAAADaA4A8AAAAAAAA2gOAPAAAAAAAANoDgDwAAAAAAADaA4A8AAAAAAAA2gOAPAAAAAAAANoDgDwAAAAAAADaA4A8AAAAAAAA2gOAPAAAAAAAANoDgDwAAAAAAADaA4A8AAAAAAAA2QPmxNwAAAAAAAGyui4uLaLfbcXBwENvb24+9HdbQYDCIXq8XvV4vhsNhDIfDiIgolUpRKpWiXC5HpVKJarUa5fLzjr6e97MHAAAAAIA18utf/zoiIgqFQkREFIvXN/bLsizyPI9yuRyvX79+kP3NkiRJRES0Wq2lBH+DwSCOjo5m3oPRcy6VSvHmzZt7X+smb9++jeFwGIVC4coeIiLyPI9Xr15FpVJZyz1/8cUXked5RPz2/Ta998tGa4zWGSkUClGpVKJSqUS9Xl8omOt0OtFqtSJN05m/PwoB+/3++Fi5XI7t7e2o1+s3/nxsKsEfAAAAAACsid3d3XFQ1O/3rw1EqtVqbG1tjUOXx9LpdMYhUJqmMRgM7r2fUqk0vg/D4TC63e6VxwyHw+h0OiurMBxVnkW8D7lGX0dE1Gq1KJVKUSwWo1Qqre2e9/b2Ik3TyPN84tzL5102Ou9yADi6Vr/fj36/H+12O6rVauzv798YAGZZFufn5+P7VCgUotFoRK1WG5832lun04kkSSbeZ81mM4bDYezv7y98n9ZdIb8cu8I/6/f7cXx8PP6+UChMJPojOzs70Wg0HnJrAAAAAAD8s+Pj44lqp4j3n9vu7e090o4mTe+vXq8vPYwZVdNNW2UF3bt372aGri9evIitra1bz1/HPc86f39/P2q12szKujRNo9vtRqvVillR1HXXzbIsjo6OxgFjrVaL/f39W6v3kiSJ8/Pzib3V6/Vbn9dT0Wq1ot1uXzme5/nE/Xv58mVUq9Vr13l+NY7cSZ7nkWXZlV9yYwAAAACAxzMrOJknxHkIaZpeCSWTJLlSEXZflUplZuHKcDiMXq+31GtFvA/trqu0nPfer+OeZ1UiVqvVawO5crkcjUYjvvSlL80M4E5OTma+F46PjydCv8PDw7ladtbr9Tg4OBh/P6pAXBfLymEEf8xl1O93+tesP5gAAAAAAHgYs8KNpxJ4zKpeivjtzL9lui4Yuri4WPq1rltz0c/L123P93lfXdfa83KFXsT798YooCwUCgtXh25vb4+f01P5OZjXsnIYM/6Yy4sXL24sHQUAAAAAgMtGAV+hUJioWkqSZOkjpK4LR9I0jV6vt7QqyFlVjCPzVKVdto57vo/Dw8N49+7dxLHpWYeXA8pGo3Gn/VUqlej3+w/63Jah0WjM/LmYHs12G8EfAAAAAABrL/vRH65k3eJ3/nYl6266Ueg3avd4dnY2/r1RO8tVtCSt1WpXwqRWq7W0azWbzfHXpVJp3JLyPtZxz3dRLpejWq1eCSHTNI1yuRydTmciIL7r8x8FfusW/C3L83zWAAAAAADAyrRarYiI2NnZmWi/OLKKdp8R78Oi6ZaS/X4/BoPBvdfOsmwc0FWr1aUFc+u457uqVCpXjo3CvulA8K6tOmfdz+dE8AcAAAAAACxNr9cbV5XV6/WJ/x3pdruRZdnSr10oFGa2SxwFkfdxuXJub2/v3uuNrOOe72pWFd4o4BvN9hu56/ujXq/H69ev73TuJhD8AQAAAAAASzOq5rsc9k0HfxHLCbZm2d7evlIt1u12rwRLi8iybPy8qtXqzMq1+1jHPd/FrDBvFAZOtyBdRsXjcyT4AwAAAAAAluJya8mdnZ3x8dF8t8tW1e4zImZW0LXb7TuvdzmkXFXl3DrueVHT4V6tVht/Pd0Odrr1J/MR/AEAAAAAAEsxCpvK5fKVOWvTwVae59HpdFayj3q9PnOu4F3bR45CynK5vLLKuXXc86J6vd7E95crQWcFw9OP53aCPwAAAAAAYClGYdOs6rWtra2ZwdaqLGtuXpIkked5RKy+cm4d9zyvVqs13lPE+6Bva2tr/P10q9OIiJOTk7i4uFjJPMhNJfgDAAAAAADubRQ2FQqF2N7envmY6WCr3+/fa47dTWbNFWy32wuHSBcXFxHxvnLuclC1Cuu453mkaRrNZnP8falUisPDw4nHzHruEe+f/29+85s4PT2NJEliMBgIAm9Qvv0hAAAAAAAANxtVpl0X4Ix+73IAFPE+2Nnf31/6forFYuzs7FyZk5ckyczKulk6nc64Sm3ec+5jHfd8m16vF6enp+PvS6VSvHjxIorFydq0YrEYu7u7V94fI91udzw/MuL9TMBSqRTVajUqlUpUq9Ur7WWfI3cAAAAAAAC4l8FgEMPhMCJuDpuKxWLUarWJACdJkpUEf6O9TIdorVZr7kBsFEKVSqVrqxiXbR33nGVZDAaDqFQqUSwWx98nSTLxWtdqtdjf378S+o2MnuN14d9leZ5HmqYTFaOFQiEajUbU6/Vrr7HpBH8AAAAAAMC9jKr9qtXqrYFLvV6fCIMi3od/N1UK3lWxWIx6vT4xSzDP87mu1+v15gozl21d93xycnLt79dqtWg0GlGpVG5dq9FoxNbWVrRarSvvk9vkeR7NZjNarVa8fPlyruttGsEfAAAAAABwZ1mWjQOaecKmra2tKJVK44Aq4n27z1UEfxEROzs7EyFaxPug8rbrjebkFQqFle3tOuu45xcvXozn7xWLxSgWi1GpVO4UvlUqlTg8PIwsy6LX60W/349+vx/D4XDcxvQmeZ7H0dFRvHr16tmFf4I/AAAAAADgzkbVfqVSKba2tuY6Z3rWX5qm41aRy1Yul6NarUa/3x8fGw6H0el0rm2FORgMxi0kH2NO3jrueWtra+7Xf17FYjG2t7cnnvOojejoV6/XuzYMPD09jTdv3ix1T0/d82xwCgAAAAAALMWoMm2RCrNZjx0FiKuwt7d35dhNc+QuV849RogWsZ57fgjFYjG2trai0WjE4eFhfOlLX4qDg4MoFApXHjscDmMwGDzCLh+Pij8AAAAAAOBOkiQZV1s1m80bg6nbdLvdcZvIZatUKlEul8cVcRHvQ6Fer3elSi1N03Gl3UO3y7xsHff8WLa3t2NrayuOjo4mWshGxMoqSZ8qFX8AAAAAAMCdtNvt8deFQmHhX9Om59ot06wKulGV3GWXw8vHrpxbxz0/lmKxGIeHh1eOXw5OnwMVfwAAAAAAwMIuz5R79erVnaqq3r17NxHMJEmysuBqa2srSqXSREXY9GzBLMui2+1GxPvKuVVUHy5iHff8mCqVStRqtfH9iIhr5/9tquf76gMAAAAAAHc2mslXLpfv3EpxOuQbtbJclVmh4uUKustzBnd3d1e2j0Ws454f0/R7sVQqPdJOHofgDwAAAAAAGMuybK7HjKqqdnZ27nyt7e3tKy0/LwdZy1av169cr9/vR5qmkWXZuHXpU6qcW8c939Uy2nJOB32CPwAAAAAA4FnKsix+85vf3Bq+Xf79er1+r2tub29PfN/v9+cKH+9qVgVds9mcmC94nzBzFdZxz4saDAbx7t27e1d8Trf2nH5/bToz/pjLycnJzEGrOzs7z3ZQKAAAAADAphmFLrdVSY0Cp/uGfhHvP2e+HGBFvA8W9/b27r32LI1GI5rN5sSxbrc7fu61Wi3K5acVn6zjnu/q8jzDuxgMBuOva7XafbfzYFqt1rh687JFZxSq+GMueZ5HlmVXfj23oZgAAAAAAJus3+9HRNzYMrLT6Yw/G15G8Fcul6+EVtNB4Lzm/cx6VnXc6NyHLnZZxz2v0n3bfXY6nfHX6zTzcFk5zGbEv6xcoVCYWfE36xgAAAAAwEMrfudvH3sLG2Geir9Rm89CoRCVSmUp193Z2Ynz8/Px93meR5IkcweLi4YjjUZjZnVVtVqd+zlNtyNdtD3pOu55lUZ7uU+rz4uLi/F93dnZWasqyEKhMDNwz/N8offK+jxjHtWLFy+iWq0+9jYAAAAAALjkclvD+0rTdNxm8brApNPpjCuytra2lnbtWq02EfxFvA9x5g3+RqHRvEFWsViMer1+pbJwkcq56WstGuSt255nteBcRVfANE0XCn1HkiQZB6PVanVlrWJXpdFozHwt+/1+HB8fz72OVp8AAAAAALCmut3ulWP9fv/WMCnLskjTNAaDQfR6vUiSJE5PTyPi+k5vWZZdCeeWpVgsXrlunudxcXFx67mDwWAcQF1u83ib6daZpVJp7jAzy7KZoeu81WrruOdZj1tk77e5HCyen5/H6enpXKFomqZxfHw8fm9Wq9V4+fLl0va1blT8AQAAAADAmknTNM7Pz2dWYZ2fn98roLvc5jNN0+h2uzEcDidm+0W8Dx3fvXsX1Wp1HEAt0vozSZJI0zTyPI9erzezeqzdbsdgMIhKpRLb29tRqVQiy7JIkiSyLIvhcDgRfqZpOrGnUqkU29vbM69fLpejVquNz7+twqzX68VgMBiHpbP2e3JyErVaLUqlUhSLxfE9Wcc9X95vv9+fOXvv8utTLBZv3PttptfvdrvR7XajWq3G9vb2+N4Ui8VxiNnv9ycqIPf395cyd3KdCf4AAAAAAGDNvHv3bmVrXx77NBwOo9lsXnnMqDpvOBxOBC+LBH83hZOXq//6/X70+/3x+tftaXTe5T3dFkQ1Go25Q7Rut3ulzeas618O2LIsW9s9zxMeFwqFcbCY53mUy+U7B3/1ej3yPL8SMF9+/a/bQ71ej0ajMXNG3nNTyFfRgJW1N90z9uXLl2b8AQAAAAA8EWmaRrFYvHPQMauF4nMNTY6Pj6NYLMbh4eFjb2Vu67jnRQwGg+h0OjEcDsezJ/M8j0KhMG4Lu7W1Nf61yRbNa1T8AQAAAADAmimX7/fx/nMN+WZZx3lw67jnRVQqlYWqR/ktP9kAAAAAAACwAQR/AAAAAAAAsAEEfwAAAAAAALABBH8AAAAAAACwAQR/AAAAAAAAsAEEfwAAAAAAALABBH8AAAAAAACwAQR/AAAAAAAAsAEEfwAAAAAAALABBH8AAAAAAACwAQR/AAAAAAAAsAEEfwAAAAAAALABBH8AAAAAAACwAQR/AAAAAAAAsAEEfwAAAAAAALABBH8AAAAAAACwAQR/AAAAAAAAsAEEfwAAAAAAALABBH8AAAAAAACwAQR/AAAAAAAAsAEEfwAAAAAAALABBH8AAAAAAACwAcqPvQHWw8nJSRQKhSvHd3Z2otFoPMKOAAAAAAAANkOr1Yp2u33leJ7nC60j+GMueZ7PfHMt+oYDAAAAAABgUp7nkWXZvdcR/DGXQqEws+Jv1jEAAAAAAADmVygUoli8OqHvusKs6wj+mMuLFy+iWq0+9jYAAAAAAHgmer1eDAaD8a8sy8YBSKFQiFKpFMViMcrlchQKhdja2opKpTIzPIGnrtFozByt1u/34/j4eO51BH8AAAAAALAmBoNBHB0djbuxXQ65RsFYqVSKN2/erHQfb9++jeFweKVKadSqMM/zePXqVVQqlYXW7fV6kSRJdLvdGx+X53mkaRoR74ORiBjPRyuVSlGr1WJrayu2trYWuj6sO8EfAAAAAACsiVKpFLu7u5FlWQyHw5kB2XA4jE6nE9vb2yvZQ6/Xi+FwGBHvA7jR1xERtVptXIlXKpUWWvPi4mIc5kW8r+rb3t6eWLNYLEaWZePnPxgMotPpTJw3HA6j3W5Hu92ODz74QAUgz4rgDwAAAAAA1kSxWJxoBziqAJzWbDZXFvxdXFzMPP7ixYs7Vdidn59HkiTj70ulUuzv71+71igALJfLsbW1FY1GI7IsiyRJotVqTbQDFfrx3Aj+AAAAAABgTVUqlSgUCuOwa2Q4HEav11t6q8vBYDBRXXfZotfKsiyOj48n1tvd3Z055+w2o0C0Xq/H0dFRDIfDhduMwiYQdQMAAAAAwBq7rqrtusq8+7huzdHMwXkNBoN4+/btROh3cHBwp9DvsmKxGPv7+xERUS6rfeL5EfwBAAAAAMAauy50S9M0er3e0q6Tpmn0+/2Zv7dIS81Rpd/lKsX9/f2ltSYdzRZcZMYgbApxNwAAAAAAG+9nSRKfttvxWbcbSZZFvViMj2u1+GRnJ75Rrz/29paiVqtFt9udONZqtZbW7rPZbI6/LpVKMRwO77TO6enpROhXq9WivoLXwHw/niPBHxARz+M/fAAAAAB4XoZ5Hn95dBT/6e3b+GwqELvs41ot/sObN/HdV6+itGDLyqdka2sr0jSdaJ/Z7/djMBjce95dlmXjULFarUa5XI4kSRZe5+Li4krV4Kg157It2n4UNoHgD56J7Ed/eOXYMArxl/VP4i8a34rPKh9ce+7Hg9/En7V+Et9NPo1STA4JLn7nb5e+VwAAAAC4r887nfh//fKX8dM5wqnPut3403/8x/j/HB3F//WVr8RHS2o5+dAKhUI0Go04OzubON5qteLw8PBea1+u9tvb27tT6JemabTb7YljOzs7S6/MK5fL8erVK60+eZbUucIz9Xn5dXz79ffjzw//6MbQLyLis8oH8eeHfxTffv39+Lz8+oF2CAAAAAB38+NmM771i1/MFfpd9tMkiW/94hfx40sh17rZ3t6+Enh1u92JKsBFZVk2Dvqq1eqdqwenQ7+IiEajced93aRSqWj1ybPkXQ/P0I+rX4lvv/5+/LT65YXO+2n1y/Ht19+PH1e/spqNAQAAAMA9fdbpxL/8h3+IZpbd6fxmlsX/+g//EJ93Okve2cOZFabNCt3m1Wq1xl/v7e3deZ3pKsFSqSScgyXT6hOemc/Kb+Jfvfx30SrebaBvs1iL77z8t/F3734QH6Xvlrw7AAAAALi7NM/j3//yl9G6Y+g30syy+Pe//GX8j69+dS1n/tXr9bi4uIg8/+3YniRJYnd3905B2yiwK5fLd6726/V6V45tbd3tM8rHMJpx2G63Y2trayIATdM0ms1mDAaDGA6HUSgUolQqxdbWVjQajWvveZZl0Ww2o9/vjysyS6VS1Gq1G8+bV5qm0e12o9frxXA4jOFwOL7GaH+1Wi3K5fWJirIsi1arNb7Xo/tdqVRia2sr6vX6sw+T1+fVBO4tjWL88eG/vnPoN9Is1uKPD/9N/Pd3P1A2DAAAAMCT8cOjo4Xbe17n0ySJHx4dxfder+fom0ajMTGXL+J95d6iFXtJkowDxPtU+80K/qrV6p3XW7U0TWMwGES/358I5iIm931xcXGlmjLP80jTdDzT8MWLF1dCziRJ4vz8/Mp1h8NhtNvtSJIkDg8P7xSOjoLIbrcbEb8NbLe2tiJN0+j3+zEcDqPf70ez2YxqtRr7+/vXBoCnp6cxGAwi4v0cyVlG75HDw8Mr4XCr1RqHx9Pnj87b39+/8blOP6dqtTrxfEa/ms1m7O7urqyF7DoQ/MEz8sP6Nxdu73mdT6tfjh/Wvxl/upTVAAAAAOD+/uPbt0tfb12Dv3q9fiX4a7fbC1eSXVxcRMT78Og+FXqj4Oiyp1pplqZpvHt3e7ez8/PzifalhUJhospy5OTkJF69ejUOxFqt1sRrM+u8PM/j5ORkZmh4k06nE2dnZxHx/v4eHh5euc+jSsPR3vv9frx79y4ODg5ie3v7ypq1Wi0qlUokSTJzVuTo9yPiynzJiN9Wdg6HwyvtXkfnzjpv5PL9qtfrMytXL78Wo+rLw8PDa9fcZE/zpwpYif/c+NaS1/sXgj8AAAAAnoSfJUl8/s/VQMvyWbcbP0+S+Hq9vtR1H0KxWIydnZ0r1WhJksxdDdXpdMaB1H0rqEZtJi+7rnrssZXL5fjwww8jy7LIsixOTk6u7P/09DS63W5Uq9VoNBpRqVSiWCyOW1FO3/fT09N48+bNOKAqlUqxu7sbW1tb4/OSJLkS1p6fn8ebN2/m2vflKsJyuRyvrwmti8Vi7O/vR6VSmag6PDs7izzPoz71fh+FgY1GI7744ouJkLJUKt0asFUqlXEwWCgUxvdmnsq84+Pj6Pf7EfG+KnB6byP7+/vjdqwREd1uNy4uLu5VpbqudOmDZ+JnlQ/j88oHS13zs8oH8fMltU4AAAAAgPv4dCpoWdq6a/z516xQpdVqzX3+KIQqlUozK8EWkc2Yu/jUZ7EVi8Uol8tXwqYkSaLb7cbBwUG8fPlyHN6Nztnb24vd3d2Jc4bDYXzxxRfjWYtv3ryJ7e3tifMajUYcHBxcOa/T6dy618FgMBHizVPtVq/XY2dnZ+LY+fn5zOrMken31KxA9yaj0LBUKt0a+p2eno5Dv2q1em3oNzJ9z9vt9sz33aZ72j9VwNJ8Wvmd1ay7xv/hAwAAAMDm+GzJ1X4jfz9H6PJUFYvFK2FJnudX2i3O0uv1xqHOMualzWqBuS5mBZTXtcUcaTQaM+fZ3Vbltr29faU15yj8usnp6en461qtNncb1b29vSv7HLUKnWVW+DZrfuN1Rs9lOqSbNgpXL+/zNuVyOWq12sSxRYLuTSH4g2fi88p85eCLWuf/8AEAAABgcyQrquzprHnF0HRFV8R8Ychotl+hULi10moes9p6Llot9lim914ul+eqgJy+b4VCYa4Qdfo1mzVX77IkSSbu5aKv13SolqbptWFesVi8c7iWZVmkaTpXBenlNQuFwrhV6G2m5yEuEkpuCsEfPBNJobqSddf9P3wAAAAA2Az1FbWN3H7i7ShvUy6Xo1qd/GzwtvaRg8FgHDYto9ov4n1rx2nr2oZx+n5eZzqsmje8mn7cbQHp9DzBWff6JtNBXkRMVNtNm35P9Pv9W8PJiBhXmt72nhoMBhPPed77FnH1ua9LuLxM6/0nFjC3en57OfhdrPt/+AAAAACwGT6eEV4sw9fuOdvuKZjVJnE0v2+Wy9V+ywr+ZrXLvGmW3CaYt93mtOnw6qaAdFRFd5/rFovFK2HmTcFwpVK5co152scmSTJXBel0ld4isyCnH7vOLWbv6m7vOmDtfDR4u5J1N+E/fAAAAABYf5/MaGm5lHWX0ObysY2CmssB0XA4jF6vd6U1Ypqm4zlsy2jxOVIul6/Mquv1eksLFjfJIkHXssLTSqUy8frcFpg1Go2JWYBJktw4h280M/K22X4RV6v0ut1uvHv3LorF4vjeTN+jUTg6T+XhphP8wTPxyeCfVrPuBvyHDwAAAADr7xv1enxcq8VnN7QoXNTXarX4+oZ8/rW3txcnJycTxy4uLuL169cTxy5XAi4zlKvValeqwqaDQBY3HZLNmqU4j1ntNLMsuzaE3N7ejvPz83FAmOd5dDqda2f3jV77ecLkWRWO8wR6o+deLpejXC5HqVS6c9XlOnt+zxieqW8Mfh0fD34Tn1U+WNqaXxt8EV+v//7S1gMAAACA+/gPb97En/7jPy51vU2xtbUVpVJpIihK0zQGg8E49MmybDzbrV6vL1R5Ns/1Z7kpLOJ2y5qTeJfXul6vT8wXbLVaM1/L0ftq3vfUdMhXr9djf39/4f09V4ZzwTPyZ62fPOn1AAAAAOA+vvvqVXxzSRV6n9Tr8SevXi1lradiVgXfaJ5fxPvgZmSeloyLmp4jN31N7u+uM+1mBXK3hXTT76dRkDxtVO23M2c73uvaeDIfwR88I99NPo1v9n+1lLU+6f8q/iT56VLWAgAAAIBlKBUK8X995Suxe89Ktd1iMf7Pr3wlSndsm/hU1ev1K60g+/1+pGkaWZaNq7eWXe03MmsGXJqm0ev1ln6t56JUKl05dpc5d9PnzNMytFgsRq1Wmzg23c414n24W6vV5m67Of3eM7dvMYI/eEZKkcdfnf5N7Gb363O+m3Xjv5z+TZTibv96BAAAAABW5aPt7fhvv/d7dw7/dovF+G+/93vx0Ya2n5xV9ddsNicCm3krsxZVqVSuBEUREaenp6q67mhWmDar6u4207MC522/Ov1+mg7+Op1O5Hm+0LzI6TBT8LcYwR88Mx+l7+JHx3995/BvN+vGj47/Oj5K3y15ZwAAAACwHH+wuxs/+epXF277+Um9Hj/56lfjD1bQ5vKpmBXAdLvdccvNRSqz7mJWC9E8z+P09HRl19xko/mMl43mNC5iOnidFdBed/3p98vl8K/VakW5XJ65z5vWnDarkpDZBH/wDP1B/5fxd+9+sHDbz0/6v4q/e/eD+IP+L1ezMQAAAABYko+2t+MnX/1q/OB3fzc+viXE+LhWix/87u/G//jqV9e60m/e+W6zKvpG5y5SmXUX5XI5Dg4Orhzv9/vCvzuanp14l+DvcrvVUqkUW1tbc587/Z4ZhciDwSDSNF34PTWr2nDUhpbbrS62B560j9J38XfvfhA/rH8z/nPjX8RnlQ+ufezHg9/En7f+R/xJ8lPtPQEAAABYG6VCIb73+nV87/Xr+HmSxKdJEn/f6UQny2K7WIyvbW/HJ/V6fH3BysCnZt7Ab6TRaMwMUqrV6tyVWdMVYou06tze3o7hcBjNZnPieLfbjXfv3sXLly+XMmMwTdMoFosrmVf4lOzt7cXR0dHEsYuLi5kzFWcZBXQjs6oyb7K9vR3n5+fj9+FwOIxerxdJkkSpVJq7behltVptIsBM0zRardbKg+lNIPiDZ6wUeXwv+TS+l3waPy9/KT6tfjk+q7yJTqES2/kgPh68jU/6v4qvp1889lYBAAAA4F6+vgEB33VGodu84VuxWIx6vX6lfeIiocr0te4SPmZZdiWATNM03r59G41G484hT5Zl0Wq1ot1ux6tXr+4d/E0/t7vOI1zVHMNKpRLVajX6/f74WLvdjnq9Plfb1lGFXkREvV6/U1BXr9cnXsuLi4tI0zT29/cXXiviffg4XbnYbDYXChIvLi5ie3t7oTajm0DwB89E8Tt/e+Pv/z/++RcAAAAAsD4Gg8E4mOp0OnOHZTs7OxPB3yLtHbMsi8FgcOV4r9dbqEXk3t5ebG1txenp6US4lud5NJvNaLVaUa/XY2tra651R1Vmo8BokQrGm0w/18vVcYucNxwO73T9PM8jy7IbA8zDw8N4+/btxH08OTm5Nfjs9XoT9+uuQd10FenoHs07K3DaqCXs2dnZxPGzs7Podruxu7t7baiZJElcXFxEnudR39Cw/yaFfNEYnmeh3+/H8fHx+PuXL19e6RMMAAAAAMDDyrIskiSJLMtiOBxeqYoql8tRrVajVCrdWh11eno6Pn93d/fG0LDX68VgMIjBYBC9Xu/aCr9arRalUimKxWJsbW3NFbxlWRbNZvNKBeK0crkc5XI5isViFAqFcSA2GAyuhGrlcjkODw/nqnibtZ+b7nHEb0PFYrEYtVptfJ1WqxVZlkWe5zOfT7lcjq2trSgWi1GpVK4NNH/9619PfD8KZm96XdM0jZOTk4l7USgUYn9/f+bjkySJ8/PziHgfBM/bGvQ6l99PEe/fC4eHh/da8/Iep43eD6VSKSJ+22J09N7c39/fiOBv0bxGxR8AAAAAAKyJWbPxRgqFQgyHw3HgdFvw12g0xkHNbQFJt9u9NZgrFAoTwUuWZXMFf8ViMfb392N3dzdarVYkSTIzWEzT9MZqu0KhEFtbW9FoNO5V6XfTPR5dZzAYjFtrViqVKJfL4wDzunNGa48q42q12kJVlp1OJ/I8v/Z1LZfL8erVq4kQNc/zODs7i/Pz83HgmGXZ+HWqVquxt7e3lMrIy++niNvfU/Oo1+tRrVbj/Px8opVpxPXvh3q9Hjs7O3cKfTeBij9mUvEHAAAAALD5jo+Po1gs3rsya9nSNI1+vx+9Xi/SNB1X940ijUKhEKVSKcrl8rhy7rnNcrtJmqbR7Xaj0+nEcDiMPM+jUChEsVgcVw9erlRclnfv3kWaplEoFOJLX/rSUtdO0zSSJBmHlsPhcOJ9UKvV7jSf8KlbNK8R/DGT4A8AAAAAAOBxLZrXXD/REQAAAAAAAFgbgj8AAAAAAADYAII/AAAAAAAA2ACCPwAAAAAAANgA5cfeAOvh5OQkCoXCleM7OzvRaDQeYUcAAAAAAACbodVqRbvdvnI8z/OF1hH8MZc8z2e+uRZ9wwEAAAAAADApz/PIsuze6wj+mEuhUJhZ8TfrGAAAAAAAAPMrFApRLF6d0HddYdZ1BH/M5cWLF1GtVh97GwAAAAAAABun0WjMHK3W7/fj+Ph47nWuRocAAAAAAADA2hH8AQAAAAAAwAYQ/AEAAAAAAMAGEPwBAAAAAADABhD8AQAAAAAAwAYoP/YGgKcpy7K4uLiIiIi9vb0oFv07AQAAAAAAeMoEf8AV/X4/zs7OYjgcjr8/ODiIarX6yDsDAAAAAACuo4QHGMvzPFqtVhwfH49Dv4iI4XAYx8fH0Wq1Is/zR9whAAAAAABwHRV/QES8D/fOzs6i3+9f+5hmsxm9Xi8ODg6iVCo94O4AAAAAAIDbqPgDotfrxdHR0Y2h30i/34+jo6Po9XoPsDMAAAAAAGBegj94xvI8j4uLizg5OYksy+Y+L8uyODk5iYuLC60/AQAAAADgidDqE56pNE3j7OwsBoPBnddot9vR7/fj4OAgymV/nAAAAAAAwGNS8QfPUJIkcXR0dK/Qb2QwGMTR0VEkSbKEnQEAAAAAAHcl+INnqN1uL7VFZ57n0W63l7YeAAAAAACwOMEfPEO1Wm0t1gQAAAAAAOYn+INnSPAHAAAAAACbR/AHz1ClUolyuby09crlclQqlaWtBwAAAAAALE7wB8/UMiv0VPsBAAAAAMDjE/zBMyX4AwAAAACAzSL4g2dqWe0+tfkEAAAAAICnQfAHz9gyKvVU+wEAAAAAwNMg+INnTPAHAAAAAACbQ/AHz9h9231q8wkAAAAAAE+H4A+euftU7Kn2AwAAAACAp0PwB8+c4A8AAAAAADbD3Xv8ARuhUqnEhx9++NjbAAAAAAAA7knFHwAAAAAAAGwAwR8AAAAAAABsAMEfAAAAAAAAbADBHwAAAAAAAGwAwR8AAAAAAABsAMEfAAAAAAAAbADBHwAAAAAAAGwAwR8AAAAAAABsAMEfAAAAAAAAbADBHwAAAAAAAGwAwR8AAAAAAABsAMEfAAAAAAAAbADBHwAAAAAAAGwAwR8AAAAAAABsAMEfAAAAAAAAbADBHwAAAAAAAGwAwR8AAAAAAABsAMEfAAAAAAAAbADBHwAAAAAAAGyA8rwPPD4+jnK5HJVKJUqlUlQqlSgW5YYAAAAAAADwFMwd/PX7/ej3+xPHCoVClMvlqNVq0Wg0lr45FpemaTSbzYiIODw8fOTdAAAAAAAA8FDmDv4uq9Vq42q/LMtiOBwudVMsbjAYxMXFxTicrVarj7wjAAAAAAAAHtLCwd/Ozk7s7e2tYi8sKMuySJIkkiQRvgIAAAAAADxzcwd/hUIh8jyPSqWyyv0wp/Pz80iSJCIiSqVS7O/vj48DAAAAAADw/Cxc8Tdq8cnjStM0yuVy7O3txdbWVkRE9Hq9R94VAAAAAAAAj0Xwt6Zevnz52FsAAAAAAADgCZHiAQAAAAAAwAYQ/AEAAAAAAMAGmDv4G7X4LBQKK9sMAAAAAAAAcDcq/m6QZVlcXFzEF198EVmWPfZ2AAAAAAAA4FrlRU/o9/tRLBbHFYAPJcuyB7tmmqbRbrcjSZKlX7/X60W3241+vx/D4TDyPI9CoRClUim2t7ejXq8/+L0FAAAAAABg/S0c/J2fn8f5+XlERFQqlfGvUqkUlUplJaFVp9OJs7Oz+PDDD5e+9mWDwSBarVZ0u92VrH16ehrD4TAiIsrlclQqlciyLNI0jTRNo9lsRrPZjP39/ajX60vfAwAAAAAAAJtr4eDvssFgEIPBYOJYoVAYh1rLCgTzPI+I1VT9ZVkWSZJEkiTjUG7ZkiQZh6X1ej12d3cnnkeWZXF+fj4OHM/PzyNN09jb21vJfgAAAAAAANg89wr+ZsnzfK5AcBQKzhPkrWK+XpZlcXp6Gv1+f+J4vV6PnZ2dODo6GgeO99Hr9cah387Ozswwr1gsxuHhYZyeno7Dv3a7HZVKJba3t++9BwAAAAAAADbfwsFfrVaLLMtiMBgsFIzdFAhWKpUrVYKXA8Hpc5ahWCyOQ79CoRCNRmNivl6xWFxKBeDp6en4GrdV8O3v70+0GT0/Pxf8AQAAAAAAMJeFg7/d3d0ol9+flmVZDIfDcaCXpumdAsF+v3+l8m5UITi6RkQsvc1nrVaLra2tmfP0CoXCvddvtVrje9FoNG59fLFYjJ2dnWi32xHx/t4kSWLeHwAAAAAAALeaO/ib1W6zWCxGsViMSqVy5femw8DhcLhQBd2oQnCVDg8PV7p+q9Uaf12r1eY6Z3t7exz8RUR0Oh3BHzwBWZbFxcVFRETs7e0t/R8iAAAAAADAfS19xt/IqG3ntMth4F0CwXXR6XTG1X6j6sV5TN+z6UpI4OH1+/04Ozsb/1nV7/fj4OAgqtXqI+8MAAAAAAB+a2XB33VGgeD07LrpMHD0v+vqcmA3KwC9SblcjjRNx9/3er3Y2tpa2t6A+eR5Hu12O5rN5sTx4XAYx8fHsbu7Gzs7O0tpDQwAAAAAAPe1cPC3yPy+RZTL5SiXyxOBYJZl0e124/z8fCXXXKVOpzP+et5qv5FqtToR/K1zAArrajgcxtnZ2Y1Vt81mM3q9XhwcHESpVHrA3QEAAAAAwFVPekhVsViMer2+djPusiybCEgXrQaaDhAuh4DA6vV6vTg6Opqr1W6/34+jo6Po9XoPsDMAAAAAALje3MHfKMh6jBBq3Spppiv0Fq34m36+g8Hg3nsCbpfneVxcXMTJyUlkWTb3eVmWxcnJSVxcXKysKhoAAAAAAG7zZFp93qRYfNKFiVdMB3WLVvzd9fleDhy1B4XFpGkaZ2dn9wra2+129Pv9ODg4WDjwBwAAAACA+1r4k+kkSaJWqz1oGFepVNaq6m+RSqFZpu/tTetlWRbD4TDSNI1WqzU+PhwO4+LiIra3t6NQKESxWLzXa7ZoGFIqldbqNeN5S5JkadV6g8Egjo6OYm9vb+3aFAMAAAAAsFrD4XCh4q1F85mFg7/BYBC/+c1volarxdbWVlSr1ZVXtlQqlXjz5s1Kr7FM9w3+pisErwsjzs/PI0mSa9dpt9vRbrfHa37pS1+6854uLi4Wenyj0Yjd3d07Xw8eUrvdXmo1c57n0W63BX8AAAAAAExIkmSikGvZ5k7sqtXqRArZ7Xaj2+2Of+/ly5er2eEamg4QVlUdub+/H/v7+ytZG56TWq229D9oa7XaUtcDAAAAAIDbzB38TQd7aZqOg8BFZ9g9N8uuAASWS/AHAAAAAMAmuHOPznK5vPIWn8/VdIXgQ85TvM7e3l5UKpW5H2++H+ukUqlEuVyONE2Xsl65XF7o5wUAAAAAgOehXq/H1tbW3I8fDAYLjWOT3D1B960QXIVKpRLVavWxtwErs8yqP9V+AAAAAADMUiqVVlo8tRbBX6fTibOzs/jwww8feytzmW7NOT3zb1FPoeIPNp3g73bZj/5wJesWv/O3K1kXAAAAAOC5WYtEqdvtPvYWFjId1C1awTcdFGoZCKs3avd5X9p8AgAAAADwWO78KXeapjEYDCLP8yiVSlGpVFZSmdbpdNY++BsOhwudPx0UmpcHD2MZVX+bWu03j59VPoxPK78Tn1feRFKoRj3vx0eDt/HJ4J/iG4NfP/b2AAAAAAA23sLB32AwiNPT05lh1tbWVuzs7Cw0lPAmFxcX0W63l7LWQ5qu9lm04m/68cuoQgJuJ/hb3DAK8Zf1T+IvGt+KzyofXPu4jwe/iT9r/SS+m3wapbhf+2MAAAAAAGZbKFEaDAZxdHR07e/3er3o9Xqxs7MTe3t7d97UTeHiOpiu0BsMBgudP/28tQ2EhzFq95mm6Z3O3+Q2n/1+/8pfGJ+XX8f/dvhv4qfVL996/meVD+LPD/8o/mrn9+OvTv8mPkrfrWajAAAAAADP2EK9Oc/Pz+d6XLvdjtPT0ztt6OLiIo6OjtY29It43+qzUCiMv1/0uVx+fLVaXdq+gNvdp2JvE6v98jyPVqsVx8fHE8d/XP1KfPv19+cK/S77afXL8e3X348fV7+yxF0CAAAAABCxQPDX6/VmVq6VSqWoVqtXqty63W5cXFzMvZHBYBBv3769trXn7u7u3Gs9BdPtThep+uv3+9euA6yW4O+3hsNhnJycRLPZnDj+WflN/KuX/y6axbs932axFt95+W/j8/LrZWwTAAAAAIB/NnerzyRJJr7f3d2NRqMxcSzLsnHgl+d5tNvt2N7evrX13U2z/Gq1Wuzv70exuFBx4qOr1WrR7XbH3/d6vblbAF5uM1iv15e+t7s4OTmZqGIc2dnZufI+gHVWqVTiww8/fOxtPLperxdnZ2dXZo6mUYw/PvzX0Sre7x8lNIu1+OPDfxP//d0PFis9BwAAAADYQK1Wa2ZWluf5QuvM/Xnr5faTBwcHM8OeYrEY9Xo93rx5E+Xy+0zxpvagN1X5lUqlePHiRRweHj5K6LfojZy2vb098f10cHqdTqcz/rpWqz2ZwDPP88iy7Mqv+94n4GnJ8zwuLi7i5OTkSugXEfHD+jcXbu95nU+rX44f1r+5lLUAAAAAANbZsnKYuVOl0QfAlUrlSqh1ZdFiMV6/fh2lUikGg0H0er0rj7lplt/Ozk68efPmUdtcTn/gfZeA63J70uFwOPM+TGu1WjPPf2yFQiGKxeKVX7OqAIH1lKZpHB8fX1uBHRHxnxvfWuo1/3PjXyx1PQAAAACAdbSsHGbuVp+jgG5nZ2fuxff39+Pk5CS63e44xBsMBnF6ejoz8KtUKnFwcDCuFnwsvV7vStCXJEns7+8vtE6j0YgkScbP9fz8PF69enVtFV+SJOM2n/v7+49+Hy578eJFVKvVx94GsCJJkozbNF/nZ5UP4/PKB0u97meVD+LnSRJffyJtjQEAAAAAHkOj0ZjZbbPf78fx8fHc6yycLC0SRm1tbUWtVhtXut00y2/WzMCHMKpIHJVLpmka/X7/yuOSJBnP6SuVSlEsFqNSqdxalfjq1at4+/Zt5Hkew+Ewjo6O4vDw8Mq8v1arFc1mMyLeh6tPZbYf8HRlWRYXFxcREbG3t3ev1sDtdvvWyuZPK79z5/VvXFfwBwAAAACwFAsHf6VSaaHH1+v1ODk5ibdv3z7JKr9erzcO3G4zHA4nnkOtVrs1+CsWi/HmzZs4Pz+Pbrc7Dv9KpVJUKpXIsiwGg8H4A/eDg4NbW6kC9Pv9ODs7G/+Z1O/34+Dg4M6VubVabaLV8CyfV97cae3b/P2l2aYAAAAAANzd3GlboVCIPM8XrigZBWOzQr/HqvK77LrSyWUqFotxeHgYg8FgXDmYZVl0u91xALi9va3KD7hVnufRbrev/IOF4XAYx8fHsbu7Gzs7Owv3fZ4n+EsKq2n325maqQoAAAAAwN0sXGaXZdm92slFPH6V32OpVCoLzwkEGBkOh3F2djazHfFIs9mMXq8XBwcHC1VoVyqVKJfL4zmjs9Tz6697H9v3/DsFAAAAAID3Fv60dVbl3m0uV57s7u7Gq1evnl3oB3AfvV4vjo6Obgz9Rvr9fhwdHY3nq86rVqvd+PsfDd4utN68vqa9MQAAAADAUswd/I2q/FqtVgwGg4UvVCqV4tWrV4/e2hNgneR5HhcXF3FychLZAi0xsyyLk5OTuLi4GM8Qvc1twd8ng3+a+/qL+ESbYwAAAACApVi47K7b7Ua3242I963hpn/Nsr+/H9v3qOhI0zS63a7QEHhW0jSNs7OzO/1ji5F2ux39fn+u9sq3tfv8xuDX8fHgN/FZ5YM772fa1wZfxNfrv7+09QAAAAAAnrN7DVYaDAaRJEmcn5/H0dFR/PrXv44vvvgijo+P4+LiIjqdTqRpeq/Qb3SdZrN5rzUA1kmSJHF0dHSv0G9kMBjE0dFRJEly62Nvq/r7s9ZP7r2fVa4HAAAAAPCcLX3QXp7n0e/3r8yhKpVKE5WBpVJp7jl/d5kryHKdnJxMzGoc2dnZUYkJK9But+du0TmPPM+j3W5H/Za2mrVaLVqt1rW//93k0/irnd+Pn1a/fO89fdL/VfxJ8tN7rwMAAAAAsO5arVa02+0rxxf9nHju4O/ybKlSqRRZli10seFwGMPhcNwmdGQ6DKxUKuN5gpfP5XHleT7z9V5mMAH81m0B3F3XvM1t7T5Lkcdfnf5NfPv196NZvH296+xm3fgvp38TpfBnCAAAAABAnucTWdxdLVzx98EHH4yDuSzLYjgcxmAwiDRNYzAYxGAwWCgMGp1zWaFQGH/4nGXZlbCQh1coFGZW/M06BtzfYwV/81z7o/Rd/Oj4r+M7L//tncK/3awbPzr+6/gofbfwuQAAAAAAm6hQKFwpjIu4vjDrOgsFf9PVeMViMYrFYlQqlYnHXQ4ER7/SNJ17Y9e1C+XxvHjxIqrV6mNvA56N2yrvFlUul6/8WX2d64K/33zyV+Ov/+eI+P8OBvH/PjuLny8wh/CTej3+z698FB9t/z/nPgcAAAAAYNM1Go2Zo9X6/X4cHx/Pvc7cwV+e53NXd90UCF4OA0fhIABXLbPqb95qv4j3oeOHH3546+M+jIj/3//0P8UPj47iP759G5/dUJ39ca0W//ubN/Enr15FacFK4SzL4uLiIiIi9vb2Zv6rFwAAAAAAFqz4u++HrcViMba2tmJra2vi+KhN6OUqQXP9gOfusYK/RZQKhfje69fxvdev4+dJEp8mSfx9pxOdLIvtYjG+tr0dn9Tr8fV6/U7r9/v9ODs7G/+d0O/34+DgQAUyAAAAAMAMcwd/81R/3HkT5XKUy1e3MhgMIkmSSJJkZdcGeKqW1e5zkTaf9/H1ewR80/I8j3a7Hc1mc+L4cDiM4+Pj2N3djZ2dHXNGAQAAAAAuedL90iqVSuzv76+sUgXgqVvGn3/r9mfocDiMk5OTK6HfZc1mM05OTlSHAwAAAABc8qSDv5GHqFQBeIqeW/DX6/Xi6Ogo+v3+rY/t9/txdHQUvV7vAXYGAAAAAPD0rUXwd9/ZggDratTu864eqs3nfeV5HhcXF3FychJZls19XpZlcXJyEhcXF5Hn+Qp3CAAAAADw9K1FolatVmNnZ+extwHwKO5TsbcO1X5pmsbx8XG02+07r9Fut+P4+Pje8xABAAAAANbZWgR/5XI59vb2HnsbAI9ik4O/JEni6OgoBoPBvdcaDAZxdHQUSZIsYWcAAAAAAOvn7v3jAHgQlUolPvzww8fexkq02+2ltujM8zza7XbU6/WlrQkAAAAAsC7WouIPgM20iorEp17lCAAAAACwKoI/AB6N4A8AAAAAYHm0+mQuJycnUSgUrhzf2dmJRqPxCDsCNkGlUolyuRxpmi5lvXK5HJVKZSlrAQAAAAA8lFarFe12+8rxRUclCf6YS57nM99cy5zNBTxPtVotWq3W0tYCAAAAAFg3eZ5HlmX3XmeuVp/LqsRgfRUKhSgWi1d+zaoCBFjEMsM6wR8AAAAAsI6WlcPcWvGXZVm8e/cuarVaNBoNLdSeqRcvXkS1Wn3sbQAbaFntPrX5BAAAAADWVaPRmDlard/vx/Hx8dzrzN3qs9vtRrfbjUqlEo1GQ1UFAEuzjHaf/l4CAAAAAJ67W1t9FovFiUqvwWAQp6en8cUXX0Sr1VpKv1EAnrdlhHaCPwAAAADguZur4u/ly5eRpmm02+1IkiQi3g8ZbDab0Ww2o16vx87OTpTLcxcQAsDYfdt9avMJAAAAADBHxd9IuVyO/f39+OCDD2J3d3dimGCSJPHu3bs4OTmJXq+3ko0CsNnuU7Gn2g8AAAAAYIEZfyPFYnE8YLDT6US73Y7BYBAREb1eL3q9XpRKpWg0GlGv15e+YQA2033m/An+AAAAAADuEPxdtr29Hdvb2zEYDKLVakW3242IiOFwGOfn53FxcRH1ej0ajUYUi3MXFwLwDFUqlfjwww8fexsAAAAAAGtrKUP5KpVKHB4eRpZl0Wq1ot1uR8T7OYDtdjva7XbUarVoNBpmMAEAAAAAAMAKLCX4GykWi7G3txd7e3uRJEm0Wq0YDocREdHtdqPb7UalUond3d3Y2tpa5qUBAAAAAADgWVtq8HdZvV6Per1+ZQ7gYDCIk5MTcwABAAAAAABgiVYW/I3cNgfw/Pw8dnZ2ol6vR7m88u0AAAAAAADARnqwpG16DmCSJJHneUSEOYAAAAAAAABwTw9eYjfvHMBGoxG1Wu2htwcAAAAAAABrqZCPyu4eUa/Xi1arFf1+f+J4oVAYzwEsFouPtLvnqd/vx/Hx8fj7QqEQhULhyuN2dnai0Wg85NYAAAAAAAA2SqvVina7feV4nudxOcp7+fJlVKvVa9d5EkP1tra2YmtrK9I0jXa7HUmSRMT7J9NsNqPZbEa9Xo+dnR1zAB/J9Bvr8nEAAAAAAADuLs/zyLLs3us8qRStXC7H/v5+7O7ujtuAjoKlJEkiSZLY2tqKnZ2d2NraeuTdPi/XVfzNOgYAAAAAAMD8CoXCzO6X1xVmXbvOU2j1eZNOpxPtdjsGg8HE8VKpNG4DyvJNt/q8rXQUAAAAAACA5Vo0r3lSFX+zbG9vx/b2dgwGg2i1WtHtdiMiYjgcxvn5eQwGg9jf33/kXQIAAAAAAMDjevLB30ilUonDw8NI0zSSJJk54BAAAAAAAACeq7UJ/kbK5XLs7e3F3t5etFqtx94OAAAAAAAAPAlrF/xd1mg0HnsLAAAAAAAA8CQUH3sDAAAAAAAAwP0J/gAAAAAAAGADCP4AAAAAAABgAwj+AAAAAAAAYAPMHfwlSRJpmq5yLwAAAAAAAMAdzR38nZ+fR7fbXeVeAAAAAAAAgDuaO/grFAqCPwAAAAAAAHiiFprxNxgM4vT0dFV7AQAAAAAAAO5o7uCvWHz/0G63G1988YXqPwAAAAAAAHhCFqr4G8nzPE5PT+Pk5CTSNF32ngAAAAAAAIAF3Sn4G+n1evHu3bu4uLhY1n4AAAAAAACAOyjP+8AsyyIi4tWrV1EqlSJJkmg2mxER0W63I0mSODg4iFqttpqdAgAAAAAAANeaO/iLiKjValGpVCIiotFoRL1ej2azGUmSjNt/ViqV2N/fHz+OzXBychKFQuHK8Z2dnWg0Go+wIwAAAAAAgM3QarWi3W5fOZ7n+ULrzB385Xl+JcwrFouxv78fOzs7cX5+Hv1+PwaDQRwdHUW9Xo/d3d0oFu/VTZQnIs/zmW+uRd9wAAAAAAAATMrzfNx98z7mDv4KhUKUSqXZi5TL8fLly+j1enF+fh7D4TCSJIlOpxN7e3tRr9fvvVEeV6FQmFnxN+sYAAAAAAAA8ysUCjOL6a4rzLp2nXwFJVutVms8/y8iolQqxeHhofafa6Tf78fx8fH4+5cvX0a1Wn3EHQEAAAAAADwvi+Y1K+nD2Wg04oMPPhhX+g2Hwzg6OorT09OllCkCAAAAAAAAk1Y2gG80/+/169fj5LHb7cZvfvObaLVaq7osAAAAAAAAPEsrC/5GRvP/Xrx4MZ4R2Gw24+3bt9Hr9VZ9eQAAAAAAAHgWVh78jWxtbcWbN29id3c3It63/zw5OYmTk5NI0/ShtgEAAAAAAAAb6cGCv5Hp+X+9Xi/evXsXFxcXD70VAAAAAAAA2BgPHvxFzJ7/126344svvohut/sYWwIAAAAAAIC19ijB38j0/L88z+P09FT7TwAAAAAAAFjQowZ/I9Pz/7T/BAAAAAAAgMXMHfw9RAXe9Py/UfvPJElWfm0A4HpZlsXZ2VmcnZ1FlmWPvR0AAAAAYIa5g793796tPIDLsiyGw2FUq9Wo1WoREZHneZyfn8fR0VEMBoOVXh8AuKrf78fR0VF0Op3odDpxdHQU/X7/sbcFAAAAAEwpP+TFRsFemqYxHA6vfH2TwWAQR0dH8eGHHz7QbgHgecvzPNrtdjSbzYnjw+Ewjo+PY3d3N3Z2dqJQKDzSDgEAAACAy+YO/gqFwlztPq8L9dI0jTzP77VZAOBhDIfDODs7u7Gyr9lsRq/Xi4ODgyiVSg+4OwAAAABgloUq/pIkia2trSgWi5GmaQwGg5UHe4VCISqVSpTLZR8qAsAD6PV6c8/yG7UBPTg4iK2trQfYHQAAAABwnbmDv2KxGMPhME5OTpa+iVKpFKVSKcrlclQqlYnvAYCHked5NJvNaLfbC52XZVmcnJzEzs5O7O7uzmz9mf3oD5e1zQnF7/ztStYFAAAAgHX0IMlaoVAYV+yNAr1SqRSVSiWKxeJDbAEAuEGapnF2dhaDweDOa7Tb7ej3+3FwcOAf7wAAAADAI1jap3KjcG+6Yq9UKgn3AOAJS5IkLi4ultKyezAYxNHRUezt7UW9Xl/C7gAAAACAec0d/I3m/BQKhdje3taSEwA2RLvdXuqc3jzPo91uC/4AAAAA4IEtlNiVSqV48+bNqvYCADyCWq0WrVZr6Wsu4meVD+PTyu/E55U3kRSqUc/78dHgbXwy+Kf4xuDXS90bAAAAAGyqhYK/RT/EAwCevscK/oZRiL+sfxJ/0fhWfFb54NrHfTz4TfxZ6yfx3eTTKMXyKhMBAAAAYNPMPXwvz3MtPQFgA1UqlaX+HT+a+XuTz8uv49uvvx9/fvhHN4Z+ERGfVT6IPz/8o/j26+/H5+XXS9snAAAAAGyauT/l293djWq1usq98ISdnJxEoVC4cnxnZycajcYj7AiAZVpm1d9t1X4/rn4lvvPy30azuFgngZ9Wvxzffv39+NHxX8cf9H95jx0CAAAAwNPSarWi3W5fOZ7ni3XAmrvir9FoqPh7xvI8jyzLrvxa9A0HwNO0zHbeN631WflN/KuX/27h0G+kWazFd17+W5V/AAAAAGyUZeUwcwd/PG+FQiGKxeKVX7OqAAFYP8tq93lTm880ivHHh/86WsWte12jWazFHx/+mxiGv4MAAAAA2AzLymGU8DGXFy9eaPUKsOGW0e7zpmq/H9a/GT+tfvle6498Wv1y/LD+zfjTpawGAAAAAI+r0WjMHK3W7/fj+Ph47nVU/AEAEbGcdp83rfGfG9+69/qT6/2Lpa4HAAAAAOtO8AcARMT9233e1ObzZ5UP4/PKB3dee5bPKh/Ez5NkqWsCAAAAwDpbSavPLMui2+1Gr9eL4XAYWZZFqVSKYrEYpVIptra2olKpRLEodwSAp+Q+7T5vqvb7tPI7d93SjT5Nkvh6vb6StQEAAABg3Sw9+Ov1enFycnLl+HA4HH/dbrcjIqJUKkW9Xo9arXavCgMAYDlWFfx9Xnlz1y3d6O87nZWsCwAAAADraOlp2/n5+dyPHQ6H0Ww2o9lsRqVSiUajsZT5QgDA3VQqlfjwww+Xvm5SqC59zYiITpatZF0AAAAAWEdLD/6yqQ/gqtXquJovy7IYDoeRpmnkeT7xuMFgEKenp1GpVGJ3dze2traWvTUA4JHU8/5K1t3WNhwAAAAAxpYe/FUqlej333+49/r162tbeKZpGv1+P3q9XnS73fHxwWAQJycnsbu7G41GY9nbAwAewUeDtytZ92vb2ytZFwAAAADW0dKDv3q9Hv1+PyqVyo1z+8rlcpTL5ajX6xERkSRJJEkSg8EgIiKazWZkWRZ7e3vL3iIA8MA+GfzTatb95/+OAAAAAAAilt4fa3t7OwqFwjjAm1e9Xo9Xr17Fq1evolp9Pweo3W5PVAMCAOvpG4Nfx8eD3yx1za8NvoivC/4AAAAAYGwlg3H29/cj4n0V36IqlUq8fPkyXrx4EaVSKU5PTyNN02VvEQB4YH/W+smTXg8AAAAA1t1Kgr/t7e2o1+txcXERWZbdaY2tra148+ZN1Gq1ODk5WfIOAYCH9t3k0/hm/1dLWeuT/q/iT5KfLmUtAAAAANgUhTzP81Ut/u7duyiVSvHixYt7rfP27dtoNBrjeYCsXr/fj+Pj4/H3L1++HLdgBYC7+rzTiW/94hfRvOM/DIqI2C0W4ydf/Wp8tL29xJ0BAAAAwNOzaF6zkoq/yxdP0/TeFXuj6kEAYL19tL0d/+33fi92i3f7T5DdYjH+2+/9ntAPAAAAAGZYafBXLBbj1atXMRwO4+jo6M6z+iqVSuR5Hq1Wa8k7BAAe2h/s7sZPvvrV+OaClfyf1Ovxk69+Nf5gd3dFOwMAAACA9bbS4C/iffj3+vXrqFQq8e7duztV7hX/uSqg2+0ue3sAwCP4aHs7fvLVr8YPfvd34+Na7cbHflyrxQ9+93fjf2jvCQAAAAA3Ki97wfPz8+h0OlEsFqNUKkWlUolKpRI7OztRq9Xi/Pw8kiSJg4ODqN3yQd/IqFJwMBgse7sAwCMpFQrxvdev43uvX8fPkyQ+TZL4+04nOlkW28VifG17Oz6p1+PrZvwCAAAAwFyWHvx1Op3I8zyGw2EMh8Po9/sTv1+pVGI4HMbp6WkUCoWo1+tRr9ejXL5+K6M1SqXSsrcLADwBXxfwAQAAAMC9LT34q9fr0W63r/39y1V7eZ5Hu92OdrsdhUJhXB1YLpfHX2dZFkmSREREo9FY9nYBAAAAAABgIyw9+Gs0GpEkSeR5HhExDu+Gw+GN5+V5Hv1+/0qF4GWlUinSNL2xOhAAAAAAAACeo6UnaMViMfb29uL8/Dx2d3cnqvTSNI3hcBiDwWD8v4vM7Ts5ORl/XalUxjMER/8rEAQAAAAAAOC5WklSVq/Xo9PpXAn1yuVylMvl2NramjieZdlEGJimaQwGg3HV4Cyj0LDb7U4cL5VK4yCw0WhEsVhc3hMDAAAAAACAJ2plJXKHh4fx9u3b6PV6V4K+acViceZjRi1CL4eBtwWCw+EwhsNh9Pv9KJfLUa/X7/1cAAAAAAAA4KlbWfBXLBZjf38/Tk9P40tf+tKd1ygWi1GpVCaOjyoEe71eDAaDa+cCLtJGFAAAAAAAANbZSofibW9vR57nkabpUufvjSoEL1cJpmka/X5/HAgOh8Po9XpLuyYAAAAAAAA8ZSsN/iLiwVptjuYHjozahAIAAAAAAMBzsPLg77GM2oQCAAAAAADAc7CxwR/LdXJyEoVC4crxnZ2daDQaj7AjAAAAAACAzdBqtaLdbl85nuf5QusI/phLnucz31yLvuEAAAAAAACYlOd5ZFl273UEf8ylUCjMrPibdQwAAAAAAID5FQqFmSPsrivMuo7gj7m8ePEiqtXqY28DAAAAAABg4zQajZmj1fr9fhwfH8+9juAPAOCRZVkWFxcXERGxt7c38193AQAAAMBtBH8AAI+o3+/H2dlZDIfD8fcHBwcq7QEAAABYmH9ODgDwCPI8j1arFcfHx+PQLyJiOBzG8fFxtFqthfq3AwAAAICKPwCABzYcDuPs7Cz6/f61j2k2m9Hr9eLg4CBKpdID7g4AAACAdaXiDwDgAfV6vTg6Orox9Bvp9/txdHQUvV7vAXYGAAAAwLoT/AEAPIA8z+Pi4iJOTk4iy7K5z8uyLE5OTuLi4kLrTwAAAABupNUnAMCKpWkaZ2dnMRgM7rxGu92Ofr8fBwcHUS77TzgAAAAArlLxBwCwQkmSxNHR0b1Cv5HBYBBHR0eRJMkSdgYAAADAphH8AQCsULvdXmqLzjzPo91uL209AAAAADaH4A8AYIVqtdparAkAAADA+hP8AQCskOAPAAAAgIci+AMAWKFKpRLlcnlp65XL5ahUKktbDwAAAIDNIfgDAFixZVboqfYDAAAA4DqCPwCAFRP8AQAAAPAQltd3CgCAmUbtPtM0vdc6z73NZ/ajP7zx939W+TA+rfxOfF55E0mhGvW8Hx8N3sYng3+Kbwx+fe15xe/87bK3CgAAAPAoBH8AAA+gVqtFq9W69xpMGkYh/rL+SfxF41vxWeWDax/38eA38Wetn8R3k0+jFPkD7hAAAADg4Wj1CQDwAJYR2gn+Jn1efh3ffv39+PPDP7ox9IuI+KzyQfz54R/Ft19/Pz4vv36gHQIAAAA8LMEfAMADGLX7vKvn3uZz2o+rX4lvv/5+/LT65YXO+2n1y/Ht19+PH1e/spqNAQAAADwiwR8AwAO5T8Wear/f+qz8Jv7Vy38XzeLd7kmzWIvvvPy3Kv8AAACAjSP4AwB4IIK/+0ujGH98+K+jVdy61zrNYi3++PDfxDAKS9oZAAAAwOO7e78pAAAWUqlU4sMPP3zsbay1H9a/uXB7z+t8Wv1y/LD+zfjTpawGAAAA8PhU/AEAsDb+c+NbS17vXyx1PQAAAIDHJPgDAGAt/KzyYXxe+WCpa35W+SB+niRLXRMAAADgsQj+AABYC59Wfmc16wr+AAAAgA0h+AMAYC18XnmzknX/vtNZyboAAAAAD03wBwDAWkgK1ZWs28mylawLAAAA8NAEfwAArIV63l/JuttF/0kMAAAAbAafcgAAsBY+Grxdybpf295eyboAAAAAD03wBwDAWvhk8E+rWbdeX8m6AAAAAA9N8AcAwFr4xuDX8fHgN0td82uDL+Lrgj8AAABgQwj+AABYG3/W+smTXg8AAADgMQn+AABYG99NPo1v9n+1lLU+6f8q/iT56VLWAgAAAHgKBH8AAKyNUuTxV6d/E7tZ917r7Gbd+C+nfxOlyJe0MwAAAIDHJ/gDAGCtfJS+ix8d//Wdw7/drBs/Ov7r+Ch9t+SdAQAAADwuwR8AAGvnD/q/jL9794OF235+0v9V/N27H8Qf9H+5mo0BAAAAPCLBHwAAa+mj9F383bsfxF+c/tf4ePCbGx/78eA38Ren/zX++7sfqPQDAAAANlYhz3ODTbii3+/H8fHx+PuXL19GtVp9xB0BANzs50kSnyZJ/H2nE50si+1iMb62vR2f1Ovx9Xr9sbcHAAAAsLBF85ryQ2wKAABW7esCPgAAAOCZ0+oTAAAAAAAANoDgDwAAAAAAADaAVp/M5eTkJAqFwpXjOzs70Wg0HmFHAABwN9mP/nAl6xa/87crWRcAAIDN12q1ot1uXzme5/lC6wj+mEue5zPfXIu+4QAA4Kn7WeXD+LTyO/F55U0khWrU8358NHgbnwz+Kb4x+PVjbw8AAIANlOd5ZFl273UEf8ylUCjMrPibdQwAANbNMArxl/VP4i8a34rPKh9c+7iPB7+JP2v9JL6bfBql8I/gAAAAWI5CoRDF4tUJfdcVZl1H8MdcXrx4EdVq9bG3AQAAS/d5+XX8b4f/Jn5a/fKtj/2s8kH8+eEfxV/t/H781enfxEfpuwfYIQAAAJuu0WjMHK3W7/fj+Ph47nWuRocAAMBayrIszs7O4uzsbCntQZ6DH1e/Et9+/f25Qr/Lflr9cnz79ffjx9WvrGZjAAAAcAeCPwAA2AD9fj+Ojo6i0+lEp9OJo6Oj6Pf7j72tJ+2z8pv4Vy//XTSLtTud3yzW4jsv/218Xn695J0BAADA3Qj+AABgjeV5Hq1WK46Pj2M4HI6PD4fDOD4+jlartdAsgOcijWL88eG/jlZx617rNIu1+OPDfxPDMPsaAACAxyf4AwCANTUcDuPk5CSazea1j2k2m3FycjIRChLxw/o3F27veZ1Pq1+OH9a/uZS1AAAA4D4EfwAAsIZ6vd7c7TxHbUB7vd4D7Gw9/OfGt5a83r9Y6noAAABwF4I/AABYI3mex8XFRZycnESWZXOfl2VZnJycxMXFxbNv/fmzyofxeeWDpa75WeWD+HmSLHVNAAAAWJTgDwAA1kSapnF8fBztdvvOa7Tb7Tg+Po40TZe4s/XyaeV3VrOu4A8AAIBHJvgDAIA1kCRJHB0dxWAwuPdag8Egjo6OInmmQdXnlTcrWffvO52VrAsAAADzEvwBAMAaaLfbS23Rmef5vSoH11lSqK5k3c4CrVcBAABgFQR/AACwBmq12lqsuQ7qeX8l624X/d8rAAAAHpf/ZwoAAGtA8Lc8Hw3ermTdr21vr2RdAAAAmJfgDwAA1kClUolyuby09crlclQqlaWtt04+GfzTatat11eyLgAAAMxL8AcAAGtimcHfc632i4j4xuDX8fHgN0td82uDL+Lrgj8AAAAe2fI+OQAAAFYiz/NoNpvR7XaXtuZzDv4iIv6s9ZP488M/Wup6Ef9yaeux/n6WJPFpux2fdbuRZFnUi8X4uFaLT3Z24htCYgAAYEUEfwAA8ISlaRpnZ2cxGAyWtuZzbvM58t3k0/irnd+Pn1a/fO+1Pun/Kv4k+ekSdsW6G+Z5/OXRUfynt2/jsxuC+o9rtfgPb97Ed1+9ilKh8IA7BAAANp1WnwAA8EQlSRJHR0dLDf0iVPtFRJQij786/ZvYze5XRbmbdeO/nP5NlCJf0s5YV593OvGtX/wi/vQf//HG0C8i4rNuN/70H/8xvvWLX8Tnnc4D7RAAAHgOBH8AAPBEtdvtyPPlB0qCv/c+St/Fj47/+s7h327WjR8d/3V8lL5b8s5YNz9uNuNbv/hF/DRJFjrvp0kS3/rFL+LHzeaKdgYAADw3gj8AAHiiVhHQFYvFZ9/m87I/6P8y/u7dD+Kb/V8tdN4n/V/F3737QfxB/5er2Rhr47NOJ/7lP/xDNLPsTuc3syz+13/4B5V/AADAUhTyVfwTYtZev9+P4+Pj8fcvX76MarX6iDsCAHh+BoNBHB0dLXXNer0e+/v7S11zEwzzPH54dBT/cY7ZbP/7mzfxJ2azERFpnse/uEOl3yyf1OvxP776Ve8rAABgwqJ5TfkhNgUAACyuUqlEuVyONE2Xtma9Xl/aWpukVCjE916/ju+9fh0/T5L4NEni7zud6GRZbBeL8bXt7fikXo+vu39c8sOjo6WEfhERnyZJ/PDoKL73+vVS1gMAAJ4nwR8AADxhtVotWq3WUtZqNBrafM7h6wI+5pD96A/jP775PyIqHyxtzf/4f38a33v9vyxtPQAA4Pkx4w8AAJ6wZc75W8XMQHiuflb5MD5fYugXEfFZ5YP4+ZIqCAEAgOdJ8AcAAE/YqN3nfZXLZdV+sESfVn5nNesK/gAAgHsQ/AEAwBO3jEo91X6wXJ9X3qxk3b/vdFayLgAA8DwI/gAA4IkT/MHTkxSqK1m3k2UrWRcAAHgeBH8AAPDE3bfdpzafsHz1vL+SdbeL/m86AABwd/4fBQAArIH7VOyp9oPl+2jwdiXrfm17eyXrAgAAz4PgDwAA1oDgD56WTwb/tJp16/WVrAsAADwPd+8XBAAAPJhKpRIffvjhY28D+GffGPw6Ph78Jj6rfLC0Nb82+CK+Xv/9pa0HAAA8P4I/AAAAuIM/a/0k/vzwj5a6XsS/XNp6rL+fJUl82m7HZ91uJFkW9WIxPq7V4pOdnfiG6lAAAGYQ/AEAAMAdfDf5NP5q5/fjp9Uv33utT/q/ij9JfrqEXbHuhnkef3l0FP/p7dv4rNu99nEf12rxH968ie++ehWlQuEBdwgAwFNmxh8AAADcQSny+KvTv4nd7PpwZh67WTf+y+nfRCnyJe2MdfV5pxPf+sUv4k//8R9vDP0iIj7rduNP//Ef41u/+EV83uk80A4BAHjqBH8AAABwRx+l7+JHx3995/BvN+vGj47/Oj5K3y15Z6ybHzeb8a1f/CJ+miQLnffTJIlv/eIX8eNmc0U7AwBgnQj+AAAA4B7+oP/L+Lt3P4hv9n+10Hmf9H8Vf/fuB/EH/V+uZmOsjc86nfiX//AP0cyyO53fzLL4X//hH1T+AQAg+AMAAID7+ih9F3/37gfxF6f/NT4e/ObGx348+E38xel/jf/+7gcq/Yg0z+Pf//KX0bpj6DfSzLL497/8ZQxzLWMBAJ6z8mNvAAAAADZBKfL4XvJpfC/5NH5e/lJ8Wv1yfFZ5E51CJbbzQXw8eBuf9H8VX0+/eOyt8oT88Oho4fae1/k0SeKHR0fxvdevl7IeAADrR/AHAAAAS/b19AsBH7fKfvSH8R/f/B8RlQ+WtuZ//L8/je+9/l+Wth4AAOtFq08AAACAR/Czyofx+RJDv4iIzyofxM+XVEEIAMD6EfwBAAAAPIJPK7+zmnUFfwAAz5bgDwAAAOARfF55s5J1/77TWcm6AAA8fWb8AQAAADyCpFBdybqdLFvJuqyfnyVJfNpux2fdbiRZFvViMT6u1eKTnZ34Rr3+2NsDAFZA8AcAAADwCOp5fyXrbhc1eHrOhnkef3l0FP/p7dv4rPv/b+9eflzJ8vvA/4KPTL7ydZ9dcC+0FKoaaAHqAtpe9NqAZ9oLe6sZWyOhJdl/wvwXAwu1aEsY9LYXmt5YawFqCaiCYQGuRi+0KAglVNW9+biZSUYmyWDELMrJyudNMkkmycjPBygUGTd4eILJzCDje37nnN+530eNRvznV6/ij1+8iGqSPGIPgafGIAR4XII/AAAAmFLlp3+97C5QAh8O3yyk3R80mwtpl9X3m7Oz+D+/+CI+m2Cdx8/Pz+NP/+mf4r/u78f/+zu/Ex963wBzZBACLI/gDwAAgLWQ53mcnJxERMT29nZUVDWx5j4e/vNi2lU98WTkv/rX49t/s/E78dPnfxCnlcZUbXyWpvHj//nf41cHv4ifDL6ICIMbgNkYhADL5VtSyWRZFsPhMHLz+QMAACUyGAxif38/zs7O4uzsLPb392MwWMw0ifBYfm/4VXw0/Gaubf5g+HX8UPD35HxeexX/+/P/Y+rQ78JppRE/ff4H8Zvayzn3DHhq/ub0NH78299OFPpd9lmaxo9/+9v4m9PTBfUMng4VfyUwHA7j5OTkxpfeJEmi1WrF9vb2knoGAAAwm6Iootfrxem1i0Cj0SgODg5ia2sr2u12JKaGYk39Wffv4z/t/du5thfxb+bWHqsvi0r84d6/i25lc6Z2TiuN+MO9fx9/+/YTlQJcYX02JvX52Vn8m3/8x+g+sCjlNM/jf/vHf4y//93fVfkHMxD8rbmTk5Po9XrRaDTixYsXUa/XI8/zSNM0Tk9Po9frxfn5ebx48cI0OAAAwFoZjUbx7t2791b2nZ6eRr/fj93d3ahWq4/YO5iPP04/jb9s/358tvH9mdv6ePBl/FH62Rx6xTr5eetHc3n/RER8uvH9+HnrR/Gnc2mNdWZ9NqaVFUX8hy++eHDod+E0z+M/fPFF/N3v/q73FDyQJGiNpWk6Dv329vaiXq9HRESlUolOpxO7u7sR8e2X5aOjoyX2FAAAYDr9fn/i6TwvpgHt9/uP0DOYr2oU8ZdHv4yt/O4L65PYys/jL45+GdUo5tQz1sV/6fx4zu39y7m2x/r5zdlZ/Pi3v40//ad/em/oF/Hd+mw//u1v4zdnZ4/UQ1bRz/f3p57e8y6fpmn8fH9/Lm3BUyT4W1NZlsXx8XFEROzs7Ny6T7PZjI2NjYj49ovwcDh8tP4BAAA8RFEUcXJyEoeHh1OtXZ7neRweHsbJyUkUheCD9fJh9jZ+dfCLB4d/W/l5/OrgF/Fh9nbOPWPV/Y/6B/Gb+uu5tvl5/XX8w5wu3rN+rM/GQ/0/b96sdHvwlAj+1lSv14uIiI2NjfdO4dm6NM92t9tdeL8AAAAeKsuyODg4GH/feYherxcHBweRZdkcewaL95PBF/Hrt5/EjwZfTvW4jwdfxq/ffhI/GXyxmI6x0j6t/4vFtCv4e5Iu1mc7nXF9NpV/T8//SNP4zT3VodP6/PzcIAR4IMHfmkr/1x+9i+k977K5+d3Czqa9AQAAVlWaprG/vz+XmUqGw2Hs7++PvzfBuvgwexu/fvtJ/PnRX8VHw2/eu+9Hw2/iz4/+Kv727Scq/Z6w39RfLaTd/ym4eXLmvT7bSPX9k/LpDIO23tuuz3LwILVld4DpXQ7w7gv+KpVKJEkSRVFEURSRZVnUan7sAADAaun1enOdorMoiuj1eldmQYF1UI0ifpZ+Gj9LP41/qH0vPt34fnxefxVnST2axTA+Gr6Jjwdfxg+zr5fdVVZAmmwspN2zGcMf1s8i1mf72cuXc2mP1XffWpAPZRACPIwEaA1dDv4mCfHq9XoMBoOI+Hbkq+APAABYNY1GY+7LEzQajbm2B4/th9nXAj7eq1UMFtJu8z3LylBOi1ifTfD3dKQLGixgEAI8jLP4GhqNRuPbSZLcu//loO/yYwEAAABYXx8O5xvWXPhBs7mQdllN1mdjVq0FDRYwCAEexm/Oe+R5HicnJ/H1119HvkKjCy4vUl+Z4I/f5XBwlY4DAADgwvkCpohaRJsAq+Tj4T8vpl3TJD8p1mdjVh8taJYFgxDgYcz5eIssy6LX611ZCD7P84lCtvv0+/04Pz+PwWAQo9EoiqKIJEmiWq1Gs9mMVqt17/NcXvdikj7No98AAACLZKpPgOn93vCr+Gj4TXxefz23Nn8w/Dp+2Pr9ubXH6rM+G7P6uN1eTLsGIcCDSIQuGQ6HcXR0FG/fvr0S+s2r7Tdv3sTh4eG47Xq9HrVaLYqiiCzL4vT0NL755pt7n3uWqr3LoSEAAMCqWERIJ/gDnoI/6/79SrfH6rM+G7P6vVZr7lV/P2g04oeCP3iQJx/85Xke3W433rx5E/v7+wuZCiZN09jf34/RaBStVitev34dL1++jOfPn8fLly/j9evXV76QHh8fx8nJyZ3tTRveXa74m2RNQAAAgMd2MTByXmq1WtTr9bm1B7Cq/jj9NH40+HIubX08+DL+KP1sLm2xPppf/H+LadcsZE/Kf371aqXbg6fkyU71med5HB0dxWAwuLK91WpFu92O/f39uVTH9fv9OD4+joiIdrsd29vbN/apVCqxt7cXR0dH4+Cx1+tFvV6P5i3zGCdJMu7btFOQmvYTAABYVfOc7lO1H+ug8tO/Ht8eDAbx7t27GI1GERFRrVZjd3c3NjY2ltU91kQ1ivjLo1/Gv3r5J3Faefjfvq38PP7i6JdRDbNFPTUfDt8spF3rsz0d+a/+dfxfkcR/ffkn8dnG92du7+PBl/GHf/d/R/z0v82hd/D0PNkUqFKpjEO/JElia2srXr9+HTs7O1Gr1eYWkB0dHY2f47bQ77KdnZ0r9y8Cw1ldnhpU8AcAAKyqeYZ1gj/WRVEU0e124+DgYBz6RUSMRqM4ODiIbrdr2Q7u9WH2Nn518IvYyh82k9VWfh6/OvhFfJi9nXPPWAcfD/95Me2apvFJuRiE8NC/QxcMQoDZPekUqNFoxM7OTnzve9+LTqcz9ykxL38473Q69+5fqVSifWkh1KIobl3v73I/p13vr1qtTrU/AADAY5nXdJ+m+WRdjEajODw8jNPT0zv3OT09jcPDwyuhINzmJ4Mv4tdvP5l62s+PB1/Gr99+Ej8ZfLGYjrHyfm/4VXw0/Gaubf5g+LX12Z4ggxBgNTzp4G9vby9aCzwBXZ6iZtLRpten9jw7O7uxz+XwbpIP/pfDQcEfAACwyuZRqafaj3XQ7/djf3//xhIktxkMBrG/vx/9fv8ResY6+zB7G79++0n8+dFf3RvkfDT8Jv786K/ib99+4iI78Wfdv1/p9lgfBiHA8j3ZNf4W7ezsbFztlyTJxKNWr49Kve0LQK1WG2+fJPi7vM88Rs8CAAAsyjzW+RP8scqKoojT09Po9XpTPS7P8zg8PIx2ux1bW1tzmamIcqpGET9LP42fpZ/GP9S+F59ufD8+r7+Ks6QezWIYHw3fxMeDL+OH2dfL7ior5I/TT+Mv278/t/XZ/ij9bA69Yl1dDEL4eetH8V86/zI+r7++c9+Pht/Ef+r+XfxR+pnpPWFOpEALcjmwm3aKmVqtFlmWje/3+/3Y3Ny8tb3L+93lYh8LggMAAKvuYrrPSb7r3MY0n6yyLMvi3bt3MRwOH9xGr9eLwWAQu7u7Bvdyrx9mX5cy4MvzPE5OTiIiYnt7+8qyODzMxfps/+rln8Rp5eEDaKzPxgWDEGB5fEJckMtTdE77QXxjY+PKl9zrVX2XA7xJpvm4aOtyeAgAALCqZqn6U+3HqkrTNE5OTsazA81iOBzG/v5+bG9vL3QJE1hFg8Eg3r17N75edhGEG/A+u4v12X76/A8eFP5Zn427lHUQAqwqwd8C5Hl+5YP8tNNvXF+H7/pI11qtFtVqNUajUWRZFnme3zmy6XIw6MsAAACwDgR/lFGv15tL6HehKIro9Xq+6z9xlZ/+9bK78Ggu3vOnp6dXto9Gozg4OIitra1ot9umwZ3Rxfps/3Hv30817efHgy/jL45+KfQDWAGCvwW4XqE3bcXf9eDvtilAtra24t27dxER0e12Y3t7+9a20jSNiIh2u23aAwAAYC3U6/X44IMPlt0NmKt5rF95W5vwFIxGo3j37t2VpXWuOz09jX6/H7u7uzeurTEd67MBrDfB3wJcD+qmHWk0SUDXbDYjTdMYDAbR6/Wi2WzeWMei3+/H+fl51Gq1O4NBAAAAYPEEf/Aw/X4/3r17F3me37vvYDCI/f392N3dteTNjKzPBrC+BH8LMMkHkfe5Hvzd1d7z58/j4OBg/KGm3W6PP9Scn59HmqZRq9Xi+fPnM/UHAAAAmE29Xo9arXZjOY+HqtVqNwYAQ5kURRGnp6fR6/Wmelye53F4eBjtdju2trZM/TkH1mcDWC+CvwWYNfi7/oHkfWsAPH/+PPr9fnS73UjTNHq9XiRJEvV6PXZ3d6PZbM7Ulwu3TTf6PtVq1bQKAAAAcMk8q/5U+1FmWZbFu3fvpr4edVmv14vBYBC7u7tTL8MDAIs0Go1uLBn3PtOeD531FuB6ULfotfU2NzcXPn3BycnJVPt3Op3Y2tpaUG8AAABg/Qj+4H5pmsbJycl7B8JPajgcxv7+fmxvb0er1ZpD7wBgdmmazn0K+MsWm0gREfOvAAQAAADWz8V0n7MyzSdl1uv15hL6XSiKYurpQgFgnQn+VtD1CsFFVwwCAAAAj2MelXqq/SizRby//c4A8JSY6nMFzVohuAjb29tTjSa0vh8AAADcNI/pPoUYlNk8p8S93CYArIpWqzXV8m3D4XCq5dgEfwtwfWrOWacnWIWKv3q9HhsbG8vuBgAAAKy1i+k+syx70ONN80nZzfo7cp3fGQBWTbVaXWjx1PITpRK6HtRNW8F3PSj04QQAAADKY5bqI5VLPAXzfJ/7nQHgqRH8LcD14G80Gk31+OtBoWkzAQAAoDwEf/B+gj8AeDhTfS7A9Qq9aSv+ru9fq/kxAQAAQFnU6/X44IMPlt0NWFnzmu7TNJ8APEUq/hbgeoXecDic6vHXKwR9QAEAAADgKZlHpZ5qPwCeIqVkC1CpVCJJkvFafdNO9Xl5/42Njbn2DQAAAABWXaPRiG63O3Mb3K/y079edhcAmCPB34Jsbm7G+fn5+P5wOJy4cm8wGFxpBwAAAACeklmn+zTNJzwe4TGsFsHfgjQajSvBX7/fn/jDxuUPNK1Wa+59e4jDw8NIkuTG9na7HZ1OZwk9AgAAAKDMZqn6U+0HwLrpdrvR6/VubL+YXXJS1vi7w7Qv5HXNZvPK/TRNJ3rc2dnZ+Haj0YhKZTV+REVRRJ7nN/6b9XUCAAAAgNvMEt4J/gBYN/PKYVT83SHP8yv3HxJwbW1txenpaUR8u25fv9+/d+rOy6OYtra2pn7ORUmS5NaKv9u2AQAAAMCs6vV6fPDBB8vuBgA8iiRJbi0GK4piqoxK8HeLfr9/40VM0zR2dnamaqfT6USapjEajSIi4vj4OF68eHFnFV+apuNpPnd2dqJWW50fz7Nnz2JjY2PZ3QAAAAAAACidTqdz69Jqg8EgDg4OJm5ndZKlJRkOh9Hv98flklmWxWAwuLFfmqbjdfqq1WpUKpWo1+v3VvC9ePEi3rx5E0VRxGg0iv39/djb27ux3l+32x1XB7bb7ZVZ2w8AAAAAAID18OSDv36/Pw7c7jMajcbVexHfzhV+X/BXqVTi1atXcXx8HOfn5+Pwr1qtRr1ejzzPYzgcjisMd3d3b6wPCAAAAAAAAPd58sHfXaWT81SpVGJvby+Gw+G4cjDP8zg/Px8HgM1mU5UfAAAAAAAAD/bkg7/HVK/Xp14nEAAAAAAAACZRWXYHAAAAAAAAgNkJ/gAAAAAAAKAEBH8AAAAAAABQAoI/AAAAAAAAKAHBHwAAAAAAAJRAbdkdYD0cHh5GkiQ3trfb7eh0OkvoEQAAAAAAQDl0u93o9Xo3thdFMVU7gj8mUhTFrW+uad9wAAAAAAAAXFUUReR5PnM7gj8mkiTJrRV/t20DAAAAAABgckmSRKVyc4W+uwqz7iL4YyLPnj2LjY2NZXcDAAAAAACgdDqdzq1Lqw0Ggzg4OJi4nZvRIQAAAAAAALB2BH8AAAAAAABQAoI/AAAAAAAAKAHBHwAAAAAAAJSA4A8AAAAAAABKQPAHAAAAAAAAJSD4AwAAAAAAgBIQ/AEAAAAAAEAJCP4AAAAAAACgBAR/AAAAAAAAUAK1ZXeA9XB4eBhJktzY3m63o9PpLKFHAAAAAAAA5dDtdqPX693YXhTFVO0I/phIURS3vrmmfcMBAAAAAABwVVEUkef5zO0I/phIkiS3Vvzdtg0AAAAAAIDJJUkSlcrNFfruKsy6i+CPiTx79iw2NjaW3Q0AAAAAAIDS6XQ6ty6tNhgM4uDgYOJ2bkaHAAAAAAAAwNoR/AEAAAAAAEAJCP4AAAAAAACgBAR/AAAAAAAAUAKCPwAAAAAAACgBwR8AAAAAAACUgOAPAAAAAAAASkDwBwAAAAAAACUg+AMAAAAAAIASEPwBAAAAAABACQj+AAAAAAAAoAQEfwAAAAAAAFACgj8AAAAAAAAogdqyO8B6ODw8jCRJbmxvt9vR6XSW0CMAAAAAAIBy6Ha70ev1bmwvimKqdgR/TKQoilvfXNO+4QAAAAAAALiqKIrI83zmdgR/TCRJklsr/m7bBgAAAAAAwOSSJIlK5eYKfXcVZt1F8MdEnj17FhsbG8vuBgAAAAAAQOl0Op1bl1YbDAZxcHAwcTs3o0MAAAAAAABg7Qj+AAAAAAAAoAQEfwAAAAAAAFACgj8AAAAAAAAoAcEfAAAAAAAAlIDgDwAAAAAAAEpA8AcAAAAAAAAlIPgDAAAAAACAEhD8AQAAAAAAQAkI/gAAAAAAAKAEBH8AAAAAAABQAoI/AAAAAAAAKAHBHwAAAAAAAJSA4A8AAAAAAABKQPAHAAAAAAAAJVBbdgdYD4eHh5EkyY3t7XY7Op3OEnoEAAAAAABQDt1uN3q93o3tRVFM1Y7gj4kURXHrm2vaNxwAAAAAAABXFUUReZ7P3I7gj4kkSXJrxd9t2wAAAAAAAJhckiRRqdxcoe+uwqy7CP6YyLNnz2JjY2PZ3QAAAAAAACidTqdz69Jqg8EgDg4OJm7nZnQIAAAAAAAArB3BHwAAAAAAAJSA4A8AAAAAAABKQPAHAAAAAAAAJSD4AwAAAAAAgBIQ/AEAAAAAAEAJCP4AAAAAAACgBAR/AAAAAAAAUAKCPwAAAAAAACgBwR8AAAAAAACUgOAPAAAAAAAASkDwBwAAAAAAACUg+AMAAAAAAIASEPwBAAAAAABACQj+AAAAAAAAoAQEfwAAAAAAAFACgj8AAAAAAAAoAcEfAAAAAAAAlIDgDwAAAAAAAEpA8AcAAAAAAAAlUFt2B1gPh4eHkSTJje3tdjs6nc4SegQAAAAAAFAO3W43er3eje1FUUzVjuCPiRRFceuba9o3HAAAAAAAAFcVRRF5ns/cjuCPiSRJcmvF323bAAAAAAAAmFySJFGp3Fyh767CrLsI/pjIs2fPYmNjY9ndAAAAAAAAKJ1Op3Pr0mqDwSAODg4mbudmdAgAAAAAAACsHcEfAAAAAAAAlIDgDwAAAAAAAEpA8AcAAAAAAAAlIPgDAAAAAACAEhD8AQAAAAAAQAkI/gAAAAAAAKAEBH8AAAAAAABQAoI/AAAAAAAAKAHBHwAAAAAAAJSA4A8AAAAAAABKQPAHAAAAAAAAJSD4AwAAAAAAgBIQ/AEAAAAAAEAJ1JbdAQC4bjQaRZqm4/utViuq1eoSewQAAAAArDLXFL8l+ANg5YxGo+h2u+P7m5ubT/IkDQAAAABMxjXFb5nqEwAAAAAAAEpA8AcAAAAAAAAlIPgDAAAAAACAEhD8AQAAAAAAQAnUlt0BeIq63W4URRFJkkSn01l2d1aa1+o7XgsAnjrnQlg9fi9ZBd6HT5Of++rys1kcr+10vF7f8Vo8LYI/WIJerxd5nkelUvGH9h5eq+94LQB46pwLYfX4vWQVeB8+TX7uq8vPZnG8ttPxen3Ha/G0mOoTAAAAAAAASkDwBwAAAAAAACUg+AMAAAAAAIASEPwBAAAAAABACdSW3QFWU57nV+4Ph8Ml9aSciqIY/38wGCy5N6vNa/Wdp/RaXP+b428QABFP61wI68LvJavA+/Bp8nNfXX42i+O1nY7X6ztP5bUo6zXF68dxPb+5LikufuJwSa/Xi5OTk2V3AwAAAAAAgP9le3s72u32nf9uqk8AAAAAAAAoAcEfAAAAAAAAlICpPrlVlmXR7/fH96vValQqcmIAAAAAAIDHkud5jEaj8f3Nzc2o1Wp37i/4AwAAAAAAgBJQwgUAAAAAAAAlIPgDAAAAAACAEhD8AQAAAAAAQAkI/gAAAAAAAKAEBH8AAAAAAABQAoI/AAAAAAAAKAHBHwAAAAAAAJRAbdkdAIDHlGVZFEUR1Wo1KhXjXwAAAACA8hD8AVB6w+EwTk5OYjAYXNmeJEm0Wq3Y3t5eUs8AAAAAgHWQZVmcnp5GRMTe3t6Se3O3pCiKYtmdAIBFOTk5iV6vF41GIzqdTtTr9cjzPNI0HZ+oq9VqvHjxQgUgAAAAAHDF9aKCjY2NeP78+ZJ7dTcVfwCUVpqm49Dv8iicSqUSnU4nqtVqvHv3LkajURwdHa30CRsAAAAAeBwXhQNpmsZoNFp2d6Yi+AOglLIsi+Pj44iI2NnZuXWfZrMZaZrGYDCIwWAQw+Ew6vX6Y3YTAAAAAFghx8fHkaZpRHw7U9jFtcWLa42rTvAHQCn1er2I+Lb0/n1TeLZarXGZfrfbXen5uQEAAACAxcqyLGq1Wmxvb8fm5mZERPT7/SX3anKCPwBK6WJUzn0VfBcn74j1OoEDAAAAAPO37ssB3V0CAQBr6nKAd1/wV6lUIkmSiIgoiiKyLFto3wAAAAAAFkXwB0DpXA7+arX7i9svh4PD4XAhfQIAAAAAWDTBHwClMxqNxrcvqvne53I4ePmxAAAAAADrRPAHwIPleR4nJyfx9ddfR57ny+7O2OXpOiuV+091l8PBVToOAAAAACijVb2uWAb3z38GANdkWRa9Xi/SNB1vy/N8opDtPv1+P87Pz2MwGMRoNIqiKCJJkqhWq9FsNqPVat37PEVRjG9P0qd59BsAAAAAeL9Vv65YBoI/ACY2HA6j2+3G+fn5Qto+OjoaT7VZq9WiXq9HnueRZVlkWRanp6dxenoaOzs70Wq17mxrllFCl0NDAAAAAGB263JdsQwEfwC8V57nkaZppGm6sPXv0jSN4+PjiIhotVqxtbV1ZfRNnudxfHw8/mBwfHwcWZbF9vb2re1NG95dfq5J1gQEAAAAAN5vHa8rloHgD4Bb5XkeR0dHMRgMrmxvtVrRbrdjf39/LtVx/X5/fHJut9u3nnQrlUrs7e3F0dHR+CTd6/WiXq9Hs9m8sX+SJOO+TTtVwFMo9wcAAACARVnn64plIPgD4FaVSmV8ck6SJDqdzpV5sCuVylxG6hwdHY2f476RNjs7O1emAzg+Pp7LCfry1KCCPwAAAAB4uKd0XXEVCf4AuFOj0YjNzc1b572ex5SY3W53PLqn0+ncu3+lUol2ux29Xi8ivp3SM03TG/27/OFh2oq/arU68b4AAAAAwE3rel2xDJQ1AHCnvb29hZ78ut3u+Haj0ZjoMddH4pydnd3Y53J4N8noocsVf4I/AAAAAJjNul5XLAPBHwBLcXZ2Nh6VkyRJ1GqTFaHX6/Ur96/PFR4RV9qaJPi7vM+k/QAAAAAAHt8iryuWgeAPgKW4fGK9ftK9z/WTeb/fv3L/cntZlt3b3sU+GxsbU/UDAAAAAHhci7yuWAaCPwCW4nIp/bRVdtcDuutVfZf/fZKT90Xwt7m5OVU/AAAAAIDHtcjrimUg+APg0eV5Pi7Hj5h+Qd/r6/Bdr+qr1WrjfbIsu7KG33WXg8EyLuYLAAAAAGWx6OuKZSD4A+DRXR9JM+3InOsn6OFweGOfra2t8e3Li/1el6ZpRES02+2oVJwWAQAAAGBVPcZ1xXXnCicAj+76CXXakTmTBHTNZnNcut/r9W49iff7/Tg/P49arRbb29tT9QEAAAAAeFyPcV3xNpcDx1WfHnS6KBQA5uB9U29O4voJ+q72nj9/HgcHBzEYDGJ/fz/a7fZ4Hb/z8/NI0zRqtVo8f/58pv4AAAAAAIv3WNcVL/5tNBpFlmVXZhQbjUZxcnISzWYzkiSJSqWyUjOJCf4AeHSznqCvj+S5PK/3dc+fP49+vx/dbjfSNI1erxdJkkS9Xo/d3d1oNpsz9QUAAAAAeByPdV3x+Ph4vETQbXq9XvR6vXGb3/ve92bq1zwJ/gB4dNdPqIseEbO5uTmu9AMAAAAA1tNjXVfc2dmJnZ2dhbS9aKtTewjAkzXvkToAAAAAQPm5rniT4A+AtXN9JM8qzaENAAAAAKymp3BdsXxHBEDpzTqSBwAAAAB4ep7CdUXBHwCPbtJFdCdVxpE5AAAAAMBVriver3xHBMDKu35CnXakzfUTer1en7lPAAAAAMBqc13xfoI/AB7d9RP0aDSa6vHXT+jVanXmPgEAAAAAq811xfsJ/gB4dNdH0kw7Muf6/rVabeY+AQAAAACrzXXF+wn+AHh010fSDIfDqR5/fSRPGUvyAQAAAICrXFe8n+APgEdXqVSuLMQ7bUn+5f03Njbm1i8AAAAAYHW5rng/wR8AS7G5uXnl/jSjcwaDwZ3tAAAAAADl5bri+wn+AFiKRqNx5X6/35/4sVmWjW+3Wq259QkAAAAAWG2uK76f4A+ABymKYqbHN5vNK/fTNJ3ocWdnZ+PbjUYjKhWnMgAAAABYF64rLlY5jwqAhcvz/Mr9h5ywt7a2xrdHo9FEo3O63e6tjwcAAAAAVp/riosl+ANgav1+/8YJedKRNZd1Op2oVqvj+8fHxzdO/Nef46Icf2dnJ2q12tTPCQAAAAAsh+uKi5cUs9ZUAlBqw+Ew+v1+5HkeRVFElmVXFsG9rFqtRr1ej2q1GpVKJer1+r2L5OZ5Hm/evBmf8KvVauzt7UW9Xr+yX7fbjdPT04iIaLfbsb29PYejAwAAAAAWwXXF5RD8AfBel0+M02o0GrG3t3fvfnmex/HxcZyfn4+3XZzs8zyP4XA4PoHv7u7emMcbAAAAAFgtrisuh+APgJUxHA4jTdMrI4Gq1WpUq9VoNpvRarWW3UUAAAAAYMW4rvgdwR8AAAAAAACUQGXZHQAAAAAAAABmJ/gDAAAAAACAEhD8AQAAAAAAQAkI/gAAAAAAAKAEBH8AAAAAAABQAoI/AAAAAAAAKAHBHwAAAAAAAJSA4A8AAAAAAABKQPAHAAAAAAAAJSD4AwAAAAAAgBIQ/AEAAAAAAEAJCP4AAAAAAACgBAR/AAAAAAAAUAKCPwAAAAAAACgBwR8AAAAAAACUgOAPAACAUsrzPPI8X3Y3AAAAHk1t2R0AAACAeTs4OIjBYBARES9fvoxabfW+/na73eh2u/Hq1auoVIzLBQAAZuebBQAAAKWSZdk49Gs0GisZ+kVEDIfDKIoiRqPRsrsCAACUhOAPAACAUun1euPbnU5niT15v4sqv2q1uuSeAAAAZSH4AwAAoDTyPI80TSMiolarRb1eX3KPvu1Tt9u9sd7gReB3fZrPfr8fZ2dnj9Y/AACgPFZzvhMAAAB4gIvQL2J1qv3SNI3T09Podruxt7cXm5ubEfFt4JckyZV9j4+Px8fQbDYfva8AAMB6E/wBAABQGt1uNyIikiRZmeCs1WpFnufR6/Xi8PAwWq1W7OzsRLVaHVf7DYfDODo6itFoFNVqNXZ2dpbcawAAYB0J/gAAACiFs7OzKIoiIlan2i/i28q+7e3t6HQ6kaZpdLvd6Pf70el0IkmS6Ha7cXp6GrVaLZ49ezauCAQAAJhWUlx8KwIAAIA19vbt28iyLCIiXr9+fWPtvFWSpmmcnJxEURSxsbERnU5H4AcAAMxsdb8FAQAAwISGw+E49Gu1Wisd+g2Hw+j3++P7o9EohsPhEnsEAACUxep+EwIAAIAJXaztFxHRbreX2JO7DYfDODg4iP39/YiI2Nvbi1qtFjs7O9HtduOrr76Kk5OTyPN8yT0FAADWlTX+AAAAWGt5nsf5+XlERGxsbESttlpfdbMsi6Ojo8iyLJIkid3d3Wg2m+M1CTc3N+PVq1dxfHwcvV4ver1etNvt2N7eXnbXAQCANbNa34YAAABYaf1+P9I0jUqlEkmSRKVSiUqlEnmejwO4Z8+eXQnf8jyPo6OjGAwG0Wg0Ym9vb659ulzt1+l0HtzOoo7t/Pw8siyLWq0Wz58/H09DWhRFjEajiIioVCqxt7cXaZqOA0DBHwAAMC3BHwAAAPcaDodxdHQ0DqruUq1WrwRjWZbF/v5+FEUREd+GYMfHx7GzszO3vvV6vfFzb25uTv34RR9bp9OJer1+o28XaxJe1mq1otFomO4TAAB4EGv8AQAAcK+Tk5N7g7GIuFLxdj0Yu5Cm6dz6dbmth1b7Pcax3RZIXjz2egBYqVRWbrpSAABgPfgmAQAAwHvleR6DwSAiImq1WmxsbFypSKtUKjEYDKLZbEa9Xr+yfXNzMzY3N6PX610JuIbD4ZV9H+pims8kSaLVak39+GUe28XzXA8PAQAAHkrwBwAAwHudn59HRMSLFy9uDbSyLIvBYHCj4u5i3bqIb6ew/Oqrr648Ztbg7+zsbFyp95DQL2K5x9ZoNCIi5hKAAgAARJjqEwAAgHv0+/1otVq3BlR5nsf+/n7s7u7e287Gxsb49jyq3C6q/SIePs3nMo+t2WxemT4UAABgVoI/AAAA3ms4HEa73b713w4ODqJer09UtXZ53bpqtTpzny6m12w0GlGpPOzr7SoeGwAAwEMJ/gAAAHivV69eXQm2LhwfH0eWZbG9vT1RO5fXzps1HJtHtV/Eah4bAADAQwn+AAAAmFq/3480TaPRaEy8Rt1FhV5E3Bq2TSrP8/HafLVabe5r5C3z2AAAAGYh+AMAAGBqR0dHERHRarUmfszF2neNRmOm575c7TdpRd40lnlsAAAAsxD8AQAAMJWTk5Nx0LW5uTnRY/I8j9FoFBGzh2NpmkbEt1NqTvr8k1r2sQEAAMxC8AcAAMBUer1eREwXcg2Hw/HtZrP54OdO03QczM2ytt9dlnlsAAAAsxL8AQAAMLGzs7Px7WnCsYs1+eY5zec0U3FOYtnHBgAAMCvBHwAAABO7mGYzIqJWq038uItQbWtr68HP3e/3x1NqttvtB7dzl2UeGwAAwDwI/gAAAJjYYDAY306SZKLH9Pv9KIoiWq3WVIHadYus9otY7rEBAADMg+APAACAiWRZduX+pEHXyclJRMxWEZdl2TiYazQacw/ZlnlsAAAA8yL4AwAAYCIX02xOo9/vR5ZlsbW1FZXKw7+C9nq98e1Op/Pgdu6yzGMDAACYF99MAAAAmMj1cCzP83sfc3x8HNVqdaawLs/z8fp7tVot6vX6g9u6y7KODQAAYJ4EfwAAAEzk+rp391XJHR8fx2g0imfPns30vBehX8Riqv0ilndsAAAA8yT4AwAAYCLXK+263e6d+6ZpGmmaxrNnz2Zej+/ieZIkiWazOVNbd1nWsQEAAMyT4A8AAICJ1Gq1K5Vx5+fn0e/3b+x3cnISx8fHsbu7G5ubmzM959nZWRRFERGLq/aLWM6xAQAAzFtSXHyDAgAAgHukaRrHx8dXtjUajdjc3Iwsy+L8/DxGo1Hs7u7OpTrv7du3kWVZRES8fv06KpXFjV997GMDAACYN8EfAAAAUzk6Oorz8/Nb/61arcbe3t6NqTMfYjgcxv7+fkREtFqt2NnZmbnN+zzWsQEAACyC4A8AAICppWkaZ2dnMRgMIkmSqNfr0Wq15loJdzmEe/ny5aOtp/cYxwYAALAIgj8AAABWTpZl8fbt24iI2NjYiOfPny+5RwAAAKtvcYsjAAAAwAOlaTq+3el0ltgTAACA9SH4AwAAYOX0er2I+HZdvc3NzSX3BgAAYD0I/gAAAFgp3W53fFu1HwAAwOQeZ2V0AAAAmEKr1bryfwAAAO6XFEVRLLsTAAAAAAAAwGxM9QkAAAAAAAAlIPgDAAAAAACAEhD8AQAAAAAAQAkI/gAAAAAAAKAEBH8AAAAAAABQAoI/AAAAAAAAKAHBHwAAAAAAAJSA4A8AAAAAAABKQPAHAAAAAAAAJSD4AwAAAAAAgBIQ/AEAAAAAAEAJCP4AAAAAAACgBAR/AAAAAAAAUAKCPwAAAAAAACgBwR8AAAAAAACUgOAPAAAAAAAASkDwBwAAAAAAACXw/wOmPq1gur3wmgAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "filename = \"pv-nrt\"\n", - "for dark_mode in [False, True]:\n", - " myplt = PltTools()\n", - " myplt.prepare_figure(fig_size = (18,8), dark_mode = dark_mode,\n", - " transparency = True, use_serif=True)\n", - " myplt.add_panel()\n", - " myplt.add_plot(x = Wood1957[:,0], y = Wood1957[:,1], type = \"loglog\",\n", - " linewidth_data = 3, marker = \"p\", data_color = \"autogray\",\n", - " markersize = 16, data_label = r'$\\mathrm{Wood1957}$')\n", - " myplt.add_plot(x = pressure_vs_tau_lmp[:,0], y = pressure_vs_tau_lmp[:,1], type = \"loglog\",\n", - " linewidth_data = 3, marker = \"s\", data_color = 1,\n", - " markersize = 16, data_label = r'$\\mathrm{LAMMPS}$')\n", - " myplt.add_plot(x = pressure_vs_tau[:,0], y = pressure_vs_tau[:,1], type = \"loglog\",\n", - " linewidth_data = 3, marker = \"o\", data_color = np.array([0, 0.8, 0.8]),\n", - " markersize = 16, data_label = r'$\\mathrm{MC~move}$')\n", - " myplt.complete_panel(ylabel = r'$p V / R T$', xlabel = r'$v / v^*$',\n", - " xpad = 15, legend=True, handlelength_legend=1)\n", - " myplt.set_boundaries(x_boundaries=(0.6, 11), # y_ticks=np.arange(-2., 0.6, 0.5),\n", - " y_boundaries=(0.3, 130))\n", - " myplt.save_figure(filename = filename, saving_path = './')" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "da0c3fde", - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3.10.6 64-bit", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.12.3" - }, - "vscode": { - "interpreter": { - "hash": "916dbcbb3f70747c44a77c7bcd40155683ae19c65e1c03b4aa3499c5328201f1" - } - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} diff --git a/illustration/Equation-of-state/pv-nrt.png b/illustration/Equation-of-state/pv-nrt.png deleted file mode 100644 index 1ab1f0c..0000000 Binary files a/illustration/Equation-of-state/pv-nrt.png and /dev/null differ diff --git a/illustration/Equation-of-state/vmd/avatar-dm.webp b/illustration/Equation-of-state/vmd/avatar-dm.webp deleted file mode 100644 index 5f44a11..0000000 Binary files a/illustration/Equation-of-state/vmd/avatar-dm.webp and /dev/null differ diff --git a/illustration/Equation-of-state/vmd/avatar.png b/illustration/Equation-of-state/vmd/avatar.png deleted file mode 100644 index f96b847..0000000 Binary files a/illustration/Equation-of-state/vmd/avatar.png and /dev/null differ diff --git a/illustration/Equation-of-state/vmd/avatar.webp b/illustration/Equation-of-state/vmd/avatar.webp deleted file mode 100644 index 181c871..0000000 Binary files a/illustration/Equation-of-state/vmd/avatar.webp and /dev/null differ diff --git a/illustration/Equation-of-state/vmd/convert_transparent.sh b/illustration/Equation-of-state/vmd/convert_transparent.sh deleted file mode 100755 index f5e9cf5..0000000 --- a/illustration/Equation-of-state/vmd/convert_transparent.sh +++ /dev/null @@ -1,18 +0,0 @@ -#!/bin/bash - -export LC_NUMERIC="en_US.UTF-8" -set -e - -# 1) Generate white background movie -for file in _light.*.ppm; -do - convert $file -transparent white ${file:0:12}.png; -done -img2webp -o avatar.webp -q 30 -mixed -d 25 _light*.png - -# 2) Generate black background movie -for file in _dark.*.ppm; -do - convert $file -transparent black ${file:0:11}.png; -done -img2webp -o avatar-dm.webp -q 30 -mixed -d 25 _dark*.png diff --git a/illustration/Equation-of-state/vmd/state.vmd b/illustration/Equation-of-state/vmd/state.vmd deleted file mode 100644 index fcde0ee..0000000 --- a/illustration/Equation-of-state/vmd/state.vmd +++ /dev/null @@ -1,549 +0,0 @@ -#!/usr/local/bin/vmd -# VMD script written by save_state $Revision: 1.48 $ -# VMD version: 1.9.4a57 -set viewplist {} -set fixedlist {} -proc vmdrestoremymaterials {} { - set mlist { Opaque Transparent BrushedMetal Diffuse Ghost Glass1 Glass2 Glass3 Glossy HardPlastic MetallicPastel Steel Translucent Edgy EdgyShiny EdgyGlass Goodsell AOShiny AOChalky AOEdgy BlownGlass GlassBubble RTChrome } - set mymlist [material list] - foreach mat $mlist { - if { [lsearch $mymlist $mat] == -1 } { - material add $mat - } - } - material change ambient Opaque 0.000000 - material change diffuse Opaque 0.560000 - material change specular Opaque 0.120000 - material change shininess Opaque 0.290000 - material change mirror Opaque 0.000000 - material change opacity Opaque 1.000000 - material change outline Opaque 0.000000 - material change outlinewidth Opaque 0.000000 - material change transmode Opaque 0.000000 - material change ambient Transparent 0.000000 - material change diffuse Transparent 0.650000 - material change specular Transparent 0.500000 - material change shininess Transparent 0.534020 - material change mirror Transparent 0.000000 - material change opacity Transparent 0.300000 - material change outline Transparent 0.000000 - material change outlinewidth Transparent 0.000000 - material change transmode Transparent 0.000000 - material change ambient BrushedMetal 0.080000 - material change diffuse BrushedMetal 0.390000 - material change specular BrushedMetal 0.340000 - material change shininess BrushedMetal 0.150000 - material change mirror BrushedMetal 0.000000 - material change opacity BrushedMetal 1.000000 - material change outline BrushedMetal 0.000000 - material change outlinewidth BrushedMetal 0.000000 - material change transmode BrushedMetal 0.000000 - material change ambient Diffuse 0.000000 - material change diffuse Diffuse 0.620000 - material change specular Diffuse 0.000000 - material change shininess Diffuse 0.530000 - material change mirror Diffuse 0.000000 - material change opacity Diffuse 1.000000 - material change outline Diffuse 0.000000 - material change outlinewidth Diffuse 0.000000 - material change transmode Diffuse 0.000000 - material change ambient Ghost 0.000000 - material change diffuse Ghost 0.000000 - material change specular Ghost 1.000000 - material change shininess Ghost 0.230000 - material change mirror Ghost 0.000000 - material change opacity Ghost 0.100000 - material change outline Ghost 0.000000 - material change outlinewidth Ghost 0.000000 - material change transmode Ghost 0.000000 - material change ambient Glass1 0.000000 - material change diffuse Glass1 0.500000 - material change specular Glass1 0.650000 - material change shininess Glass1 0.530000 - material change mirror Glass1 0.000000 - material change opacity Glass1 0.150000 - material change outline Glass1 0.000000 - material change outlinewidth Glass1 0.000000 - material change transmode Glass1 0.000000 - material change ambient Glass2 0.520000 - material change diffuse Glass2 0.760000 - material change specular Glass2 0.220000 - material change shininess Glass2 0.590000 - material change mirror Glass2 0.000000 - material change opacity Glass2 0.680000 - material change outline Glass2 0.000000 - material change outlinewidth Glass2 0.000000 - material change transmode Glass2 0.000000 - material change ambient Glass3 0.150000 - material change diffuse Glass3 0.250000 - material change specular Glass3 0.750000 - material change shininess Glass3 0.800000 - material change mirror Glass3 0.000000 - material change opacity Glass3 0.500000 - material change outline Glass3 0.000000 - material change outlinewidth Glass3 0.000000 - material change transmode Glass3 0.000000 - material change ambient Glossy 0.000000 - material change diffuse Glossy 0.650000 - material change specular Glossy 1.000000 - material change shininess Glossy 0.880000 - material change mirror Glossy 0.000000 - material change opacity Glossy 1.000000 - material change outline Glossy 0.000000 - material change outlinewidth Glossy 0.000000 - material change transmode Glossy 0.000000 - material change ambient HardPlastic 0.000000 - material change diffuse HardPlastic 0.560000 - material change specular HardPlastic 0.280000 - material change shininess HardPlastic 0.690000 - material change mirror HardPlastic 0.000000 - material change opacity HardPlastic 1.000000 - material change outline HardPlastic 0.000000 - material change outlinewidth HardPlastic 0.000000 - material change transmode HardPlastic 0.000000 - material change ambient MetallicPastel 0.000000 - material change diffuse MetallicPastel 0.260000 - material change specular MetallicPastel 0.550000 - material change shininess MetallicPastel 0.190000 - material change mirror MetallicPastel 0.000000 - material change opacity MetallicPastel 1.000000 - material change outline MetallicPastel 0.000000 - material change outlinewidth MetallicPastel 0.000000 - material change transmode MetallicPastel 0.000000 - material change ambient Steel 0.250000 - material change diffuse Steel 0.000000 - material change specular Steel 0.380000 - material change shininess Steel 0.320000 - material change mirror Steel 0.000000 - material change opacity Steel 1.000000 - material change outline Steel 0.000000 - material change outlinewidth Steel 0.000000 - material change transmode Steel 0.000000 - material change ambient Translucent 0.000000 - material change diffuse Translucent 0.700000 - material change specular Translucent 0.600000 - material change shininess Translucent 0.300000 - material change mirror Translucent 0.000000 - material change opacity Translucent 0.800000 - material change outline Translucent 0.000000 - material change outlinewidth Translucent 0.000000 - material change transmode Translucent 0.000000 - material change ambient Edgy 0.000000 - material change diffuse Edgy 0.660000 - material change specular Edgy 0.000000 - material change shininess Edgy 0.750000 - material change mirror Edgy 0.000000 - material change opacity Edgy 1.000000 - material change outline Edgy 0.620000 - material change outlinewidth Edgy 0.940000 - material change transmode Edgy 0.000000 - material change ambient EdgyShiny 0.000000 - material change diffuse EdgyShiny 0.660000 - material change specular EdgyShiny 0.960000 - material change shininess EdgyShiny 0.750000 - material change mirror EdgyShiny 0.000000 - material change opacity EdgyShiny 1.000000 - material change outline EdgyShiny 0.760000 - material change outlinewidth EdgyShiny 0.940000 - material change transmode EdgyShiny 0.000000 - material change ambient EdgyGlass 0.000000 - material change diffuse EdgyGlass 0.660000 - material change specular EdgyGlass 0.500000 - material change shininess EdgyGlass 0.750000 - material change mirror EdgyGlass 0.000000 - material change opacity EdgyGlass 0.620000 - material change outline EdgyGlass 0.620000 - material change outlinewidth EdgyGlass 0.940000 - material change transmode EdgyGlass 0.000000 - material change ambient Goodsell 0.520000 - material change diffuse Goodsell 1.000000 - material change specular Goodsell 0.000000 - material change shininess Goodsell 0.000000 - material change mirror Goodsell 0.000000 - material change opacity Goodsell 1.000000 - material change outline Goodsell 4.000000 - material change outlinewidth Goodsell 0.900000 - material change transmode Goodsell 0.000000 - material change ambient AOShiny 0.000000 - material change diffuse AOShiny 0.850000 - material change specular AOShiny 0.200000 - material change shininess AOShiny 0.530000 - material change mirror AOShiny 0.000000 - material change opacity AOShiny 1.000000 - material change outline AOShiny 0.000000 - material change outlinewidth AOShiny 0.000000 - material change transmode AOShiny 0.000000 - material change ambient AOChalky 0.000000 - material change diffuse AOChalky 0.850000 - material change specular AOChalky 0.000000 - material change shininess AOChalky 0.530000 - material change mirror AOChalky 0.000000 - material change opacity AOChalky 1.000000 - material change outline AOChalky 0.000000 - material change outlinewidth AOChalky 0.000000 - material change transmode AOChalky 0.000000 - material change ambient AOEdgy 0.000000 - material change diffuse AOEdgy 0.900000 - material change specular AOEdgy 0.200000 - material change shininess AOEdgy 0.530000 - material change mirror AOEdgy 0.000000 - material change opacity AOEdgy 1.000000 - material change outline AOEdgy 0.620000 - material change outlinewidth AOEdgy 0.930000 - material change transmode AOEdgy 0.000000 - material change ambient BlownGlass 0.040000 - material change diffuse BlownGlass 0.340000 - material change specular BlownGlass 1.000000 - material change shininess BlownGlass 1.000000 - material change mirror BlownGlass 0.000000 - material change opacity BlownGlass 0.100000 - material change outline BlownGlass 0.000000 - material change outlinewidth BlownGlass 0.000000 - material change transmode BlownGlass 1.000000 - material change ambient GlassBubble 0.250000 - material change diffuse GlassBubble 0.340000 - material change specular GlassBubble 1.000000 - material change shininess GlassBubble 1.000000 - material change mirror GlassBubble 0.000000 - material change opacity GlassBubble 0.040000 - material change outline GlassBubble 0.000000 - material change outlinewidth GlassBubble 0.000000 - material change transmode GlassBubble 1.000000 - material change ambient RTChrome 0.000000 - material change diffuse RTChrome 0.650000 - material change specular RTChrome 0.500000 - material change shininess RTChrome 0.530000 - material change mirror RTChrome 0.700000 - material change opacity RTChrome 1.000000 - material change outline RTChrome 0.000000 - material change outlinewidth RTChrome 0.000000 - material change transmode RTChrome 0.000000 -} -vmdrestoremymaterials -# Atom selection macros -atomselect macro at {resname ADE A THY T} -atomselect macro acidic {resname ASP GLU} -atomselect macro cyclic {resname HIS PHE PRO TRP TYR} -atomselect macro acyclic {protein and not cyclic} -atomselect macro aliphatic {resname ALA GLY ILE LEU VAL} -atomselect macro alpha {protein and name CA} -atomselect macro amino protein -atomselect macro aromatic {resname HIS PHE TRP TYR} -atomselect macro basic {resname ARG HIS LYS HSP} -atomselect macro bonded {numbonds > 0} -atomselect macro buried {resname ALA LEU VAL ILE PHE CYS MET TRP} -atomselect macro cg {resname CYT C GUA G} -atomselect macro charged {basic or acidic} -atomselect macro hetero {not (protein or nucleic)} -atomselect macro hydrophobic {resname ALA LEU VAL ILE PRO PHE MET TRP} -atomselect macro small {resname ALA GLY SER} -atomselect macro medium {resname VAL THR ASP ASN PRO CYS ASX PCA HYP} -atomselect macro large {protein and not (small or medium)} -atomselect macro neutral {resname VAL PHE GLN TYR HIS CYS MET TRP ASX GLX PCA HYP} -atomselect macro polar {protein and not hydrophobic} -atomselect macro purine {resname ADE A GUA G} -atomselect macro pyrimidine {resname CYT C THY T URA U} -atomselect macro surface {protein and not buried} -atomselect macro lipid {resname DLPE DMPC DPPC GPC LPPC PALM PC PGCL POPC POPE} -atomselect macro lipids lipid -atomselect macro ion {resname AL BA CA CAL CD CES CLA CL CO CS CU CU1 CUA HG IN IOD K LIT MG MN3 MO3 MO4 MO5 MO6 NA NAW OC7 PB POT PT RB SOD TB TL WO4 YB ZN ZN1 ZN2} -atomselect macro ions ion -atomselect macro sugar {resname AGLC} -atomselect macro solvent {not (protein or sugar or nucleic or lipid)} -atomselect macro glycan {resname NAG BGLN FUC AFUC MAN AMAN BMA BMAN} -atomselect macro carbon {name "C.*" and not ion} -atomselect macro hydrogen {name "[0-9]?H.*"} -atomselect macro nitrogen {name "N.*"} -atomselect macro oxygen {name "O.*"} -atomselect macro sulfur {name "S.*" and not ion} -atomselect macro noh {not hydrogen} -atomselect macro heme {resname HEM HEME} -atomselect macro conformationall {altloc ""} -atomselect macro conformationA {altloc "" or altloc "A"} -atomselect macro conformationB {altloc "" or altloc "B"} -atomselect macro conformationC {altloc "" or altloc "C"} -atomselect macro conformationD {altloc "" or altloc "D"} -atomselect macro conformationE {altloc "" or altloc "E"} -atomselect macro conformationF {altloc "" or altloc "F"} -atomselect macro drude {type DRUD or type LP} -atomselect macro unparametrized beta<1 -atomselect macro addedmolefacture {occupancy 0.8} -atomselect macro qwikmd_protein {(not name QWIKMDDELETE and protein)} -atomselect macro qwikmd_nucleic {(not name QWIKMDDELETE and nucleic)} -atomselect macro qwikmd_glycan {(not name QWIKMDDELETE and glycan)} -atomselect macro qwikmd_lipid {(not name QWIKMDDELETE and lipid)} -atomselect macro qwikmd_hetero {(not name QWIKMDDELETE and hetero and not qwikmd_protein and not qwikmd_lipid and not qwikmd_nucleic and not qwikmd_glycan and not water)} -# Display settings -display eyesep 0.065000 -display focallength 2.000000 -display height 1.000000 -display distance -2.000000 -display projection Orthographic -display nearclip set 0.500000 -display farclip set 10.000000 -display depthcue off -display cuestart 0.500000 -display cueend 10.000000 -display cuestart 0.500000 -display cueend 10.000000 -display cuedensity 0.320000 -display cuemode Exp2 -display shadows off -display ambientocclusion off -display aoambient 0.800000 -display aodirect 0.300000 -display dof off -display dof_fnumber 64.000000 -display dof_focaldist 0.700000 -mol new dump.mc.lammpstrj type lammpstrj first 0 last -1 step 1 filebonds 1 autobonds 1 waitfor all -mol delrep 0 top -mol representation VDW 1.100000 42.000000 -mol color Name -mol selection {x > -10 and x < 10 and y > -10 and y < 10 and z > -10 and z < 10} -mol material Opaque -mol addrep top -mol selupdate 0 top 0 -mol colupdate 0 top 0 -mol scaleminmax top 0 0.000000 0.000000 -mol smoothrep top 0 0 -mol drawframes top 0 {now} -mol clipplane center 0 0 top {0.0 0.0 0.0} -mol clipplane color 0 0 top {0.5 0.5 0.5 } -mol clipplane normal 0 0 top {0.0 0.0 1.0} -mol clipplane status 0 0 top {0} -mol clipplane center 1 0 top {0.0 0.0 0.0} -mol clipplane color 1 0 top {0.5 0.5 0.5 } -mol clipplane normal 1 0 top {0.0 0.0 1.0} -mol clipplane status 1 0 top {0} -mol clipplane center 2 0 top {0.0 0.0 0.0} -mol clipplane color 2 0 top {0.5 0.5 0.5 } -mol clipplane normal 2 0 top {0.0 0.0 1.0} -mol clipplane status 2 0 top {0} -mol clipplane center 3 0 top {0.0 0.0 0.0} -mol clipplane color 3 0 top {0.5 0.5 0.5 } -mol clipplane normal 3 0 top {0.0 0.0 1.0} -mol clipplane status 3 0 top {0} -mol clipplane center 4 0 top {0.0 0.0 0.0} -mol clipplane color 4 0 top {0.5 0.5 0.5 } -mol clipplane normal 4 0 top {0.0 0.0 1.0} -mol clipplane status 4 0 top {0} -mol clipplane center 5 0 top {0.0 0.0 0.0} -mol clipplane color 5 0 top {0.5 0.5 0.5 } -mol clipplane normal 5 0 top {0.0 0.0 1.0} -mol clipplane status 5 0 top {0} -mol rename top dump.mc.lammpstrj -set viewpoints([molinfo top]) {{{1 0 0 0.110355} {0 1 0 0.130033} {0 0 1 -0.0775325} {0 0 0 1}} {{1 0 0 0} {0 1 0 0} {0 0 1 0} {0 0 0 1}} {{0.0199378 0 0 0} {0 0.0199378 0 0} {0 0 0.0199378 0} {0 0 0 1}} {{1 0 0 0} {0 1 0 0} {0 0 1 0} {0 0 0 1}}} -lappend viewplist [molinfo top] -set topmol [molinfo top] -# done with molecule 1 -foreach v $viewplist { - molinfo $v set {center_matrix rotate_matrix scale_matrix global_matrix} $viewpoints($v) -} -foreach v $fixedlist { - molinfo $v set fixed 1 -} -unset viewplist -unset fixedlist -mol top $topmol -unset topmol -proc vmdrestoremycolors {} { -color scale colors RWB {1.0 0.0 0.0} {1.0 1.0 1.0} {0.0 0.0 1.0} -color scale colors BWR {0.0 0.0 1.0} {1.0 1.0 1.0} {1.0 0.0 0.0} -color scale colors RGryB {1.0 0.0 0.0} {0.5 0.5 0.5} {0.0 0.0 1.0} -color scale colors BGryR {0.0 0.0 1.0} {0.5 0.5 0.5} {1.0 0.0 0.0} -color scale colors RGB {1.0 0.0 0.0} {0.0 1.0 0.0} {0.0 0.0 1.0} -color scale colors BGR {0.0 0.0 1.0} {0.0 1.0 0.0} {1.0 0.0 0.0} -color scale colors RWG {1.0 0.0 0.0} {1.0 1.0 1.0} {0.0 1.0 0.0} -color scale colors GWR {0.0 1.0 0.0} {1.0 1.0 1.0} {1.0 0.0 0.0} -color scale colors GWB {0.0 1.0 0.0} {1.0 1.0 1.0} {0.0 0.0 1.0} -color scale colors BWG {0.0 0.0 1.0} {1.0 1.0 1.0} {0.0 1.0 0.0} -color scale colors BlkW {0.0 0.0 0.0} {0.5 0.5 0.5} {1.0 1.0 1.0} -color scale colors WBlk {1.0 1.0 1.0} {0.5 0.5 0.5} {0.0 0.0 0.0} -color scale colors cividis {0.0 0.0 0.0} {0.0 0.0 0.0} {0.0 0.0 0.0} -color scale colors viridis {0.0 0.0 0.0} {0.0 0.0 0.0} {0.0 0.0 0.0} -color scale colors magma {0.0 0.0 0.0} {0.0 0.0 0.0} {0.0 0.0 0.0} -color scale colors plasma {0.0 0.0 0.0} {0.0 0.0 0.0} {0.0 0.0 0.0} -color scale colors inferno {0.0 0.0 0.0} {0.0 0.0 0.0} {0.0 0.0 0.0} -color scale colors CET_L3 {0.0 0.0 0.0} {0.0 0.0 0.0} {0.0 0.0 0.0} -color scale colors CET_L8 {0.0 0.0 0.0} {0.0 0.0 0.0} {0.0 0.0 0.0} -color scale colors CET_L9 {0.0 0.0 0.0} {0.0 0.0 0.0} {0.0 0.0 0.0} -color scale colors CET_L16 {0.0 0.0 0.0} {0.0 0.0 0.0} {0.0 0.0 0.0} -color scale colors CET_L17 {0.0 0.0 0.0} {0.0 0.0 0.0} {0.0 0.0 0.0} -color scale colors CET_L18 {0.0 0.0 0.0} {0.0 0.0 0.0} {0.0 0.0 0.0} -color scale colors CET_L19 {0.0 0.0 0.0} {0.0 0.0 0.0} {0.0 0.0 0.0} -color scale colors CET_L20 {0.0 0.0 0.0} {0.0 0.0 0.0} {0.0 0.0 0.0} -color scale colors CET_C2 {0.0 0.0 0.0} {0.0 0.0 0.0} {0.0 0.0 0.0} -color scale colors CET_C4 {0.0 0.0 0.0} {0.0 0.0 0.0} {0.0 0.0 0.0} -color scale colors CET_C6 {0.0 0.0 0.0} {0.0 0.0 0.0} {0.0 0.0 0.0} -color scale colors CET_C7 {0.0 0.0 0.0} {0.0 0.0 0.0} {0.0 0.0 0.0} -color scale colors CET_I1 {0.0 0.0 0.0} {0.0 0.0 0.0} {0.0 0.0 0.0} -color scale colors CET_I2 {0.0 0.0 0.0} {0.0 0.0 0.0} {0.0 0.0 0.0} -color scale colors CET_I3 {0.0 0.0 0.0} {0.0 0.0 0.0} {0.0 0.0 0.0} -color scale colors CET_D11 {0.0 0.0 0.0} {0.0 0.0 0.0} {0.0 0.0 0.0} -color scale colors CET_D12 {0.0 0.0 0.0} {0.0 0.0 0.0} {0.0 0.0 0.0} -color scale colors turbo {0.0 0.0 0.0} {0.0 0.0 0.0} {0.0 0.0 0.0} -color scale colors CET_R2 {0.0 0.0 0.0} {0.0 0.0 0.0} {0.0 0.0 0.0} - color scale method RWB - set colorcmds { - {color Display {BackgroundTop} black} - {color Display {BackgroundBot} blue2} - {color Display {FPS} white} - {color Name {LPA} green} - {color Name {LPB} green} - {color Name {1} pink} - {color Type {LP} green} - {color Type {DRUD} pink} - {color Type {1} pink} - {color Element {X} cyan} - {color Element {Ac} ochre} - {color Element {Ag} ochre} - {color Element {Al} ochre} - {color Element {Am} ochre} - {color Element {Ar} ochre} - {color Element {As} ochre} - {color Element {At} ochre} - {color Element {Au} ochre} - {color Element {B} ochre} - {color Element {Ba} ochre} - {color Element {Be} ochre} - {color Element {Bh} ochre} - {color Element {Bi} ochre} - {color Element {Bk} ochre} - {color Element {Br} ochre} - {color Element {Ca} ochre} - {color Element {Cd} ochre} - {color Element {Ce} ochre} - {color Element {Cf} ochre} - {color Element {Cl} ochre} - {color Element {Cm} ochre} - {color Element {Co} ochre} - {color Element {Cr} ochre} - {color Element {Cs} ochre} - {color Element {Cu} ochre} - {color Element {Db} ochre} - {color Element {Ds} ochre} - {color Element {Dy} ochre} - {color Element {Er} ochre} - {color Element {Es} ochre} - {color Element {Eu} ochre} - {color Element {F} ochre} - {color Element {Fe} ochre} - {color Element {Fm} ochre} - {color Element {Fr} ochre} - {color Element {Ga} ochre} - {color Element {Gd} ochre} - {color Element {Ge} ochre} - {color Element {He} ochre} - {color Element {Hf} ochre} - {color Element {Hg} ochre} - {color Element {Ho} ochre} - {color Element {Hs} ochre} - {color Element {I} ochre} - {color Element {In} ochre} - {color Element {Ir} ochre} - {color Element {K} ochre} - {color Element {Kr} ochre} - {color Element {La} ochre} - {color Element {Li} ochre} - {color Element {Lr} ochre} - {color Element {Lu} ochre} - {color Element {Md} ochre} - {color Element {Mg} ochre} - {color Element {Mn} ochre} - {color Element {Mo} ochre} - {color Element {Mt} ochre} - {color Element {Na} ochre} - {color Element {Nb} ochre} - {color Element {Nd} ochre} - {color Element {Ne} ochre} - {color Element {Ni} ochre} - {color Element {No} ochre} - {color Element {Np} ochre} - {color Element {Os} ochre} - {color Element {Pa} ochre} - {color Element {Pb} ochre} - {color Element {Pd} ochre} - {color Element {Pm} ochre} - {color Element {Po} ochre} - {color Element {Pr} ochre} - {color Element {Pt} ochre} - {color Element {Pu} ochre} - {color Element {Ra} ochre} - {color Element {Rb} ochre} - {color Element {Re} ochre} - {color Element {Rf} ochre} - {color Element {Rg} ochre} - {color Element {Rh} ochre} - {color Element {Rn} ochre} - {color Element {Ru} ochre} - {color Element {Sb} ochre} - {color Element {Sc} ochre} - {color Element {Se} ochre} - {color Element {Sg} ochre} - {color Element {Si} ochre} - {color Element {Sm} ochre} - {color Element {Sn} ochre} - {color Element {Sr} ochre} - {color Element {Ta} ochre} - {color Element {Tb} ochre} - {color Element {Tc} ochre} - {color Element {Te} ochre} - {color Element {Th} ochre} - {color Element {Ti} ochre} - {color Element {Tl} ochre} - {color Element {Tm} ochre} - {color Element {U} ochre} - {color Element {V} ochre} - {color Element {W} ochre} - {color Element {Xe} ochre} - {color Element {Y} ochre} - {color Element {Yb} ochre} - {color Element {Zr} ochre} - {color Resname {UNK} silver} - {color Chain {X} blue} - {color Segname {} blue} - {color Conformation {all} blue} - {color Molecule {0} blue} - {color Molecule {1} red} - {color Molecule {dump.mc.lammpstrj} red} - {color Structure {3_10_Helix} blue} - {color Surface {Grasp} gray} - {color Labels {Springs} orange} - {color Stage {Even} gray} - {color Stage {Odd} silver} - } - foreach colcmd $colorcmds { - set val [catch {eval $colcmd}] - } - color change rgb 0 0.0 0.0 1.0 - color change rgb 2 0.3499999940395355 0.3499999940395355 0.3499999940395355 - color change rgb 3 1.0 0.5 0.0 - color change rgb 4 1.0 1.0 0.0 - color change rgb 5 0.5 0.5 0.20000000298023224 - color change rgb 6 0.6000000238418579 0.6000000238418579 0.6000000238418579 - color change rgb 7 0.0 1.0 0.0 - color change rgb 9 0.0 1.100000023841858 1.100000023841858 - color change rgb 11 0.6499999761581421 0.0 0.6499999761581421 - color change rgb 12 0.5 0.8999999761581421 0.4000000059604645 - color change rgb 13 0.8999999761581421 0.4000000059604645 0.699999988079071 - color change rgb 14 0.5 0.30000001192092896 0.0 - color change rgb 15 0.5 0.5 0.75 - color change rgb 17 0.8799999952316284 0.9700000286102295 0.019999999552965164 - color change rgb 18 0.550000011920929 0.8999999761581421 0.019999999552965164 - color change rgb 19 0.0 0.8999999761581421 0.03999999910593033 - color change rgb 20 0.0 0.8999999761581421 0.5 - color change rgb 21 0.0 0.8799999952316284 1.0 - color change rgb 22 0.0 0.7599999904632568 1.0 - color change rgb 23 0.019999999552965164 0.3799999952316284 0.6700000166893005 - color change rgb 24 0.009999999776482582 0.03999999910593033 0.9300000071525574 - color change rgb 25 0.27000001072883606 0.0 0.9800000190734863 - color change rgb 26 0.44999998807907104 0.0 0.8999999761581421 - color change rgb 27 0.8999999761581421 0.0 0.8999999761581421 - color change rgb 28 1.0 0.0 0.6600000262260437 - color change rgb 29 0.9800000190734863 0.0 0.23000000417232513 - color change rgb 30 0.8100000023841858 0.0 0.0 - color change rgb 31 0.8899999856948853 0.3499999940395355 0.0 - color change rgb 32 0.9599999785423279 0.7200000286102295 0.0 -} -vmdrestoremycolors -label textsize 1.0 diff --git a/illustration/Equation-of-state/vmd/vmd.ipynb b/illustration/Equation-of-state/vmd/vmd.ipynb deleted file mode 100644 index 73786ea..0000000 --- a/illustration/Equation-of-state/vmd/vmd.ipynb +++ /dev/null @@ -1,704 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "import warnings\n", - "warnings.filterwarnings(\"ignore\")\n", - "\n", - "from scipy import constants as cst\n", - "from pint import UnitRegistry\n", - "ureg = UnitRegistry()\n", - "ureg = UnitRegistry(autoconvert_offset_to_baseunit = True)\n", - "import sys\n", - "import multiprocessing\n", - "import subprocess\n", - "import numpy as np\n", - "import shutil\n", - "import os\n", - "\n", - "path_to_code = \"../generated-codes/chapter7/\"\n", - "sys.path.append(path_to_code)\n", - "\n", - "from MinimizeEnergy import MinimizeEnergy\n", - "from MonteCarlo import MonteCarlo" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "kB = cst.Boltzmann*ureg.J/ureg.kelvin # boltzman constant\n", - "Na = cst.Avogadro/ureg.mole # avogadro\n", - "R = kB*Na # gas constant" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "tau = 1\n", - "epsilon = (119.76*ureg.kelvin*kB*Na).to(ureg.kcal/ureg.mol) # kcal/mol\n", - "r_star = 3.822*ureg.angstrom # angstrom\n", - "sigma = r_star / 2**(1/6) # angstrom\n", - "N_atom = 400 # no units\n", - "m_argon = 39.948*ureg.gram/ureg.mol\n", - "T = (55 * ureg.degC).to(ureg.degK) # 55°C\n", - "volume_star = r_star**3 * Na * 2**(-0.5)\n", - "cut_off = sigma*2.5\n", - "displace_mc = sigma/5 # angstrom\n", - "volume = N_atom*volume_star*tau/Na\n", - "box_size = volume**(1/3)\n", - "folder = \"./\"" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "step epot maxF\n", - "0 59895733968519.000 9619860237625140.000\n", - "10 160614186.280 513067747.593\n", - "20 92443.851 27535.614\n", - "30 7524.343 747.580\n", - "40 636.161 62.659\n", - "50 -276.795 142.632\n", - "60 -434.015 54.631\n", - "70 -518.141 52.242\n", - "80 -570.395 27.263\n", - "90 -599.030 1.358\n", - "100 -618.720 0.670\n", - "step N T (K) p (atm) V (A3) Ep (kcal/mol) Ek (kcal/mol) dens (g/cm3) \n", - "0 400 3.28e+02 2.94e+03 1.58e+04 -6.18e+02 0.0 1.68 \n", - "1000 400 3.28e+02 5.7e+03 1.58e+04 -4.91e+02 0.0 1.68 \n", - "2000 400 3.28e+02 6.54e+03 1.58e+04 -4.5e+02 0.0 1.68 \n", - "3000 400 3.28e+02 7.15e+03 1.58e+04 -4.23e+02 0.0 1.68 \n", - "4000 400 3.28e+02 7.25e+03 1.58e+04 -4.19e+02 0.0 1.68 \n", - "5000 400 3.28e+02 7.41e+03 1.58e+04 -4.13e+02 0.0 1.68 \n", - "6000 400 3.28e+02 7.63e+03 1.58e+04 -4.04e+02 0.0 1.68 \n", - "7000 400 3.28e+02 7.73e+03 1.58e+04 -4e+02 0.0 1.68 \n", - "8000 400 3.28e+02 7.78e+03 1.58e+04 -3.98e+02 0.0 1.68 \n", - "9000 400 3.28e+02 8.06e+03 1.58e+04 -3.82e+02 0.0 1.68 \n", - "10000 400 3.28e+02 8.02e+03 1.58e+04 -3.82e+02 0.0 1.68 \n", - "11000 400 3.28e+02 7.87e+03 1.58e+04 -3.89e+02 0.0 1.68 \n", - "12000 400 3.28e+02 7.98e+03 1.58e+04 -3.86e+02 0.0 1.68 \n", - "13000 400 3.28e+02 7.94e+03 1.58e+04 -3.89e+02 0.0 1.68 \n", - "14000 400 3.28e+02 8.17e+03 1.58e+04 -3.76e+02 0.0 1.68 \n", - "15000 400 3.28e+02 8.15e+03 1.58e+04 -3.76e+02 0.0 1.68 \n", - "16000 400 3.28e+02 8.57e+03 1.58e+04 -3.54e+02 0.0 1.68 \n", - "17000 400 3.28e+02 8.46e+03 1.58e+04 -3.61e+02 0.0 1.68 \n", - "18000 400 3.28e+02 8.55e+03 1.58e+04 -3.58e+02 0.0 1.68 \n", - "19000 400 3.28e+02 8.8e+03 1.58e+04 -3.46e+02 0.0 1.68 \n", - "20000 400 3.28e+02 8.71e+03 1.58e+04 -3.52e+02 0.0 1.68 \n" - ] - } - ], - "source": [ - "# Minimization\n", - "em = MinimizeEnergy(maximum_steps=100,\n", - " thermo_period=10,\n", - " dumping_period=10,\n", - " number_atoms=[N_atom],\n", - " epsilon=[epsilon.magnitude], \n", - " sigma=[sigma.magnitude],\n", - " atom_mass=[m_argon.magnitude],\n", - " box_dimensions=[box_size.magnitude,\n", - " box_size.magnitude,\n", - " box_size.magnitude],\n", - " cut_off=cut_off.magnitude,\n", - " data_folder=folder,\n", - ")\n", - "em.run()\n", - "\n", - "# Equilibration run\n", - "mc1 = MonteCarlo(maximum_steps=20000,\n", - " dumping_period=1000,\n", - " thermo_period=1000,\n", - " neighbor=50,\n", - " displace_mc = displace_mc.magnitude,\n", - " desired_temperature = T.magnitude,\n", - " number_atoms=[N_atom],\n", - " epsilon=[epsilon.magnitude], \n", - " sigma=[sigma.magnitude],\n", - " atom_mass=[m_argon.magnitude],\n", - " box_dimensions=[box_size.magnitude,\n", - " box_size.magnitude,\n", - " box_size.magnitude],\n", - " initial_positions = em.atoms_positions*em.reference_distance,\n", - " cut_off=cut_off.magnitude,\n", - " data_folder=folder,\n", - ")\n", - "mc1.run()" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "step N T (K) p (atm) V (A3) Ep (kcal/mol) Ek (kcal/mol) dens (g/cm3) \n", - "0 400 3.28e+02 8.71e+03 1.58e+04 -3.52e+02 0.0 1.68 \n", - "10 400 3.28e+02 8.69e+03 1.58e+04 -3.53e+02 0.0 1.68 \n", - "20 400 3.28e+02 8.72e+03 1.58e+04 -3.51e+02 0.0 1.68 \n", - "30 400 3.28e+02 8.74e+03 1.58e+04 -3.51e+02 0.0 1.68 \n", - "40 400 3.28e+02 8.73e+03 1.58e+04 -3.51e+02 0.0 1.68 \n", - "50 400 3.28e+02 8.77e+03 1.58e+04 -3.49e+02 0.0 1.68 \n", - "60 400 3.28e+02 8.79e+03 1.58e+04 -3.48e+02 0.0 1.68 \n", - "70 400 3.28e+02 8.8e+03 1.58e+04 -3.48e+02 0.0 1.68 \n", - "80 400 3.28e+02 8.76e+03 1.58e+04 -3.5e+02 0.0 1.68 \n", - "90 400 3.28e+02 8.72e+03 1.58e+04 -3.52e+02 0.0 1.68 \n", - "100 400 3.28e+02 8.67e+03 1.58e+04 -3.54e+02 0.0 1.68 \n", - "110 400 3.28e+02 8.67e+03 1.58e+04 -3.53e+02 0.0 1.68 \n", - "120 400 3.28e+02 8.67e+03 1.58e+04 -3.54e+02 0.0 1.68 \n", - "130 400 3.28e+02 8.62e+03 1.58e+04 -3.56e+02 0.0 1.68 \n", - "140 400 3.28e+02 8.65e+03 1.58e+04 -3.55e+02 0.0 1.68 \n", - "150 400 3.28e+02 8.64e+03 1.58e+04 -3.55e+02 0.0 1.68 \n", - "160 400 3.28e+02 8.65e+03 1.58e+04 -3.55e+02 0.0 1.68 \n", - "170 400 3.28e+02 8.65e+03 1.58e+04 -3.55e+02 0.0 1.68 \n", - "180 400 3.28e+02 8.6e+03 1.58e+04 -3.57e+02 0.0 1.68 \n", - "190 400 3.28e+02 8.59e+03 1.58e+04 -3.57e+02 0.0 1.68 \n", - "200 400 3.28e+02 8.57e+03 1.58e+04 -3.58e+02 0.0 1.68 \n", - "210 400 3.28e+02 8.53e+03 1.58e+04 -3.6e+02 0.0 1.68 \n", - "220 400 3.28e+02 8.54e+03 1.58e+04 -3.6e+02 0.0 1.68 \n", - "230 400 3.28e+02 8.56e+03 1.58e+04 -3.59e+02 0.0 1.68 \n", - "240 400 3.28e+02 8.52e+03 1.58e+04 -3.6e+02 0.0 1.68 \n", - "250 400 3.28e+02 8.53e+03 1.58e+04 -3.6e+02 0.0 1.68 \n", - "260 400 3.28e+02 8.54e+03 1.58e+04 -3.6e+02 0.0 1.68 \n", - "270 400 3.28e+02 8.58e+03 1.58e+04 -3.58e+02 0.0 1.68 \n", - "280 400 3.28e+02 8.54e+03 1.58e+04 -3.6e+02 0.0 1.68 \n", - "290 400 3.28e+02 8.59e+03 1.58e+04 -3.57e+02 0.0 1.68 \n", - "300 400 3.28e+02 8.61e+03 1.58e+04 -3.57e+02 0.0 1.68 \n", - "310 400 3.28e+02 8.61e+03 1.58e+04 -3.57e+02 0.0 1.68 \n", - "320 400 3.28e+02 8.61e+03 1.58e+04 -3.56e+02 0.0 1.68 \n", - "330 400 3.28e+02 8.6e+03 1.58e+04 -3.57e+02 0.0 1.68 \n", - "340 400 3.28e+02 8.63e+03 1.58e+04 -3.55e+02 0.0 1.68 \n", - "350 400 3.28e+02 8.6e+03 1.58e+04 -3.57e+02 0.0 1.68 \n", - "360 400 3.28e+02 8.58e+03 1.58e+04 -3.57e+02 0.0 1.68 \n", - "370 400 3.28e+02 8.6e+03 1.58e+04 -3.57e+02 0.0 1.68 \n", - "380 400 3.28e+02 8.63e+03 1.58e+04 -3.55e+02 0.0 1.68 \n", - "390 400 3.28e+02 8.68e+03 1.58e+04 -3.53e+02 0.0 1.68 \n", - "400 400 3.28e+02 8.7e+03 1.58e+04 -3.52e+02 0.0 1.68 \n", - "410 400 3.28e+02 8.66e+03 1.58e+04 -3.54e+02 0.0 1.68 \n", - "420 400 3.28e+02 8.65e+03 1.58e+04 -3.54e+02 0.0 1.68 \n", - "430 400 3.28e+02 8.7e+03 1.58e+04 -3.52e+02 0.0 1.68 \n", - "440 400 3.28e+02 8.7e+03 1.58e+04 -3.52e+02 0.0 1.68 \n", - "450 400 3.28e+02 8.69e+03 1.58e+04 -3.52e+02 0.0 1.68 \n", - "460 400 3.28e+02 8.67e+03 1.58e+04 -3.53e+02 0.0 1.68 \n", - "470 400 3.28e+02 8.65e+03 1.58e+04 -3.54e+02 0.0 1.68 \n", - "480 400 3.28e+02 8.64e+03 1.58e+04 -3.55e+02 0.0 1.68 \n", - "490 400 3.28e+02 8.71e+03 1.58e+04 -3.51e+02 0.0 1.68 \n", - "500 400 3.28e+02 8.7e+03 1.58e+04 -3.52e+02 0.0 1.68 \n", - "510 400 3.28e+02 8.74e+03 1.58e+04 -3.5e+02 0.0 1.68 \n", - "520 400 3.28e+02 8.72e+03 1.58e+04 -3.51e+02 0.0 1.68 \n", - "530 400 3.28e+02 8.73e+03 1.58e+04 -3.5e+02 0.0 1.68 \n", - "540 400 3.28e+02 8.7e+03 1.58e+04 -3.51e+02 0.0 1.68 \n", - "550 400 3.28e+02 8.75e+03 1.58e+04 -3.49e+02 0.0 1.68 \n", - "560 400 3.28e+02 8.76e+03 1.58e+04 -3.48e+02 0.0 1.68 \n", - "570 400 3.28e+02 8.83e+03 1.58e+04 -3.45e+02 0.0 1.68 \n", - "580 400 3.28e+02 8.83e+03 1.58e+04 -3.45e+02 0.0 1.68 \n", - "590 400 3.28e+02 8.83e+03 1.58e+04 -3.45e+02 0.0 1.68 \n", - "600 400 3.28e+02 8.84e+03 1.58e+04 -3.45e+02 0.0 1.68 \n", - "610 400 3.28e+02 8.85e+03 1.58e+04 -3.44e+02 0.0 1.68 \n", - "620 400 3.28e+02 8.77e+03 1.58e+04 -3.48e+02 0.0 1.68 \n", - "630 400 3.28e+02 8.77e+03 1.58e+04 -3.48e+02 0.0 1.68 \n", - "640 400 3.28e+02 8.77e+03 1.58e+04 -3.49e+02 0.0 1.68 \n", - "650 400 3.28e+02 8.78e+03 1.58e+04 -3.48e+02 0.0 1.68 \n", - "660 400 3.28e+02 8.78e+03 1.58e+04 -3.48e+02 0.0 1.68 \n", - "670 400 3.28e+02 8.74e+03 1.58e+04 -3.5e+02 0.0 1.68 \n", - "680 400 3.28e+02 8.75e+03 1.58e+04 -3.49e+02 0.0 1.68 \n", - "690 400 3.28e+02 8.76e+03 1.58e+04 -3.48e+02 0.0 1.68 \n", - "700 400 3.28e+02 8.71e+03 1.58e+04 -3.51e+02 0.0 1.68 \n", - "710 400 3.28e+02 8.7e+03 1.58e+04 -3.51e+02 0.0 1.68 \n", - "720 400 3.28e+02 8.7e+03 1.58e+04 -3.51e+02 0.0 1.68 \n", - "730 400 3.28e+02 8.7e+03 1.58e+04 -3.52e+02 0.0 1.68 \n", - "740 400 3.28e+02 8.63e+03 1.58e+04 -3.55e+02 0.0 1.68 \n", - "750 400 3.28e+02 8.59e+03 1.58e+04 -3.57e+02 0.0 1.68 \n", - "760 400 3.28e+02 8.58e+03 1.58e+04 -3.57e+02 0.0 1.68 \n", - "770 400 3.28e+02 8.58e+03 1.58e+04 -3.57e+02 0.0 1.68 \n", - "780 400 3.28e+02 8.56e+03 1.58e+04 -3.58e+02 0.0 1.68 \n", - "790 400 3.28e+02 8.53e+03 1.58e+04 -3.59e+02 0.0 1.68 \n", - "800 400 3.28e+02 8.53e+03 1.58e+04 -3.59e+02 0.0 1.68 \n", - "810 400 3.28e+02 8.54e+03 1.58e+04 -3.59e+02 0.0 1.68 \n", - "820 400 3.28e+02 8.54e+03 1.58e+04 -3.59e+02 0.0 1.68 \n", - "830 400 3.28e+02 8.56e+03 1.58e+04 -3.58e+02 0.0 1.68 \n", - "840 400 3.28e+02 8.59e+03 1.58e+04 -3.57e+02 0.0 1.68 \n", - "850 400 3.28e+02 8.62e+03 1.58e+04 -3.55e+02 0.0 1.68 \n", - "860 400 3.28e+02 8.63e+03 1.58e+04 -3.55e+02 0.0 1.68 \n", - "870 400 3.28e+02 8.62e+03 1.58e+04 -3.55e+02 0.0 1.68 \n", - "880 400 3.28e+02 8.6e+03 1.58e+04 -3.56e+02 0.0 1.68 \n", - "890 400 3.28e+02 8.6e+03 1.58e+04 -3.56e+02 0.0 1.68 \n", - "900 400 3.28e+02 8.63e+03 1.58e+04 -3.54e+02 0.0 1.68 \n", - "910 400 3.28e+02 8.62e+03 1.58e+04 -3.55e+02 0.0 1.68 \n", - "920 400 3.28e+02 8.6e+03 1.58e+04 -3.56e+02 0.0 1.68 \n", - "930 400 3.28e+02 8.58e+03 1.58e+04 -3.57e+02 0.0 1.68 \n", - "940 400 3.28e+02 8.51e+03 1.58e+04 -3.6e+02 0.0 1.68 \n", - "950 400 3.28e+02 8.5e+03 1.58e+04 -3.61e+02 0.0 1.68 \n", - "960 400 3.28e+02 8.5e+03 1.58e+04 -3.61e+02 0.0 1.68 \n", - "970 400 3.28e+02 8.5e+03 1.58e+04 -3.6e+02 0.0 1.68 \n", - "980 400 3.28e+02 8.46e+03 1.58e+04 -3.63e+02 0.0 1.68 \n", - "990 400 3.28e+02 8.46e+03 1.58e+04 -3.62e+02 0.0 1.68 \n", - "1000 400 3.28e+02 8.51e+03 1.58e+04 -3.6e+02 0.0 1.68 \n", - "1010 400 3.28e+02 8.5e+03 1.58e+04 -3.6e+02 0.0 1.68 \n", - "1020 400 3.28e+02 8.5e+03 1.58e+04 -3.61e+02 0.0 1.68 \n", - "1030 400 3.28e+02 8.52e+03 1.58e+04 -3.6e+02 0.0 1.68 \n", - "1040 400 3.28e+02 8.57e+03 1.58e+04 -3.58e+02 0.0 1.68 \n", - "1050 400 3.28e+02 8.52e+03 1.58e+04 -3.6e+02 0.0 1.68 \n", - "1060 400 3.28e+02 8.49e+03 1.58e+04 -3.62e+02 0.0 1.68 \n", - "1070 400 3.28e+02 8.49e+03 1.58e+04 -3.61e+02 0.0 1.68 \n", - "1080 400 3.28e+02 8.54e+03 1.58e+04 -3.59e+02 0.0 1.68 \n", - "1090 400 3.28e+02 8.61e+03 1.58e+04 -3.56e+02 0.0 1.68 \n", - "1100 400 3.28e+02 8.6e+03 1.58e+04 -3.56e+02 0.0 1.68 \n", - "1110 400 3.28e+02 8.63e+03 1.58e+04 -3.55e+02 0.0 1.68 \n", - "1120 400 3.28e+02 8.6e+03 1.58e+04 -3.56e+02 0.0 1.68 \n", - "1130 400 3.28e+02 8.61e+03 1.58e+04 -3.56e+02 0.0 1.68 \n", - "1140 400 3.28e+02 8.62e+03 1.58e+04 -3.55e+02 0.0 1.68 \n", - "1150 400 3.28e+02 8.59e+03 1.58e+04 -3.56e+02 0.0 1.68 \n", - "1160 400 3.28e+02 8.61e+03 1.58e+04 -3.56e+02 0.0 1.68 \n", - "1170 400 3.28e+02 8.63e+03 1.58e+04 -3.55e+02 0.0 1.68 \n", - "1180 400 3.28e+02 8.62e+03 1.58e+04 -3.55e+02 0.0 1.68 \n", - "1190 400 3.28e+02 8.63e+03 1.58e+04 -3.54e+02 0.0 1.68 \n", - "1200 400 3.28e+02 8.62e+03 1.58e+04 -3.55e+02 0.0 1.68 \n", - "1210 400 3.28e+02 8.64e+03 1.58e+04 -3.54e+02 0.0 1.68 \n", - "1220 400 3.28e+02 8.66e+03 1.58e+04 -3.53e+02 0.0 1.68 \n", - "1230 400 3.28e+02 8.64e+03 1.58e+04 -3.54e+02 0.0 1.68 \n", - "1240 400 3.28e+02 8.7e+03 1.58e+04 -3.51e+02 0.0 1.68 \n", - "1250 400 3.28e+02 8.69e+03 1.58e+04 -3.52e+02 0.0 1.68 \n", - "1260 400 3.28e+02 8.67e+03 1.58e+04 -3.52e+02 0.0 1.68 \n", - "1270 400 3.28e+02 8.69e+03 1.58e+04 -3.51e+02 0.0 1.68 \n", - "1280 400 3.28e+02 8.67e+03 1.58e+04 -3.53e+02 0.0 1.68 \n", - "1290 400 3.28e+02 8.72e+03 1.58e+04 -3.5e+02 0.0 1.68 \n", - "1300 400 3.28e+02 8.78e+03 1.58e+04 -3.47e+02 0.0 1.68 \n", - "1310 400 3.28e+02 8.77e+03 1.58e+04 -3.47e+02 0.0 1.68 \n", - "1320 400 3.28e+02 8.76e+03 1.58e+04 -3.48e+02 0.0 1.68 \n", - "1330 400 3.28e+02 8.73e+03 1.58e+04 -3.49e+02 0.0 1.68 \n", - "1340 400 3.28e+02 8.73e+03 1.58e+04 -3.49e+02 0.0 1.68 \n", - "1350 400 3.28e+02 8.69e+03 1.58e+04 -3.51e+02 0.0 1.68 \n", - "1360 400 3.28e+02 8.67e+03 1.58e+04 -3.52e+02 0.0 1.68 \n", - "1370 400 3.28e+02 8.69e+03 1.58e+04 -3.51e+02 0.0 1.68 \n", - "1380 400 3.28e+02 8.69e+03 1.58e+04 -3.51e+02 0.0 1.68 \n", - "1390 400 3.28e+02 8.7e+03 1.58e+04 -3.51e+02 0.0 1.68 \n", - "1400 400 3.28e+02 8.63e+03 1.58e+04 -3.55e+02 0.0 1.68 \n", - "1410 400 3.28e+02 8.57e+03 1.58e+04 -3.57e+02 0.0 1.68 \n", - "1420 400 3.28e+02 8.53e+03 1.58e+04 -3.59e+02 0.0 1.68 \n", - "1430 400 3.28e+02 8.54e+03 1.58e+04 -3.59e+02 0.0 1.68 \n", - "1440 400 3.28e+02 8.48e+03 1.58e+04 -3.61e+02 0.0 1.68 \n", - "1450 400 3.28e+02 8.48e+03 1.58e+04 -3.62e+02 0.0 1.68 \n", - "1460 400 3.28e+02 8.49e+03 1.58e+04 -3.61e+02 0.0 1.68 \n", - "1470 400 3.28e+02 8.48e+03 1.58e+04 -3.62e+02 0.0 1.68 \n", - "1480 400 3.28e+02 8.48e+03 1.58e+04 -3.62e+02 0.0 1.68 \n", - "1490 400 3.28e+02 8.47e+03 1.58e+04 -3.63e+02 0.0 1.68 \n", - "1500 400 3.28e+02 8.54e+03 1.58e+04 -3.59e+02 0.0 1.68 \n", - "1510 400 3.28e+02 8.49e+03 1.58e+04 -3.62e+02 0.0 1.68 \n", - "1520 400 3.28e+02 8.47e+03 1.58e+04 -3.63e+02 0.0 1.68 \n", - "1530 400 3.28e+02 8.45e+03 1.58e+04 -3.64e+02 0.0 1.68 \n", - "1540 400 3.28e+02 8.43e+03 1.58e+04 -3.65e+02 0.0 1.68 \n", - "1550 400 3.28e+02 8.45e+03 1.58e+04 -3.64e+02 0.0 1.68 \n", - "1560 400 3.28e+02 8.43e+03 1.58e+04 -3.65e+02 0.0 1.68 \n", - "1570 400 3.28e+02 8.53e+03 1.58e+04 -3.61e+02 0.0 1.68 \n", - "1580 400 3.28e+02 8.52e+03 1.58e+04 -3.61e+02 0.0 1.68 \n", - "1590 400 3.28e+02 8.55e+03 1.58e+04 -3.6e+02 0.0 1.68 \n", - "1600 400 3.28e+02 8.54e+03 1.58e+04 -3.6e+02 0.0 1.68 \n", - "1610 400 3.28e+02 8.57e+03 1.58e+04 -3.58e+02 0.0 1.68 \n", - "1620 400 3.28e+02 8.58e+03 1.58e+04 -3.58e+02 0.0 1.68 \n", - "1630 400 3.28e+02 8.61e+03 1.58e+04 -3.57e+02 0.0 1.68 \n", - "1640 400 3.28e+02 8.56e+03 1.58e+04 -3.59e+02 0.0 1.68 \n", - "1650 400 3.28e+02 8.55e+03 1.58e+04 -3.59e+02 0.0 1.68 \n", - "1660 400 3.28e+02 8.58e+03 1.58e+04 -3.58e+02 0.0 1.68 \n", - "1670 400 3.28e+02 8.55e+03 1.58e+04 -3.59e+02 0.0 1.68 \n", - "1680 400 3.28e+02 8.54e+03 1.58e+04 -3.6e+02 0.0 1.68 \n", - "1690 400 3.28e+02 8.54e+03 1.58e+04 -3.6e+02 0.0 1.68 \n", - "1700 400 3.28e+02 8.53e+03 1.58e+04 -3.6e+02 0.0 1.68 \n", - "1710 400 3.28e+02 8.51e+03 1.58e+04 -3.61e+02 0.0 1.68 \n", - "1720 400 3.28e+02 8.54e+03 1.58e+04 -3.6e+02 0.0 1.68 \n", - "1730 400 3.28e+02 8.59e+03 1.58e+04 -3.57e+02 0.0 1.68 \n", - "1740 400 3.28e+02 8.6e+03 1.58e+04 -3.57e+02 0.0 1.68 \n", - "1750 400 3.28e+02 8.59e+03 1.58e+04 -3.57e+02 0.0 1.68 \n", - "1760 400 3.28e+02 8.62e+03 1.58e+04 -3.56e+02 0.0 1.68 \n", - "1770 400 3.28e+02 8.61e+03 1.58e+04 -3.56e+02 0.0 1.68 \n", - "1780 400 3.28e+02 8.7e+03 1.58e+04 -3.51e+02 0.0 1.68 \n", - "1790 400 3.28e+02 8.7e+03 1.58e+04 -3.51e+02 0.0 1.68 \n", - "1800 400 3.28e+02 8.7e+03 1.58e+04 -3.51e+02 0.0 1.68 \n", - "1810 400 3.28e+02 8.71e+03 1.58e+04 -3.51e+02 0.0 1.68 \n", - "1820 400 3.28e+02 8.71e+03 1.58e+04 -3.51e+02 0.0 1.68 \n", - "1830 400 3.28e+02 8.72e+03 1.58e+04 -3.5e+02 0.0 1.68 \n", - "1840 400 3.28e+02 8.7e+03 1.58e+04 -3.51e+02 0.0 1.68 \n", - "1850 400 3.28e+02 8.74e+03 1.58e+04 -3.49e+02 0.0 1.68 \n", - "1860 400 3.28e+02 8.72e+03 1.58e+04 -3.5e+02 0.0 1.68 \n", - "1870 400 3.28e+02 8.7e+03 1.58e+04 -3.51e+02 0.0 1.68 \n", - "1880 400 3.28e+02 8.69e+03 1.58e+04 -3.51e+02 0.0 1.68 \n", - "1890 400 3.28e+02 8.71e+03 1.58e+04 -3.5e+02 0.0 1.68 \n", - "1900 400 3.28e+02 8.71e+03 1.58e+04 -3.5e+02 0.0 1.68 \n", - "1910 400 3.28e+02 8.69e+03 1.58e+04 -3.51e+02 0.0 1.68 \n", - "1920 400 3.28e+02 8.72e+03 1.58e+04 -3.5e+02 0.0 1.68 \n", - "1930 400 3.28e+02 8.72e+03 1.58e+04 -3.5e+02 0.0 1.68 \n", - "1940 400 3.28e+02 8.73e+03 1.58e+04 -3.49e+02 0.0 1.68 \n", - "1950 400 3.28e+02 8.76e+03 1.58e+04 -3.48e+02 0.0 1.68 \n", - "1960 400 3.28e+02 8.74e+03 1.58e+04 -3.49e+02 0.0 1.68 \n", - "1970 400 3.28e+02 8.72e+03 1.58e+04 -3.49e+02 0.0 1.68 \n", - "1980 400 3.28e+02 8.77e+03 1.58e+04 -3.47e+02 0.0 1.68 \n", - "1990 400 3.28e+02 8.79e+03 1.58e+04 -3.46e+02 0.0 1.68 \n", - "2000 400 3.28e+02 8.84e+03 1.58e+04 -3.44e+02 0.0 1.68 \n", - "2010 400 3.28e+02 8.83e+03 1.58e+04 -3.44e+02 0.0 1.68 \n", - "2020 400 3.28e+02 8.83e+03 1.58e+04 -3.44e+02 0.0 1.68 \n", - "2030 400 3.28e+02 8.84e+03 1.58e+04 -3.44e+02 0.0 1.68 \n", - "2040 400 3.28e+02 8.85e+03 1.58e+04 -3.43e+02 0.0 1.68 \n", - "2050 400 3.28e+02 8.85e+03 1.58e+04 -3.43e+02 0.0 1.68 \n", - "2060 400 3.28e+02 8.84e+03 1.58e+04 -3.44e+02 0.0 1.68 \n", - "2070 400 3.28e+02 8.87e+03 1.58e+04 -3.42e+02 0.0 1.68 \n", - "2080 400 3.28e+02 8.89e+03 1.58e+04 -3.41e+02 0.0 1.68 \n", - "2090 400 3.28e+02 8.88e+03 1.58e+04 -3.42e+02 0.0 1.68 \n", - "2100 400 3.28e+02 8.87e+03 1.58e+04 -3.42e+02 0.0 1.68 \n", - "2110 400 3.28e+02 8.88e+03 1.58e+04 -3.42e+02 0.0 1.68 \n", - "2120 400 3.28e+02 8.82e+03 1.58e+04 -3.45e+02 0.0 1.68 \n", - "2130 400 3.28e+02 8.77e+03 1.58e+04 -3.47e+02 0.0 1.68 \n", - "2140 400 3.28e+02 8.79e+03 1.58e+04 -3.46e+02 0.0 1.68 \n", - "2150 400 3.28e+02 8.77e+03 1.58e+04 -3.47e+02 0.0 1.68 \n", - "2160 400 3.28e+02 8.76e+03 1.58e+04 -3.48e+02 0.0 1.68 \n", - "2170 400 3.28e+02 8.79e+03 1.58e+04 -3.46e+02 0.0 1.68 \n", - "2180 400 3.28e+02 8.71e+03 1.58e+04 -3.5e+02 0.0 1.68 \n", - "2190 400 3.28e+02 8.7e+03 1.58e+04 -3.5e+02 0.0 1.68 \n", - "2200 400 3.28e+02 8.67e+03 1.58e+04 -3.52e+02 0.0 1.68 \n", - "2210 400 3.28e+02 8.65e+03 1.58e+04 -3.53e+02 0.0 1.68 \n", - "2220 400 3.28e+02 8.72e+03 1.58e+04 -3.49e+02 0.0 1.68 \n", - "2230 400 3.28e+02 8.72e+03 1.58e+04 -3.49e+02 0.0 1.68 \n", - "2240 400 3.28e+02 8.75e+03 1.58e+04 -3.48e+02 0.0 1.68 \n", - "2250 400 3.28e+02 8.75e+03 1.58e+04 -3.48e+02 0.0 1.68 \n", - "2260 400 3.28e+02 8.76e+03 1.58e+04 -3.47e+02 0.0 1.68 \n", - "2270 400 3.28e+02 8.74e+03 1.58e+04 -3.49e+02 0.0 1.68 \n", - "2280 400 3.28e+02 8.73e+03 1.58e+04 -3.49e+02 0.0 1.68 \n", - "2290 400 3.28e+02 8.7e+03 1.58e+04 -3.51e+02 0.0 1.68 \n", - "2300 400 3.28e+02 8.67e+03 1.58e+04 -3.52e+02 0.0 1.68 \n", - "2310 400 3.28e+02 8.65e+03 1.58e+04 -3.53e+02 0.0 1.68 \n", - "2320 400 3.28e+02 8.67e+03 1.58e+04 -3.52e+02 0.0 1.68 \n", - "2330 400 3.28e+02 8.69e+03 1.58e+04 -3.51e+02 0.0 1.68 \n", - "2340 400 3.28e+02 8.7e+03 1.58e+04 -3.51e+02 0.0 1.68 \n", - "2350 400 3.28e+02 8.74e+03 1.58e+04 -3.49e+02 0.0 1.68 \n", - "2360 400 3.28e+02 8.77e+03 1.58e+04 -3.48e+02 0.0 1.68 \n", - "2370 400 3.28e+02 8.76e+03 1.58e+04 -3.48e+02 0.0 1.68 \n", - "2380 400 3.28e+02 8.79e+03 1.58e+04 -3.46e+02 0.0 1.68 \n", - "2390 400 3.28e+02 8.77e+03 1.58e+04 -3.47e+02 0.0 1.68 \n", - "2400 400 3.28e+02 8.77e+03 1.58e+04 -3.48e+02 0.0 1.68 \n", - "2410 400 3.28e+02 8.71e+03 1.58e+04 -3.5e+02 0.0 1.68 \n", - "2420 400 3.28e+02 8.66e+03 1.58e+04 -3.53e+02 0.0 1.68 \n", - "2430 400 3.28e+02 8.73e+03 1.58e+04 -3.5e+02 0.0 1.68 \n", - "2440 400 3.28e+02 8.7e+03 1.58e+04 -3.51e+02 0.0 1.68 \n", - "2450 400 3.28e+02 8.68e+03 1.58e+04 -3.52e+02 0.0 1.68 \n", - "2460 400 3.28e+02 8.7e+03 1.58e+04 -3.51e+02 0.0 1.68 \n", - "2470 400 3.28e+02 8.66e+03 1.58e+04 -3.53e+02 0.0 1.68 \n", - "2480 400 3.28e+02 8.66e+03 1.58e+04 -3.53e+02 0.0 1.68 \n", - "2490 400 3.28e+02 8.66e+03 1.58e+04 -3.53e+02 0.0 1.68 \n", - "2500 400 3.28e+02 8.64e+03 1.58e+04 -3.54e+02 0.0 1.68 \n", - "2510 400 3.28e+02 8.64e+03 1.58e+04 -3.54e+02 0.0 1.68 \n", - "2520 400 3.28e+02 8.64e+03 1.58e+04 -3.53e+02 0.0 1.68 \n", - "2530 400 3.28e+02 8.66e+03 1.58e+04 -3.53e+02 0.0 1.68 \n", - "2540 400 3.28e+02 8.72e+03 1.58e+04 -3.49e+02 0.0 1.68 \n", - "2550 400 3.28e+02 8.77e+03 1.58e+04 -3.47e+02 0.0 1.68 \n", - "2560 400 3.28e+02 8.84e+03 1.58e+04 -3.44e+02 0.0 1.68 \n", - "2570 400 3.28e+02 8.84e+03 1.58e+04 -3.44e+02 0.0 1.68 \n", - "2580 400 3.28e+02 8.83e+03 1.58e+04 -3.45e+02 0.0 1.68 \n", - "2590 400 3.28e+02 8.84e+03 1.58e+04 -3.44e+02 0.0 1.68 \n", - "2600 400 3.28e+02 8.79e+03 1.58e+04 -3.47e+02 0.0 1.68 \n", - "2610 400 3.28e+02 8.77e+03 1.58e+04 -3.47e+02 0.0 1.68 \n", - "2620 400 3.28e+02 8.67e+03 1.58e+04 -3.52e+02 0.0 1.68 \n", - "2630 400 3.28e+02 8.69e+03 1.58e+04 -3.51e+02 0.0 1.68 \n", - "2640 400 3.28e+02 8.67e+03 1.58e+04 -3.52e+02 0.0 1.68 \n", - "2650 400 3.28e+02 8.71e+03 1.58e+04 -3.5e+02 0.0 1.68 \n", - "2660 400 3.28e+02 8.72e+03 1.58e+04 -3.5e+02 0.0 1.68 \n", - "2670 400 3.28e+02 8.72e+03 1.58e+04 -3.5e+02 0.0 1.68 \n", - "2680 400 3.28e+02 8.73e+03 1.58e+04 -3.49e+02 0.0 1.68 \n", - "2690 400 3.28e+02 8.76e+03 1.58e+04 -3.48e+02 0.0 1.68 \n", - "2700 400 3.28e+02 8.76e+03 1.58e+04 -3.48e+02 0.0 1.68 \n", - "2710 400 3.28e+02 8.73e+03 1.58e+04 -3.49e+02 0.0 1.68 \n", - "2720 400 3.28e+02 8.79e+03 1.58e+04 -3.47e+02 0.0 1.68 \n", - "2730 400 3.28e+02 8.85e+03 1.58e+04 -3.44e+02 0.0 1.68 \n", - "2740 400 3.28e+02 8.86e+03 1.58e+04 -3.44e+02 0.0 1.68 \n", - "2750 400 3.28e+02 8.83e+03 1.58e+04 -3.45e+02 0.0 1.68 \n", - "2760 400 3.28e+02 8.79e+03 1.58e+04 -3.47e+02 0.0 1.68 \n", - "2770 400 3.28e+02 8.76e+03 1.58e+04 -3.48e+02 0.0 1.68 \n", - "2780 400 3.28e+02 8.65e+03 1.58e+04 -3.53e+02 0.0 1.68 \n", - "2790 400 3.28e+02 8.65e+03 1.58e+04 -3.53e+02 0.0 1.68 \n", - "2800 400 3.28e+02 8.66e+03 1.58e+04 -3.52e+02 0.0 1.68 \n", - "2810 400 3.28e+02 8.68e+03 1.58e+04 -3.51e+02 0.0 1.68 \n", - "2820 400 3.28e+02 8.67e+03 1.58e+04 -3.52e+02 0.0 1.68 \n", - "2830 400 3.28e+02 8.61e+03 1.58e+04 -3.54e+02 0.0 1.68 \n", - "2840 400 3.28e+02 8.56e+03 1.58e+04 -3.56e+02 0.0 1.68 \n", - "2850 400 3.28e+02 8.56e+03 1.58e+04 -3.57e+02 0.0 1.68 \n", - "2860 400 3.28e+02 8.57e+03 1.58e+04 -3.56e+02 0.0 1.68 \n", - "2870 400 3.28e+02 8.6e+03 1.58e+04 -3.55e+02 0.0 1.68 \n", - "2880 400 3.28e+02 8.63e+03 1.58e+04 -3.53e+02 0.0 1.68 \n", - "2890 400 3.28e+02 8.6e+03 1.58e+04 -3.55e+02 0.0 1.68 \n", - "2900 400 3.28e+02 8.64e+03 1.58e+04 -3.53e+02 0.0 1.68 \n", - "2910 400 3.28e+02 8.66e+03 1.58e+04 -3.52e+02 0.0 1.68 \n", - "2920 400 3.28e+02 8.69e+03 1.58e+04 -3.5e+02 0.0 1.68 \n", - "2930 400 3.28e+02 8.75e+03 1.58e+04 -3.47e+02 0.0 1.68 \n", - "2940 400 3.28e+02 8.77e+03 1.58e+04 -3.47e+02 0.0 1.68 \n", - "2950 400 3.28e+02 8.77e+03 1.58e+04 -3.47e+02 0.0 1.68 \n", - "2960 400 3.28e+02 8.77e+03 1.58e+04 -3.47e+02 0.0 1.68 \n", - "2970 400 3.28e+02 8.76e+03 1.58e+04 -3.47e+02 0.0 1.68 \n", - "2980 400 3.28e+02 8.76e+03 1.58e+04 -3.47e+02 0.0 1.68 \n", - "2990 400 3.28e+02 8.76e+03 1.58e+04 -3.47e+02 0.0 1.68 \n", - "3000 400 3.28e+02 8.76e+03 1.58e+04 -3.47e+02 0.0 1.68 \n", - "3010 400 3.28e+02 8.74e+03 1.58e+04 -3.48e+02 0.0 1.68 \n", - "3020 400 3.28e+02 8.71e+03 1.58e+04 -3.5e+02 0.0 1.68 \n", - "3030 400 3.28e+02 8.7e+03 1.58e+04 -3.5e+02 0.0 1.68 \n", - "3040 400 3.28e+02 8.7e+03 1.58e+04 -3.5e+02 0.0 1.68 \n", - "3050 400 3.28e+02 8.75e+03 1.58e+04 -3.48e+02 0.0 1.68 \n", - "3060 400 3.28e+02 8.72e+03 1.58e+04 -3.49e+02 0.0 1.68 \n", - "3070 400 3.28e+02 8.7e+03 1.58e+04 -3.5e+02 0.0 1.68 \n", - "3080 400 3.28e+02 8.7e+03 1.58e+04 -3.5e+02 0.0 1.68 \n", - "3090 400 3.28e+02 8.71e+03 1.58e+04 -3.49e+02 0.0 1.68 \n", - "3100 400 3.28e+02 8.7e+03 1.58e+04 -3.5e+02 0.0 1.68 \n", - "3110 400 3.28e+02 8.72e+03 1.58e+04 -3.49e+02 0.0 1.68 \n", - "3120 400 3.28e+02 8.69e+03 1.58e+04 -3.51e+02 0.0 1.68 \n", - "3130 400 3.28e+02 8.75e+03 1.58e+04 -3.48e+02 0.0 1.68 \n", - "3140 400 3.28e+02 8.73e+03 1.58e+04 -3.49e+02 0.0 1.68 \n", - "3150 400 3.28e+02 8.75e+03 1.58e+04 -3.48e+02 0.0 1.68 \n", - "3160 400 3.28e+02 8.76e+03 1.58e+04 -3.47e+02 0.0 1.68 \n", - "3170 400 3.28e+02 8.74e+03 1.58e+04 -3.49e+02 0.0 1.68 \n", - "3180 400 3.28e+02 8.78e+03 1.58e+04 -3.47e+02 0.0 1.68 \n", - "3190 400 3.28e+02 8.74e+03 1.58e+04 -3.49e+02 0.0 1.68 \n", - "3200 400 3.28e+02 8.8e+03 1.58e+04 -3.46e+02 0.0 1.68 \n", - "3210 400 3.28e+02 8.8e+03 1.58e+04 -3.46e+02 0.0 1.68 \n", - "3220 400 3.28e+02 8.8e+03 1.58e+04 -3.45e+02 0.0 1.68 \n", - "3230 400 3.28e+02 8.77e+03 1.58e+04 -3.47e+02 0.0 1.68 \n", - "3240 400 3.28e+02 8.75e+03 1.58e+04 -3.48e+02 0.0 1.68 \n", - "3250 400 3.28e+02 8.74e+03 1.58e+04 -3.48e+02 0.0 1.68 \n", - "3260 400 3.28e+02 8.72e+03 1.58e+04 -3.49e+02 0.0 1.68 \n", - "3270 400 3.28e+02 8.73e+03 1.58e+04 -3.49e+02 0.0 1.68 \n", - "3280 400 3.28e+02 8.75e+03 1.58e+04 -3.48e+02 0.0 1.68 \n", - "3290 400 3.28e+02 8.72e+03 1.58e+04 -3.49e+02 0.0 1.68 \n", - "3300 400 3.28e+02 8.71e+03 1.58e+04 -3.5e+02 0.0 1.68 \n", - "3310 400 3.28e+02 8.74e+03 1.58e+04 -3.48e+02 0.0 1.68 \n", - "3320 400 3.28e+02 8.73e+03 1.58e+04 -3.49e+02 0.0 1.68 \n", - "3330 400 3.28e+02 8.71e+03 1.58e+04 -3.5e+02 0.0 1.68 \n", - "3340 400 3.28e+02 8.69e+03 1.58e+04 -3.51e+02 0.0 1.68 \n", - "3350 400 3.28e+02 8.73e+03 1.58e+04 -3.49e+02 0.0 1.68 \n", - "3360 400 3.28e+02 8.77e+03 1.58e+04 -3.47e+02 0.0 1.68 \n", - "3370 400 3.28e+02 8.78e+03 1.58e+04 -3.46e+02 0.0 1.68 \n", - "3380 400 3.28e+02 8.75e+03 1.58e+04 -3.48e+02 0.0 1.68 \n", - "3390 400 3.28e+02 8.75e+03 1.58e+04 -3.48e+02 0.0 1.68 \n", - "3400 400 3.28e+02 8.78e+03 1.58e+04 -3.46e+02 0.0 1.68 \n", - "3410 400 3.28e+02 8.83e+03 1.58e+04 -3.44e+02 0.0 1.68 \n", - "3420 400 3.28e+02 8.76e+03 1.58e+04 -3.47e+02 0.0 1.68 \n", - "3430 400 3.28e+02 8.76e+03 1.58e+04 -3.47e+02 0.0 1.68 \n", - "3440 400 3.28e+02 8.82e+03 1.58e+04 -3.44e+02 0.0 1.68 \n", - "3450 400 3.28e+02 8.83e+03 1.58e+04 -3.44e+02 0.0 1.68 \n", - "3460 400 3.28e+02 8.81e+03 1.58e+04 -3.44e+02 0.0 1.68 \n", - "3470 400 3.28e+02 8.8e+03 1.58e+04 -3.45e+02 0.0 1.68 \n", - "3480 400 3.28e+02 8.82e+03 1.58e+04 -3.44e+02 0.0 1.68 \n", - "3490 400 3.28e+02 8.84e+03 1.58e+04 -3.43e+02 0.0 1.68 \n", - "3500 400 3.28e+02 8.89e+03 1.58e+04 -3.41e+02 0.0 1.68 \n", - "3510 400 3.28e+02 8.89e+03 1.58e+04 -3.41e+02 0.0 1.68 \n", - "3520 400 3.28e+02 8.9e+03 1.58e+04 -3.4e+02 0.0 1.68 \n", - "3530 400 3.28e+02 8.96e+03 1.58e+04 -3.37e+02 0.0 1.68 \n", - "3540 400 3.28e+02 8.88e+03 1.58e+04 -3.42e+02 0.0 1.68 \n", - "3550 400 3.28e+02 8.88e+03 1.58e+04 -3.42e+02 0.0 1.68 \n", - "3560 400 3.28e+02 8.9e+03 1.58e+04 -3.41e+02 0.0 1.68 \n", - "3570 400 3.28e+02 8.89e+03 1.58e+04 -3.41e+02 0.0 1.68 \n", - "3580 400 3.28e+02 8.97e+03 1.58e+04 -3.37e+02 0.0 1.68 \n", - "3590 400 3.28e+02 8.97e+03 1.58e+04 -3.37e+02 0.0 1.68 \n", - "3600 400 3.28e+02 8.96e+03 1.58e+04 -3.38e+02 0.0 1.68 \n", - "3610 400 3.28e+02 8.94e+03 1.58e+04 -3.39e+02 0.0 1.68 \n", - "3620 400 3.28e+02 8.98e+03 1.58e+04 -3.37e+02 0.0 1.68 \n", - "3630 400 3.28e+02 8.98e+03 1.58e+04 -3.36e+02 0.0 1.68 \n", - "3640 400 3.28e+02 8.98e+03 1.58e+04 -3.37e+02 0.0 1.68 \n", - "3650 400 3.28e+02 9e+03 1.58e+04 -3.35e+02 0.0 1.68 \n", - "3660 400 3.28e+02 9e+03 1.58e+04 -3.35e+02 0.0 1.68 \n", - "3670 400 3.28e+02 8.98e+03 1.58e+04 -3.37e+02 0.0 1.68 \n", - "3680 400 3.28e+02 8.96e+03 1.58e+04 -3.37e+02 0.0 1.68 \n", - "3690 400 3.28e+02 8.98e+03 1.58e+04 -3.36e+02 0.0 1.68 \n", - "3700 400 3.28e+02 9e+03 1.58e+04 -3.35e+02 0.0 1.68 \n", - "3710 400 3.28e+02 9e+03 1.58e+04 -3.35e+02 0.0 1.68 \n", - "3720 400 3.28e+02 8.95e+03 1.58e+04 -3.38e+02 0.0 1.68 \n", - "3730 400 3.28e+02 9e+03 1.58e+04 -3.35e+02 0.0 1.68 \n", - "3740 400 3.28e+02 8.99e+03 1.58e+04 -3.35e+02 0.0 1.68 \n", - "3750 400 3.28e+02 8.98e+03 1.58e+04 -3.36e+02 0.0 1.68 \n", - "3760 400 3.28e+02 8.99e+03 1.58e+04 -3.36e+02 0.0 1.68 \n", - "3770 400 3.28e+02 8.92e+03 1.58e+04 -3.39e+02 0.0 1.68 \n", - "3780 400 3.28e+02 8.96e+03 1.58e+04 -3.37e+02 0.0 1.68 \n", - "3790 400 3.28e+02 8.95e+03 1.58e+04 -3.38e+02 0.0 1.68 \n", - "3800 400 3.28e+02 8.92e+03 1.58e+04 -3.39e+02 0.0 1.68 \n", - "3810 400 3.28e+02 8.94e+03 1.58e+04 -3.38e+02 0.0 1.68 \n", - "3820 400 3.28e+02 8.97e+03 1.58e+04 -3.37e+02 0.0 1.68 \n", - "3830 400 3.28e+02 8.99e+03 1.58e+04 -3.37e+02 0.0 1.68 \n", - "3840 400 3.28e+02 9.02e+03 1.58e+04 -3.36e+02 0.0 1.68 \n", - "3850 400 3.28e+02 9.02e+03 1.58e+04 -3.35e+02 0.0 1.68 \n", - "3860 400 3.28e+02 8.99e+03 1.58e+04 -3.37e+02 0.0 1.68 \n", - "3870 400 3.28e+02 8.94e+03 1.58e+04 -3.39e+02 0.0 1.68 \n", - "3880 400 3.28e+02 8.93e+03 1.58e+04 -3.39e+02 0.0 1.68 \n", - "3890 400 3.28e+02 8.92e+03 1.58e+04 -3.4e+02 0.0 1.68 \n", - "3900 400 3.28e+02 8.94e+03 1.58e+04 -3.39e+02 0.0 1.68 \n", - "3910 400 3.28e+02 8.98e+03 1.58e+04 -3.37e+02 0.0 1.68 \n", - "3920 400 3.28e+02 9.01e+03 1.58e+04 -3.35e+02 0.0 1.68 \n", - "3930 400 3.28e+02 9.04e+03 1.58e+04 -3.34e+02 0.0 1.68 \n", - "3940 400 3.28e+02 9.07e+03 1.58e+04 -3.32e+02 0.0 1.68 \n", - "3950 400 3.28e+02 9.05e+03 1.58e+04 -3.33e+02 0.0 1.68 \n", - "3960 400 3.28e+02 9.08e+03 1.58e+04 -3.32e+02 0.0 1.68 \n", - "3970 400 3.28e+02 9.03e+03 1.58e+04 -3.34e+02 0.0 1.68 \n", - "3980 400 3.28e+02 8.97e+03 1.58e+04 -3.37e+02 0.0 1.68 \n", - "3990 400 3.28e+02 9e+03 1.58e+04 -3.35e+02 0.0 1.68 \n", - "4000 400 3.28e+02 9e+03 1.58e+04 -3.35e+02 0.0 1.68 \n", - "4010 400 3.28e+02 8.97e+03 1.58e+04 -3.37e+02 0.0 1.68 \n", - "4020 400 3.28e+02 8.97e+03 1.58e+04 -3.37e+02 0.0 1.68 \n", - "4030 400 3.28e+02 8.97e+03 1.58e+04 -3.37e+02 0.0 1.68 \n", - "4040 400 3.28e+02 8.98e+03 1.58e+04 -3.36e+02 0.0 1.68 \n", - "4050 400 3.28e+02 8.92e+03 1.58e+04 -3.39e+02 0.0 1.68 \n", - "4060 400 3.28e+02 8.96e+03 1.58e+04 -3.37e+02 0.0 1.68 \n", - "4070 400 3.28e+02 8.98e+03 1.58e+04 -3.37e+02 0.0 1.68 \n", - "4080 400 3.28e+02 8.97e+03 1.58e+04 -3.37e+02 0.0 1.68 \n", - "4090 400 3.28e+02 8.91e+03 1.58e+04 -3.4e+02 0.0 1.68 \n", - "4100 400 3.28e+02 8.94e+03 1.58e+04 -3.39e+02 0.0 1.68 \n", - "4110 400 3.28e+02 8.93e+03 1.58e+04 -3.39e+02 0.0 1.68 \n", - "4120 400 3.28e+02 8.94e+03 1.58e+04 -3.39e+02 0.0 1.68 \n", - "4130 400 3.28e+02 9e+03 1.58e+04 -3.36e+02 0.0 1.68 \n", - "4140 400 3.28e+02 9.06e+03 1.58e+04 -3.33e+02 0.0 1.68 \n", - "4150 400 3.28e+02 9.07e+03 1.58e+04 -3.32e+02 0.0 1.68 \n", - "4160 400 3.28e+02 9.08e+03 1.58e+04 -3.32e+02 0.0 1.68 \n", - "4170 400 3.28e+02 9.07e+03 1.58e+04 -3.32e+02 0.0 1.68 \n", - "4180 400 3.28e+02 9.07e+03 1.58e+04 -3.32e+02 0.0 1.68 \n", - "4190 400 3.28e+02 9.05e+03 1.58e+04 -3.33e+02 0.0 1.68 \n", - "4200 400 3.28e+02 9.06e+03 1.58e+04 -3.33e+02 0.0 1.68 \n", - "4210 400 3.28e+02 9.12e+03 1.58e+04 -3.3e+02 0.0 1.68 \n", - "4220 400 3.28e+02 9.11e+03 1.58e+04 -3.3e+02 0.0 1.68 \n", - "4230 400 3.28e+02 9.12e+03 1.58e+04 -3.3e+02 0.0 1.68 \n", - "4240 400 3.28e+02 9.11e+03 1.58e+04 -3.3e+02 0.0 1.68 \n", - "4250 400 3.28e+02 9.13e+03 1.58e+04 -3.29e+02 0.0 1.68 \n", - "4260 400 3.28e+02 9.14e+03 1.58e+04 -3.29e+02 0.0 1.68 \n", - "4270 400 3.28e+02 9.13e+03 1.58e+04 -3.3e+02 0.0 1.68 \n", - "4280 400 3.28e+02 9.2e+03 1.58e+04 -3.26e+02 0.0 1.68 \n", - "4290 400 3.28e+02 9.17e+03 1.58e+04 -3.28e+02 0.0 1.68 \n", - "4300 400 3.28e+02 9.17e+03 1.58e+04 -3.28e+02 0.0 1.68 \n", - "4310 400 3.28e+02 9.12e+03 1.58e+04 -3.31e+02 0.0 1.68 \n", - "4320 400 3.28e+02 9.12e+03 1.58e+04 -3.31e+02 0.0 1.68 \n", - "4330 400 3.28e+02 9.11e+03 1.58e+04 -3.31e+02 0.0 1.68 \n", - "4340 400 3.28e+02 9.09e+03 1.58e+04 -3.32e+02 0.0 1.68 \n", - "4350 400 3.28e+02 9.06e+03 1.58e+04 -3.33e+02 0.0 1.68 \n", - "4360 400 3.28e+02 9.08e+03 1.58e+04 -3.32e+02 0.0 1.68 \n", - "4370 400 3.28e+02 9.12e+03 1.58e+04 -3.3e+02 0.0 1.68 \n", - "4380 400 3.28e+02 9.12e+03 1.58e+04 -3.3e+02 0.0 1.68 \n", - "4390 400 3.28e+02 9.1e+03 1.58e+04 -3.31e+02 0.0 1.68 \n", - "4400 400 3.28e+02 9.1e+03 1.58e+04 -3.31e+02 0.0 1.68 \n", - "4410 400 3.28e+02 9.11e+03 1.58e+04 -3.31e+02 0.0 1.68 \n", - "4420 400 3.28e+02 9.11e+03 1.58e+04 -3.31e+02 0.0 1.68 \n", - "4430 400 3.28e+02 9.12e+03 1.58e+04 -3.31e+02 0.0 1.68 \n", - "4440 400 3.28e+02 9.09e+03 1.58e+04 -3.32e+02 0.0 1.68 \n", - "4450 400 3.28e+02 9.09e+03 1.58e+04 -3.32e+02 0.0 1.68 \n", - "4460 400 3.28e+02 9.12e+03 1.58e+04 -3.31e+02 0.0 1.68 \n", - "4470 400 3.28e+02 9.14e+03 1.58e+04 -3.3e+02 0.0 1.68 \n", - "4480 400 3.28e+02 9.12e+03 1.58e+04 -3.3e+02 0.0 1.68 \n", - "4490 400 3.28e+02 9.08e+03 1.58e+04 -3.32e+02 0.0 1.68 \n", - "4500 400 3.28e+02 9.09e+03 1.58e+04 -3.32e+02 0.0 1.68 \n", - "4510 400 3.28e+02 9.08e+03 1.58e+04 -3.32e+02 0.0 1.68 \n", - "4520 400 3.28e+02 9.08e+03 1.58e+04 -3.32e+02 0.0 1.68 \n", - "4530 400 3.28e+02 9.08e+03 1.58e+04 -3.32e+02 0.0 1.68 \n", - "4540 400 3.28e+02 9.07e+03 1.58e+04 -3.33e+02 0.0 1.68 \n", - "4550 400 3.28e+02 9.05e+03 1.58e+04 -3.34e+02 0.0 1.68 \n", - "4560 400 3.28e+02 9.08e+03 1.58e+04 -3.32e+02 0.0 1.68 \n", - "4570 400 3.28e+02 9.12e+03 1.58e+04 -3.3e+02 0.0 1.68 \n", - "4580 400 3.28e+02 9.14e+03 1.58e+04 -3.29e+02 0.0 1.68 \n", - "4590 400 3.28e+02 9.11e+03 1.58e+04 -3.31e+02 0.0 1.68 \n", - "4600 400 3.28e+02 9.11e+03 1.58e+04 -3.3e+02 0.0 1.68 \n", - "4610 400 3.28e+02 9.12e+03 1.58e+04 -3.3e+02 0.0 1.68 \n", - "4620 400 3.28e+02 9.14e+03 1.58e+04 -3.29e+02 0.0 1.68 \n", - "4630 400 3.28e+02 9.09e+03 1.58e+04 -3.32e+02 0.0 1.68 \n", - "4640 400 3.28e+02 9.06e+03 1.58e+04 -3.33e+02 0.0 1.68 \n", - "4650 400 3.28e+02 9.05e+03 1.58e+04 -3.34e+02 0.0 1.68 \n", - "4660 400 3.28e+02 9.03e+03 1.58e+04 -3.35e+02 0.0 1.68 \n", - "4670 400 3.28e+02 9.05e+03 1.58e+04 -3.34e+02 0.0 1.68 \n", - "4680 400 3.28e+02 9.02e+03 1.58e+04 -3.35e+02 0.0 1.68 \n", - "4690 400 3.28e+02 9.02e+03 1.58e+04 -3.36e+02 0.0 1.68 \n", - "4700 400 3.28e+02 9.01e+03 1.58e+04 -3.36e+02 0.0 1.68 \n", - "4710 400 3.28e+02 9e+03 1.58e+04 -3.37e+02 0.0 1.68 \n", - "4720 400 3.28e+02 9.03e+03 1.58e+04 -3.35e+02 0.0 1.68 \n", - "4730 400 3.28e+02 9.02e+03 1.58e+04 -3.36e+02 0.0 1.68 \n", - "4740 400 3.28e+02 9.04e+03 1.58e+04 -3.35e+02 0.0 1.68 \n", - "4750 400 3.28e+02 8.99e+03 1.58e+04 -3.37e+02 0.0 1.68 \n", - "4760 400 3.28e+02 8.95e+03 1.58e+04 -3.39e+02 0.0 1.68 \n", - "4770 400 3.28e+02 8.93e+03 1.58e+04 -3.4e+02 0.0 1.68 \n", - "4780 400 3.28e+02 8.96e+03 1.58e+04 -3.39e+02 0.0 1.68 \n", - "4790 400 3.28e+02 8.99e+03 1.58e+04 -3.38e+02 0.0 1.68 \n", - "4800 400 3.28e+02 8.95e+03 1.58e+04 -3.39e+02 0.0 1.68 \n", - "4810 400 3.28e+02 8.95e+03 1.58e+04 -3.4e+02 0.0 1.68 \n", - "4820 400 3.28e+02 8.95e+03 1.58e+04 -3.4e+02 0.0 1.68 \n", - "4830 400 3.28e+02 9e+03 1.58e+04 -3.37e+02 0.0 1.68 \n", - "4840 400 3.28e+02 8.98e+03 1.58e+04 -3.38e+02 0.0 1.68 \n", - "4850 400 3.28e+02 8.97e+03 1.58e+04 -3.39e+02 0.0 1.68 \n", - "4860 400 3.28e+02 8.94e+03 1.58e+04 -3.4e+02 0.0 1.68 \n", - "4870 400 3.28e+02 8.95e+03 1.58e+04 -3.39e+02 0.0 1.68 \n", - "4880 400 3.28e+02 9.02e+03 1.58e+04 -3.37e+02 0.0 1.68 \n", - "4890 400 3.28e+02 9.01e+03 1.58e+04 -3.37e+02 0.0 1.68 \n", - "4900 400 3.28e+02 9.02e+03 1.58e+04 -3.36e+02 0.0 1.68 \n", - "4910 400 3.28e+02 9.05e+03 1.58e+04 -3.35e+02 0.0 1.68 \n", - "4920 400 3.28e+02 9.03e+03 1.58e+04 -3.36e+02 0.0 1.68 \n", - "4930 400 3.28e+02 9.02e+03 1.58e+04 -3.36e+02 0.0 1.68 \n", - "4940 400 3.28e+02 9.02e+03 1.58e+04 -3.36e+02 0.0 1.68 \n", - "4950 400 3.28e+02 9.05e+03 1.58e+04 -3.35e+02 0.0 1.68 \n", - "4960 400 3.28e+02 9.05e+03 1.58e+04 -3.35e+02 0.0 1.68 \n", - "4970 400 3.28e+02 9.05e+03 1.58e+04 -3.35e+02 0.0 1.68 \n", - "4980 400 3.28e+02 9.06e+03 1.58e+04 -3.35e+02 0.0 1.68 \n", - "4990 400 3.28e+02 9.03e+03 1.58e+04 -3.36e+02 0.0 1.68 \n", - "5000 400 3.28e+02 9.04e+03 1.58e+04 -3.36e+02 0.0 1.68 \n" - ] - } - ], - "source": [ - "# Short production run\n", - "mc2 = MonteCarlo(maximum_steps=5000,\n", - " dumping_period=10,\n", - " thermo_period=10,\n", - " neighbor=50,\n", - " displace_mc = displace_mc.magnitude,\n", - " desired_temperature = T.magnitude,\n", - " number_atoms=[N_atom],\n", - " epsilon=[epsilon.magnitude], \n", - " sigma=[sigma.magnitude],\n", - " atom_mass=[m_argon.magnitude],\n", - " box_dimensions=[box_size.magnitude,\n", - " box_size.magnitude,\n", - " box_size.magnitude],\n", - " initial_positions = mc1.atoms_positions*mc1.reference_distance,\n", - " cut_off=cut_off.magnitude,\n", - " data_folder=folder,\n", - " )\n", - "mc2.run()" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.12.3" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/integration_tests/test_monte_carlo_move.py b/integration_tests/test_monte_carlo_move.py index 0dd00f4..abfa96b 100644 --- a/integration_tests/test_monte_carlo_move.py +++ b/integration_tests/test_monte_carlo_move.py @@ -33,7 +33,7 @@ def setUp(self): # Initialize the MonteCarlo object self.mc = MonteCarlo( ureg = ureg, - maximum_steps = 100000, + maximum_steps = 10000, thermo_period = 1000, dumping_period = 1000, number_atoms = [nmb_1], diff --git a/pictures/Minimize/convert_transparent.sh b/pictures/Minimize/convert_transparent.sh deleted file mode 100755 index 45feddb..0000000 --- a/pictures/Minimize/convert_transparent.sh +++ /dev/null @@ -1,18 +0,0 @@ -#!/bin/bash - -export LC_NUMERIC="en_US.UTF-8" -set -e - -# 1) Generate white background movie -for file in _light.*.ppm; -do - convert -resize 50% $file -transparent white ${file:0:12}.png; -done -img2webp -o avatar.webp -q 30 -mixed -d 25 _light*.png - -# 2) Generate black background movie -for file in _dark.*.ppm; -do - convert -resize 50% $file -transparent black ${file:0:11}.png; -done -img2webp -o avatar-dm.webp -q 30 -mixed -d 25 _dark*.png diff --git a/pictures/Minimize/state.vmd b/pictures/Minimize/state.vmd deleted file mode 100644 index f74adf5..0000000 --- a/pictures/Minimize/state.vmd +++ /dev/null @@ -1,562 +0,0 @@ -#!/usr/local/bin/vmd -# VMD script written by save_state $Revision: 1.48 $ -# VMD version: 1.9.4a57 -set viewplist {} -set fixedlist {} -proc vmdrestoremymaterials {} { - set mlist { Opaque Transparent BrushedMetal Diffuse Ghost Glass1 Glass2 Glass3 Glossy HardPlastic MetallicPastel Steel Translucent Edgy EdgyShiny EdgyGlass Goodsell AOShiny AOChalky AOEdgy BlownGlass GlassBubble RTChrome } - set mymlist [material list] - foreach mat $mlist { - if { [lsearch $mymlist $mat] == -1 } { - material add $mat - } - } - material change ambient Opaque 0.000000 - material change diffuse Opaque 0.560000 - material change specular Opaque 0.120000 - material change shininess Opaque 0.290000 - material change mirror Opaque 0.000000 - material change opacity Opaque 1.000000 - material change outline Opaque 0.000000 - material change outlinewidth Opaque 0.000000 - material change transmode Opaque 0.000000 - material change ambient Transparent 0.000000 - material change diffuse Transparent 0.650000 - material change specular Transparent 0.500000 - material change shininess Transparent 0.534020 - material change mirror Transparent 0.000000 - material change opacity Transparent 0.300000 - material change outline Transparent 0.000000 - material change outlinewidth Transparent 0.000000 - material change transmode Transparent 0.000000 - material change ambient BrushedMetal 0.080000 - material change diffuse BrushedMetal 0.390000 - material change specular BrushedMetal 0.340000 - material change shininess BrushedMetal 0.150000 - material change mirror BrushedMetal 0.000000 - material change opacity BrushedMetal 1.000000 - material change outline BrushedMetal 0.000000 - material change outlinewidth BrushedMetal 0.000000 - material change transmode BrushedMetal 0.000000 - material change ambient Diffuse 0.000000 - material change diffuse Diffuse 0.620000 - material change specular Diffuse 0.000000 - material change shininess Diffuse 0.530000 - material change mirror Diffuse 0.000000 - material change opacity Diffuse 1.000000 - material change outline Diffuse 0.000000 - material change outlinewidth Diffuse 0.000000 - material change transmode Diffuse 0.000000 - material change ambient Ghost 0.000000 - material change diffuse Ghost 0.000000 - material change specular Ghost 1.000000 - material change shininess Ghost 0.230000 - material change mirror Ghost 0.000000 - material change opacity Ghost 0.100000 - material change outline Ghost 0.000000 - material change outlinewidth Ghost 0.000000 - material change transmode Ghost 0.000000 - material change ambient Glass1 0.000000 - material change diffuse Glass1 0.500000 - material change specular Glass1 0.650000 - material change shininess Glass1 0.530000 - material change mirror Glass1 0.000000 - material change opacity Glass1 0.150000 - material change outline Glass1 0.000000 - material change outlinewidth Glass1 0.000000 - material change transmode Glass1 0.000000 - material change ambient Glass2 0.520000 - material change diffuse Glass2 0.760000 - material change specular Glass2 0.220000 - material change shininess Glass2 0.590000 - material change mirror Glass2 0.000000 - material change opacity Glass2 0.680000 - material change outline Glass2 0.000000 - material change outlinewidth Glass2 0.000000 - material change transmode Glass2 0.000000 - material change ambient Glass3 0.150000 - material change diffuse Glass3 0.250000 - material change specular Glass3 0.750000 - material change shininess Glass3 0.800000 - material change mirror Glass3 0.000000 - material change opacity Glass3 0.500000 - material change outline Glass3 0.000000 - material change outlinewidth Glass3 0.000000 - material change transmode Glass3 0.000000 - material change ambient Glossy 0.000000 - material change diffuse Glossy 0.650000 - material change specular Glossy 1.000000 - material change shininess Glossy 0.880000 - material change mirror Glossy 0.000000 - material change opacity Glossy 1.000000 - material change outline Glossy 0.000000 - material change outlinewidth Glossy 0.000000 - material change transmode Glossy 0.000000 - material change ambient HardPlastic 0.000000 - material change diffuse HardPlastic 0.560000 - material change specular HardPlastic 0.280000 - material change shininess HardPlastic 0.690000 - material change mirror HardPlastic 0.000000 - material change opacity HardPlastic 1.000000 - material change outline HardPlastic 0.000000 - material change outlinewidth HardPlastic 0.000000 - material change transmode HardPlastic 0.000000 - material change ambient MetallicPastel 0.000000 - material change diffuse MetallicPastel 0.260000 - material change specular MetallicPastel 0.550000 - material change shininess MetallicPastel 0.190000 - material change mirror MetallicPastel 0.000000 - material change opacity MetallicPastel 1.000000 - material change outline MetallicPastel 0.000000 - material change outlinewidth MetallicPastel 0.000000 - material change transmode MetallicPastel 0.000000 - material change ambient Steel 0.250000 - material change diffuse Steel 0.000000 - material change specular Steel 0.380000 - material change shininess Steel 0.320000 - material change mirror Steel 0.000000 - material change opacity Steel 1.000000 - material change outline Steel 0.000000 - material change outlinewidth Steel 0.000000 - material change transmode Steel 0.000000 - material change ambient Translucent 0.000000 - material change diffuse Translucent 0.700000 - material change specular Translucent 0.600000 - material change shininess Translucent 0.300000 - material change mirror Translucent 0.000000 - material change opacity Translucent 0.800000 - material change outline Translucent 0.000000 - material change outlinewidth Translucent 0.000000 - material change transmode Translucent 0.000000 - material change ambient Edgy 0.000000 - material change diffuse Edgy 0.660000 - material change specular Edgy 0.000000 - material change shininess Edgy 0.750000 - material change mirror Edgy 0.000000 - material change opacity Edgy 1.000000 - material change outline Edgy 0.620000 - material change outlinewidth Edgy 0.940000 - material change transmode Edgy 0.000000 - material change ambient EdgyShiny 0.000000 - material change diffuse EdgyShiny 0.660000 - material change specular EdgyShiny 0.960000 - material change shininess EdgyShiny 0.750000 - material change mirror EdgyShiny 0.000000 - material change opacity EdgyShiny 1.000000 - material change outline EdgyShiny 0.760000 - material change outlinewidth EdgyShiny 0.940000 - material change transmode EdgyShiny 0.000000 - material change ambient EdgyGlass 0.000000 - material change diffuse EdgyGlass 0.660000 - material change specular EdgyGlass 0.500000 - material change shininess EdgyGlass 0.750000 - material change mirror EdgyGlass 0.000000 - material change opacity EdgyGlass 0.620000 - material change outline EdgyGlass 0.620000 - material change outlinewidth EdgyGlass 0.940000 - material change transmode EdgyGlass 0.000000 - material change ambient Goodsell 0.520000 - material change diffuse Goodsell 1.000000 - material change specular Goodsell 0.000000 - material change shininess Goodsell 0.000000 - material change mirror Goodsell 0.000000 - material change opacity Goodsell 1.000000 - material change outline Goodsell 4.000000 - material change outlinewidth Goodsell 0.900000 - material change transmode Goodsell 0.000000 - material change ambient AOShiny 0.000000 - material change diffuse AOShiny 0.850000 - material change specular AOShiny 0.200000 - material change shininess AOShiny 0.530000 - material change mirror AOShiny 0.000000 - material change opacity AOShiny 1.000000 - material change outline AOShiny 0.000000 - material change outlinewidth AOShiny 0.000000 - material change transmode AOShiny 0.000000 - material change ambient AOChalky 0.000000 - material change diffuse AOChalky 0.850000 - material change specular AOChalky 0.000000 - material change shininess AOChalky 0.530000 - material change mirror AOChalky 0.000000 - material change opacity AOChalky 1.000000 - material change outline AOChalky 0.000000 - material change outlinewidth AOChalky 0.000000 - material change transmode AOChalky 0.000000 - material change ambient AOEdgy 0.000000 - material change diffuse AOEdgy 0.900000 - material change specular AOEdgy 0.200000 - material change shininess AOEdgy 0.530000 - material change mirror AOEdgy 0.000000 - material change opacity AOEdgy 1.000000 - material change outline AOEdgy 0.620000 - material change outlinewidth AOEdgy 0.930000 - material change transmode AOEdgy 0.000000 - material change ambient BlownGlass 0.040000 - material change diffuse BlownGlass 0.340000 - material change specular BlownGlass 1.000000 - material change shininess BlownGlass 1.000000 - material change mirror BlownGlass 0.000000 - material change opacity BlownGlass 0.100000 - material change outline BlownGlass 0.000000 - material change outlinewidth BlownGlass 0.000000 - material change transmode BlownGlass 1.000000 - material change ambient GlassBubble 0.250000 - material change diffuse GlassBubble 0.340000 - material change specular GlassBubble 1.000000 - material change shininess GlassBubble 1.000000 - material change mirror GlassBubble 0.000000 - material change opacity GlassBubble 0.040000 - material change outline GlassBubble 0.000000 - material change outlinewidth GlassBubble 0.000000 - material change transmode GlassBubble 1.000000 - material change ambient RTChrome 0.000000 - material change diffuse RTChrome 0.650000 - material change specular RTChrome 0.500000 - material change shininess RTChrome 0.530000 - material change mirror RTChrome 0.700000 - material change opacity RTChrome 1.000000 - material change outline RTChrome 0.000000 - material change outlinewidth RTChrome 0.000000 - material change transmode RTChrome 0.000000 -} -vmdrestoremymaterials -# Atom selection macros -atomselect macro at {resname ADE A THY T} -atomselect macro acidic {resname ASP GLU} -atomselect macro cyclic {resname HIS PHE PRO TRP TYR} -atomselect macro acyclic {protein and not cyclic} -atomselect macro aliphatic {resname ALA GLY ILE LEU VAL} -atomselect macro alpha {protein and name CA} -atomselect macro amino protein -atomselect macro aromatic {resname HIS PHE TRP TYR} -atomselect macro basic {resname ARG HIS LYS HSP} -atomselect macro bonded {numbonds > 0} -atomselect macro buried {resname ALA LEU VAL ILE PHE CYS MET TRP} -atomselect macro cg {resname CYT C GUA G} -atomselect macro charged {basic or acidic} -atomselect macro hetero {not (protein or nucleic)} -atomselect macro hydrophobic {resname ALA LEU VAL ILE PRO PHE MET TRP} -atomselect macro small {resname ALA GLY SER} -atomselect macro medium {resname VAL THR ASP ASN PRO CYS ASX PCA HYP} -atomselect macro large {protein and not (small or medium)} -atomselect macro neutral {resname VAL PHE GLN TYR HIS CYS MET TRP ASX GLX PCA HYP} -atomselect macro polar {protein and not hydrophobic} -atomselect macro purine {resname ADE A GUA G} -atomselect macro pyrimidine {resname CYT C THY T URA U} -atomselect macro surface {protein and not buried} -atomselect macro lipid {resname DLPE DMPC DPPC GPC LPPC PALM PC PGCL POPC POPE} -atomselect macro lipids lipid -atomselect macro ion {resname AL BA CA CAL CD CES CLA CL CO CS CU CU1 CUA HG IN IOD K LIT MG MN3 MO3 MO4 MO5 MO6 NA NAW OC7 PB POT PT RB SOD TB TL WO4 YB ZN ZN1 ZN2} -atomselect macro ions ion -atomselect macro sugar {resname AGLC} -atomselect macro solvent {not (protein or sugar or nucleic or lipid)} -atomselect macro glycan {resname NAG BGLN FUC AFUC MAN AMAN BMA BMAN} -atomselect macro carbon {name "C.*" and not ion} -atomselect macro hydrogen {name "[0-9]?H.*"} -atomselect macro nitrogen {name "N.*"} -atomselect macro oxygen {name "O.*"} -atomselect macro sulfur {name "S.*" and not ion} -atomselect macro noh {not hydrogen} -atomselect macro heme {resname HEM HEME} -atomselect macro conformationall {altloc ""} -atomselect macro conformationA {altloc "" or altloc "A"} -atomselect macro conformationB {altloc "" or altloc "B"} -atomselect macro conformationC {altloc "" or altloc "C"} -atomselect macro conformationD {altloc "" or altloc "D"} -atomselect macro conformationE {altloc "" or altloc "E"} -atomselect macro conformationF {altloc "" or altloc "F"} -atomselect macro drude {type DRUD or type LP} -atomselect macro unparametrized beta<1 -atomselect macro addedmolefacture {occupancy 0.8} -atomselect macro qwikmd_protein {(not name QWIKMDDELETE and protein)} -atomselect macro qwikmd_nucleic {(not name QWIKMDDELETE and nucleic)} -atomselect macro qwikmd_glycan {(not name QWIKMDDELETE and glycan)} -atomselect macro qwikmd_lipid {(not name QWIKMDDELETE and lipid)} -atomselect macro qwikmd_hetero {(not name QWIKMDDELETE and hetero and not qwikmd_protein and not qwikmd_lipid and not qwikmd_nucleic and not qwikmd_glycan and not water)} -# Display settings -display eyesep 0.065000 -display focallength 2.000000 -display height 3.500000 -display distance -2.000000 -display projection Orthographic -display nearclip set 0.500000 -display farclip set 10.000000 -display depthcue off -display cuestart 0.500000 -display cueend 10.000000 -display cuestart 0.500000 -display cueend 10.000000 -display cuedensity 0.320000 -display cuemode Exp2 -display shadows off -display ambientocclusion off -display aoambient 0.800000 -display aodirect 0.300000 -display dof off -display dof_fnumber 64.000000 -display dof_focaldist 0.700000 -mol new dump.min.lammpstrj type lammpstrj first 0 last -1 step 1 filebonds 1 autobonds 1 waitfor all -graphics top color 0 -graphics top material 0 -graphics top line {-10.000000 -10.000000 -10.000000} {10.000000 -10.000000 -10.000000} style solid width 4 -graphics top line {-10.000000 -10.000000 -10.000000} {-10.000000 10.000000 -10.000000} style solid width 4 -graphics top line {-10.000000 -10.000000 -10.000000} {-10.000000 -10.000000 10.000000} style solid width 4 -graphics top line {10.000000 -10.000000 -10.000000} {10.000000 -10.000000 10.000000} style solid width 4 -graphics top line {-10.000000 10.000000 -10.000000} {10.000000 10.000000 -10.000000} style solid width 4 -graphics top line {-10.000000 -10.000000 10.000000} {-10.000000 10.000000 10.000000} style solid width 4 -graphics top line {10.000000 -10.000000 -10.000000} {10.000000 10.000000 -10.000000} style solid width 4 -graphics top line {-10.000000 10.000000 -10.000000} {-10.000000 10.000000 10.000000} style solid width 4 -graphics top line {-10.000000 -10.000000 10.000000} {10.000000 -10.000000 10.000000} style solid width 4 -graphics top line {10.000000 10.000000 10.000000} {10.000000 10.000000 -10.000000} style solid width 4 -graphics top line {10.000000 10.000000 10.000000} {10.000000 -10.000000 10.000000} style solid width 4 -graphics top line {10.000000 10.000000 10.000000} {-10.000000 10.000000 10.000000} style solid width 4 -mol delrep 0 top -mol representation VDW 0.900000 42.000000 -mol color Name -mol selection {all} -mol material Opaque -mol addrep top -mol selupdate 0 top 0 -mol colupdate 0 top 0 -mol scaleminmax top 0 0.000000 0.000000 -mol smoothrep top 0 0 -mol drawframes top 0 {now} -mol clipplane center 0 0 top {0.0 0.0 0.0} -mol clipplane color 0 0 top {0.5 0.5 0.5 } -mol clipplane normal 0 0 top {0.0 0.0 1.0} -mol clipplane status 0 0 top {0} -mol clipplane center 1 0 top {0.0 0.0 0.0} -mol clipplane color 1 0 top {0.5 0.5 0.5 } -mol clipplane normal 1 0 top {0.0 0.0 1.0} -mol clipplane status 1 0 top {0} -mol clipplane center 2 0 top {0.0 0.0 0.0} -mol clipplane color 2 0 top {0.5 0.5 0.5 } -mol clipplane normal 2 0 top {0.0 0.0 1.0} -mol clipplane status 2 0 top {0} -mol clipplane center 3 0 top {0.0 0.0 0.0} -mol clipplane color 3 0 top {0.5 0.5 0.5 } -mol clipplane normal 3 0 top {0.0 0.0 1.0} -mol clipplane status 3 0 top {0} -mol clipplane center 4 0 top {0.0 0.0 0.0} -mol clipplane color 4 0 top {0.5 0.5 0.5 } -mol clipplane normal 4 0 top {0.0 0.0 1.0} -mol clipplane status 4 0 top {0} -mol clipplane center 5 0 top {0.0 0.0 0.0} -mol clipplane color 5 0 top {0.5 0.5 0.5 } -mol clipplane normal 5 0 top {0.0 0.0 1.0} -mol clipplane status 5 0 top {0} -mol rename top dump.mc.lammpstrj -set viewpoints([molinfo top]) {{{1 0 0 -0.02154} {0 1 0 -0.331865} {0 0 1 -0.22858} {0 0 0 1}} {{1 0 0 0} {0 1.00583e-07 1 0} {0 -1 1.00583e-07 0} {0 0 0 1}} {{0.0627353 0 0 0} {0 0.0627353 0 0} {0 0 0.0627353 0} {0 0 0 1}} {{1 0 0 0} {0 1 0 0} {0 0 1 0} {0 0 0 1}}} -lappend viewplist [molinfo top] -set topmol [molinfo top] -# done with molecule 0 -foreach v $viewplist { - molinfo $v set {center_matrix rotate_matrix scale_matrix global_matrix} $viewpoints($v) -} -foreach v $fixedlist { - molinfo $v set fixed 1 -} -unset viewplist -unset fixedlist -mol top $topmol -unset topmol -proc vmdrestoremycolors {} { -color scale colors RWB {1.0 0.0 0.0} {1.0 1.0 1.0} {0.0 0.0 1.0} -color scale colors BWR {0.0 0.0 1.0} {1.0 1.0 1.0} {1.0 0.0 0.0} -color scale colors RGryB {1.0 0.0 0.0} {0.5 0.5 0.5} {0.0 0.0 1.0} -color scale colors BGryR {0.0 0.0 1.0} {0.5 0.5 0.5} {1.0 0.0 0.0} -color scale colors RGB {1.0 0.0 0.0} {0.0 1.0 0.0} {0.0 0.0 1.0} -color scale colors BGR {0.0 0.0 1.0} {0.0 1.0 0.0} {1.0 0.0 0.0} -color scale colors RWG {1.0 0.0 0.0} {1.0 1.0 1.0} {0.0 1.0 0.0} -color scale colors GWR {0.0 1.0 0.0} {1.0 1.0 1.0} {1.0 0.0 0.0} -color scale colors GWB {0.0 1.0 0.0} {1.0 1.0 1.0} {0.0 0.0 1.0} -color scale colors BWG {0.0 0.0 1.0} {1.0 1.0 1.0} {0.0 1.0 0.0} -color scale colors BlkW {0.0 0.0 0.0} {0.5 0.5 0.5} {1.0 1.0 1.0} -color scale colors WBlk {1.0 1.0 1.0} {0.5 0.5 0.5} {0.0 0.0 0.0} -color scale colors cividis {0.0 0.0 0.0} {0.0 0.0 0.0} {0.0 0.0 0.0} -color scale colors viridis {0.0 0.0 0.0} {0.0 0.0 0.0} {0.0 0.0 0.0} -color scale colors magma {0.0 0.0 0.0} {0.0 0.0 0.0} {0.0 0.0 0.0} -color scale colors plasma {0.0 0.0 0.0} {0.0 0.0 0.0} {0.0 0.0 0.0} -color scale colors inferno {0.0 0.0 0.0} {0.0 0.0 0.0} {0.0 0.0 0.0} -color scale colors CET_L3 {0.0 0.0 0.0} {0.0 0.0 0.0} {0.0 0.0 0.0} -color scale colors CET_L8 {0.0 0.0 0.0} {0.0 0.0 0.0} {0.0 0.0 0.0} -color scale colors CET_L9 {0.0 0.0 0.0} {0.0 0.0 0.0} {0.0 0.0 0.0} -color scale colors CET_L16 {0.0 0.0 0.0} {0.0 0.0 0.0} {0.0 0.0 0.0} -color scale colors CET_L17 {0.0 0.0 0.0} {0.0 0.0 0.0} {0.0 0.0 0.0} -color scale colors CET_L18 {0.0 0.0 0.0} {0.0 0.0 0.0} {0.0 0.0 0.0} -color scale colors CET_L19 {0.0 0.0 0.0} {0.0 0.0 0.0} {0.0 0.0 0.0} -color scale colors CET_L20 {0.0 0.0 0.0} {0.0 0.0 0.0} {0.0 0.0 0.0} -color scale colors CET_C2 {0.0 0.0 0.0} {0.0 0.0 0.0} {0.0 0.0 0.0} -color scale colors CET_C4 {0.0 0.0 0.0} {0.0 0.0 0.0} {0.0 0.0 0.0} -color scale colors CET_C6 {0.0 0.0 0.0} {0.0 0.0 0.0} {0.0 0.0 0.0} -color scale colors CET_C7 {0.0 0.0 0.0} {0.0 0.0 0.0} {0.0 0.0 0.0} -color scale colors CET_I1 {0.0 0.0 0.0} {0.0 0.0 0.0} {0.0 0.0 0.0} -color scale colors CET_I2 {0.0 0.0 0.0} {0.0 0.0 0.0} {0.0 0.0 0.0} -color scale colors CET_I3 {0.0 0.0 0.0} {0.0 0.0 0.0} {0.0 0.0 0.0} -color scale colors CET_D11 {0.0 0.0 0.0} {0.0 0.0 0.0} {0.0 0.0 0.0} -color scale colors CET_D12 {0.0 0.0 0.0} {0.0 0.0 0.0} {0.0 0.0 0.0} -color scale colors turbo {0.0 0.0 0.0} {0.0 0.0 0.0} {0.0 0.0 0.0} -color scale colors CET_R2 {0.0 0.0 0.0} {0.0 0.0 0.0} {0.0 0.0 0.0} - color scale method RWB - set colorcmds { - {color Display {BackgroundTop} black} - {color Display {BackgroundBot} blue2} - {color Display {FPS} white} - {color Name {LPA} green} - {color Name {LPB} green} - {color Name {1} pink} - {color Type {LP} green} - {color Type {DRUD} pink} - {color Type {1} pink} - {color Element {X} cyan} - {color Element {Ac} ochre} - {color Element {Ag} ochre} - {color Element {Al} ochre} - {color Element {Am} ochre} - {color Element {Ar} ochre} - {color Element {As} ochre} - {color Element {At} ochre} - {color Element {Au} ochre} - {color Element {B} ochre} - {color Element {Ba} ochre} - {color Element {Be} ochre} - {color Element {Bh} ochre} - {color Element {Bi} ochre} - {color Element {Bk} ochre} - {color Element {Br} ochre} - {color Element {Ca} ochre} - {color Element {Cd} ochre} - {color Element {Ce} ochre} - {color Element {Cf} ochre} - {color Element {Cl} ochre} - {color Element {Cm} ochre} - {color Element {Co} ochre} - {color Element {Cr} ochre} - {color Element {Cs} ochre} - {color Element {Cu} ochre} - {color Element {Db} ochre} - {color Element {Ds} ochre} - {color Element {Dy} ochre} - {color Element {Er} ochre} - {color Element {Es} ochre} - {color Element {Eu} ochre} - {color Element {F} ochre} - {color Element {Fe} ochre} - {color Element {Fm} ochre} - {color Element {Fr} ochre} - {color Element {Ga} ochre} - {color Element {Gd} ochre} - {color Element {Ge} ochre} - {color Element {He} ochre} - {color Element {Hf} ochre} - {color Element {Hg} ochre} - {color Element {Ho} ochre} - {color Element {Hs} ochre} - {color Element {I} ochre} - {color Element {In} ochre} - {color Element {Ir} ochre} - {color Element {K} ochre} - {color Element {Kr} ochre} - {color Element {La} ochre} - {color Element {Li} ochre} - {color Element {Lr} ochre} - {color Element {Lu} ochre} - {color Element {Md} ochre} - {color Element {Mg} ochre} - {color Element {Mn} ochre} - {color Element {Mo} ochre} - {color Element {Mt} ochre} - {color Element {Na} ochre} - {color Element {Nb} ochre} - {color Element {Nd} ochre} - {color Element {Ne} ochre} - {color Element {Ni} ochre} - {color Element {No} ochre} - {color Element {Np} ochre} - {color Element {Os} ochre} - {color Element {Pa} ochre} - {color Element {Pb} ochre} - {color Element {Pd} ochre} - {color Element {Pm} ochre} - {color Element {Po} ochre} - {color Element {Pr} ochre} - {color Element {Pt} ochre} - {color Element {Pu} ochre} - {color Element {Ra} ochre} - {color Element {Rb} ochre} - {color Element {Re} ochre} - {color Element {Rf} ochre} - {color Element {Rg} ochre} - {color Element {Rh} ochre} - {color Element {Rn} ochre} - {color Element {Ru} ochre} - {color Element {Sb} ochre} - {color Element {Sc} ochre} - {color Element {Se} ochre} - {color Element {Sg} ochre} - {color Element {Si} ochre} - {color Element {Sm} ochre} - {color Element {Sn} ochre} - {color Element {Sr} ochre} - {color Element {Ta} ochre} - {color Element {Tb} ochre} - {color Element {Tc} ochre} - {color Element {Te} ochre} - {color Element {Th} ochre} - {color Element {Ti} ochre} - {color Element {Tl} ochre} - {color Element {Tm} ochre} - {color Element {U} ochre} - {color Element {V} ochre} - {color Element {W} ochre} - {color Element {Xe} ochre} - {color Element {Y} ochre} - {color Element {Yb} ochre} - {color Element {Zr} ochre} - {color Resname {UNK} silver} - {color Chain {X} blue} - {color Segname {} blue} - {color Conformation {all} blue} - {color Molecule {0} blue} - {color Molecule {dump.mc.lammpstrj} red} - {color Structure {3_10_Helix} blue} - {color Surface {Grasp} gray} - {color Labels {Springs} orange} - {color Stage {Even} gray} - {color Stage {Odd} silver} - } - foreach colcmd $colorcmds { - set val [catch {eval $colcmd}] - } - color change rgb 0 0.47679975628852844 0.4797555208206177 0.5373134613037109 - color change rgb 2 0.3499999940395355 0.3499999940395355 0.3499999940395355 - color change rgb 3 1.0 0.5 0.0 - color change rgb 4 1.0 1.0 0.0 - color change rgb 5 0.5 0.5 0.20000000298023224 - color change rgb 6 0.6000000238418579 0.6000000238418579 0.6000000238418579 - color change rgb 7 0.0 1.0 0.0 - color change rgb 9 0.0 1.100000023841858 1.100000023841858 - color change rgb 11 0.6499999761581421 0.0 0.6499999761581421 - color change rgb 12 0.5 0.8999999761581421 0.4000000059604645 - color change rgb 13 0.8999999761581421 0.4000000059604645 0.699999988079071 - color change rgb 14 0.5 0.30000001192092896 0.0 - color change rgb 15 0.5 0.5 0.75 - color change rgb 17 0.8799999952316284 0.9700000286102295 0.019999999552965164 - color change rgb 18 0.550000011920929 0.8999999761581421 0.019999999552965164 - color change rgb 19 0.0 0.8999999761581421 0.03999999910593033 - color change rgb 20 0.0 0.8999999761581421 0.5 - color change rgb 21 0.0 0.8799999952316284 1.0 - color change rgb 22 0.0 0.7599999904632568 1.0 - color change rgb 23 0.019999999552965164 0.3799999952316284 0.6700000166893005 - color change rgb 24 0.009999999776482582 0.03999999910593033 0.9300000071525574 - color change rgb 25 0.27000001072883606 0.0 0.9800000190734863 - color change rgb 26 0.44999998807907104 0.0 0.8999999761581421 - color change rgb 27 0.8999999761581421 0.0 0.8999999761581421 - color change rgb 28 1.0 0.0 0.6600000262260437 - color change rgb 29 0.9800000190734863 0.0 0.23000000417232513 - color change rgb 30 0.8100000023841858 0.0 0.0 - color change rgb 31 0.8899999856948853 0.3499999940395355 0.0 - color change rgb 32 0.9599999785423279 0.7200000286102295 0.0 -} -vmdrestoremycolors -label textsize 1.0 diff --git a/tests/PARM.lammps b/tests/PARM.lammps deleted file mode 100644 index cc750d7..0000000 --- a/tests/PARM.lammps +++ /dev/null @@ -1,8 +0,0 @@ -# LAMMPS parameter file - -mass 1 1.0 -mass 2 1.0 - -pair_coeff 1 1 0.1 3.0 -pair_coeff 2 2 1.0 6.0 - diff --git a/tests/final.data b/tests/final.data deleted file mode 100644 index b483b00..0000000 --- a/tests/final.data +++ /dev/null @@ -1,1014 +0,0 @@ -# LAMMPS data file - -500 atoms -2 atom types - --1240092.163 1240092.163 xlo xhi --1240092.163 1240092.163 ylo yhi --1240092.163 1240092.163 zlo zhi - -Atoms - -1 1 1 0.000 -435037.392 -260248.033 -885098.641 -2 1 1 0.000 275533.660 -1063181.594 -1208708.201 -3 1 1 0.000 -384878.633 965907.147 261865.227 -4 1 1 0.000 670447.543 1092468.894 576513.195 -5 1 1 0.000 -58941.881 -23327.298 474532.789 -6 1 1 0.000 -1196457.188 533348.912 1171141.361 -7 1 1 0.000 362769.538 -167362.480 -538805.508 -8 1 1 0.000 726362.108 708079.564 -953322.133 -9 1 1 0.000 -543944.360 -625277.462 -869283.882 -10 1 1 0.000 222522.265 758456.017 -258208.008 -11 1 1 0.000 -181914.630 -279070.892 331331.876 -12 1 1 0.000 719175.891 -214895.431 678241.227 -13 1 1 0.000 -882377.908 -505500.132 -710447.163 -14 1 1 0.000 -681969.340 927624.272 -1183065.340 -15 1 1 0.000 927574.805 771197.136 -121147.512 -16 1 1 0.000 -376338.952 -213742.207 -993112.685 -17 1 1 0.000 665456.511 334042.845 54249.578 -18 1 1 0.000 467972.662 -1189303.680 579831.337 -19 1 1 0.000 547556.240 139445.879 440041.996 -20 1 1 0.000 1005783.075 -49430.048 -1076632.452 -21 1 1 0.000 -357108.720 -689162.518 1231539.734 -22 1 1 0.000 729042.542 316046.317 902919.071 -23 1 1 0.000 -98268.848 -1117126.806 310193.832 -24 1 1 0.000 -568995.081 997675.121 -914278.766 -25 1 1 0.000 375239.521 946665.487 130051.637 -26 1 1 0.000 -525765.409 -570377.758 293398.566 -27 1 1 0.000 513413.994 889851.050 -70203.054 -28 1 1 0.000 661138.119 185270.017 -657884.578 -29 1 1 0.000 524328.295 -562096.016 718177.422 -30 1 1 0.000 533608.608 -129585.357 -1202308.183 -31 1 1 0.000 -1234290.329 739424.871 -902283.329 -32 1 1 0.000 654886.899 -953299.452 -224983.541 -33 1 1 0.000 415706.459 348204.506 996527.249 -34 1 1 0.000 -502495.054 61198.891 -775728.982 -35 1 1 0.000 843554.014 -778106.759 -430832.064 -36 1 1 0.000 696876.675 815443.899 490571.142 -37 1 1 0.000 937591.045 -561375.411 199013.655 -38 1 1 0.000 -631909.724 -86478.210 714052.017 -39 1 1 0.000 -813234.079 296460.784 -109481.638 -40 1 1 0.000 -974387.954 463556.185 1147903.323 -41 1 1 0.000 713046.780 -374029.609 -410054.421 -42 1 1 0.000 714487.542 1054355.117 -789262.996 -43 1 1 0.000 911303.592 936688.629 -922297.559 -44 1 1 0.000 69780.454 151729.187 523557.882 -45 1 1 0.000 549188.837 1183714.500 817333.631 -46 1 1 0.000 260588.626 929948.301 89346.575 -47 1 1 0.000 -944790.452 -383539.687 -1229113.940 -48 1 1 0.000 24316.009 -149766.432 -830832.691 -49 1 1 0.000 -538385579.492 -275121331.495 573854644.930 -50 1 1 0.000 635614.743 334697.088 -725442.688 -51 1 1 0.000 -895040.592 -128366.906 -837124.085 -52 1 1 0.000 -1008124.876 925514.927 -175921.853 -53 1 1 0.000 -526972.466 -1175617.777 782118.296 -54 1 1 0.000 963792.491 -454950.221 502701.862 -55 1 1 0.000 -329460.256 -495838.782 -698876.190 -56 1 1 0.000 -1018234.482 532311.892 -417931.831 -57 1 1 0.000 -139340.205 -1164328.178 -609180.821 -58 1 1 0.000 471832.612 365318.187 325025.089 -59 1 1 0.000 -740728.320 -527668.180 595734.336 -60 1 1 0.000 731662.489 -248545.866 1042465.482 -61 1 1 0.000 627862.531 958978.421 971216.590 -62 1 1 0.000 -523052.410 -149575.020 507308.029 -63 1 1 0.000 866520.430 -468161.308 -742167.426 -64 1 1 0.000 489020.114 -1173520.425 259136.371 -65 1 1 0.000 1004910.867 315559.815 53699.497 -66 1 1 0.000 731209.269 532771.781 241227.110 -67 1 1 0.000 -423109.827 -190322.324 -874580.410 -68 1 1 0.000 227976.255 341181.839 -798531.425 -69 1 1 0.000 -1080136.272 922800.372 -380421.901 -70 1 1 0.000 -307643.974 480951.406 578034.943 -71 1 1 0.000 -816919.764 -796095.538 -340442.064 -72 1 1 0.000 671870.742 -975292.369 -598579.508 -73 1 1 0.000 1231360.446 510031.210 -1060021.484 -74 1 1 0.000 949034.496 377609.959 387513.019 -75 1 1 0.000 175495.431 -550609.932 -1174371.947 -76 1 1 0.000 641023.973 -380006.775 945914.751 -77 1 1 0.000 426915.842 168994.871 737151.263 -78 1 1 0.000 -573179.484 935773.015 408104.468 -79 1 1 0.000 1221252.060 -983733.478 -336357.061 -80 1 1 0.000 -129448.879 -1076246.233 520052.067 -81 1 1 0.000 -1154155.991 117793.578 -248985.450 -82 1 1 0.000 -1199904.818 -993754.961 -377219.679 -83 1 1 0.000 375012.201 1220806.721 -759098.788 -84 1 1 0.000 -503611.412 336218.922 -777090.959 -85 1 1 0.000 1110449.256 107560.390 -1231824.371 -86 1 1 0.000 -549440.202 -304086.133 341315.165 -87 1 1 0.000 1238270.872 51596.914 -1234529.654 -88 1 1 0.000 579081.768 250120.130 -754616.823 -89 1 1 0.000 -225185.198 1161142.280 -827802.440 -90 1 1 0.000 -651018.809 -981869.877 -435222.948 -91 1 1 0.000 559512.799 -306674.411 -463489.369 -92 1 1 0.000 -89843.234 481223.100 731376.142 -93 1 1 0.000 335702.613 -157640.633 -854410.522 -94 1 1 0.000 -808352.381 772786.766 1193721.860 -95 1 1 0.000 -1077784.363 1197774.564 975828.350 -96 1 1 0.000 1225958.406 192609.597 -922890.157 -97 1 1 0.000 381315.835 181525.800 -776798.510 -98 1 1 0.000 414353.646 692377.448 681138.545 -99 1 1 0.000 -413334.605 52189.014 926250.476 -100 1 1 0.000 -883028.757 414626.315 812669.709 -101 1 2 0.000 -119684.860 912575.936 415634.006 -102 1 2 0.000 387379.360 132077.223 346828.956 -103 1 2 0.000 1134256.779 -15255.751 -700549.646 -104 1 2 0.000 -702261.973 -1117644.674 962581.503 -105 1 2 0.000 343841.510 184223.105 -861933.105 -106 1 2 0.000 913355.867 -278999.417 558115.758 -107 1 2 0.000 841226.773 587755.101 -1135919.983 -108 1 2 0.000 -1236849.869 -469188.880 674889.328 -109 1 2 0.000 1236695.222 -495260.290 -771303.065 -110 1 2 0.000 -452380.744 -805355.419 176568.306 -111 1 2 0.000 616302.756 -324119.320 -706794.525 -112 1 2 0.000 -660359.900 1175407.584 -502537.079 -113 1 2 0.000 -1095753.058 717184.765 -489913.593 -114 1 2 0.000 -687013.604 -1183057.593 -143663.859 -115 1 2 0.000 1154222.464 1111924.870 -485619.048 -116 1 2 0.000 -695361.962 -583273.138 570375.863 -117 1 2 0.000 1195163.283 532227.518 474856.476 -118 1 2 0.000 -422383.921 -249571.392 1179331.889 -119 1 2 0.000 657192.355 -181945.548 614438.549 -120 1 2 0.000 -561820.814 -1107637.508 68268.712 -121 1 2 0.000 -978501.084 487009.908 -60013.710 -122 1 2 0.000 370541.545 -280417.172 845521.489 -123 1 2 0.000 -778552.850 534462.586 -853599.190 -124 1 2 0.000 -696933.180 -971832.807 1041286.221 -125 1 2 0.000 -773012.033 -1145547.508 914287.073 -126 1 2 0.000 -263678.003 450728.021 -305961.997 -127 1 2 0.000 825686.395 1124520.285 980015.617 -128 1 2 0.000 -1220731.183 -1005730.488 735207.453 -129 1 2 0.000 -614233.359 -690624.908 -397300.254 -130 1 2 0.000 -719438.733 44301.259 192688.378 -131 1 2 0.000 23540.430 -264849.000 196536.904 -132 1 2 0.000 -761507.848 727484.992 768875.751 -133 1 2 0.000 -695806.453 1199604.404 -713583.586 -134 1 2 0.000 -668553.295 992801.450 514850.215 -135 1 2 0.000 402124.536 -663863.113 -1129606.738 -136 1 2 0.000 -507494.734 297323.658 915022.811 -137 1 2 0.000 -218254.641 4789.903 -235557.321 -138 1 2 0.000 727260.552 207118.088 -263320.607 -139 1 2 0.000 -523197.137 -441239.761 -1192501.022 -140 1 2 0.000 358393.800 -415707.054 -918374.046 -141 1 2 0.000 1029155.042 -646112.948 -1059697.493 -142 1 2 0.000 -943929.411 -1122300.641 -262316.824 -143 1 2 0.000 473252.691 431692.109 -611386.172 -144 1 2 0.000 260139.013 -36726.890 -1134708.225 -145 1 2 0.000 907127.176 -785872.661 -302178.430 -146 1 2 0.000 1181549.953 -951988.283 -935666.162 -147 1 2 0.000 2479.321 1007854.159 1236757.220 -148 1 2 0.000 1096404.336 785607.393 831428.330 -149 1 2 0.000 577857.046 303983.691 891163.737 -150 1 2 0.000 752593.277 279490.607 -425905.227 -151 1 2 0.000 250415.050 -1154347.676 1122094.259 -152 1 2 0.000 362477.753 -53320.512 991733.216 -153 1 2 0.000 522471.640 131275.990 913068.209 -154 1 2 0.000 1088739.824 1061770.518 496919.253 -155 1 2 0.000 377291.553 -828057.827 719284.518 -156 1 2 0.000 876763.278 -608036.516 -628245.009 -157 1 2 0.000 -1102765.969 242505.182 226089.854 -158 1 2 0.000 1218855.863 1128457.723 817061.788 -159 1 2 0.000 123343.079 468150.549 932993.687 -160 1 2 0.000 255211.581 -1223243.684 -128604.223 -161 1 2 0.000 4084.247 401704.523 519783.249 -162 1 2 0.000 458894.682 747523.088 -835557.878 -163 1 2 0.000 898480.822 -449842.432 -352377.791 -164 1 2 0.000 -414010.131 -1038361.810 153756.323 -165 1 2 0.000 -920256.216 602454.784 -165941.312 -166 1 2 0.000 -532374.111 -483748.277 -968189.689 -167 1 2 0.000 430351.145 98940.076 451259.136 -168 1 2 0.000 -933128.193 -338201.414 -117971.013 -169 1 2 0.000 -473944.400 95088.649 -1055776.027 -170 1 2 0.000 -1105126.710 523077.124 -1001237.515 -171 1 2 0.000 -437419.839 1096092.439 154030.458 -172 1 2 0.000 860968.828 -669279.106 931907.402 -173 1 2 0.000 -42617.372 223331.287 -647354.635 -174 1 2 0.000 1024116.481 261826.058 -431623.201 -175 1 2 0.000 207069.951 -415763.335 315294.070 -176 1 2 0.000 998141.843 -245811.738 917236.752 -177 1 2 0.000 -1103001.909 -718022.637 -5237.871 -178 1 2 0.000 1232696.347 23342.006 895680.120 -179 1 2 0.000 730704.881 1210944.557 -274561.528 -180 1 2 0.000 -534500.696 925419.929 203902.264 -181 1 2 0.000 1048712.374 87545.746 605806.006 -182 1 2 0.000 -1018203.158 -683382.209 387464.990 -183 1 2 0.000 -1195901.997 535466.171 -347451.976 -184 1 2 0.000 1055580.555 193133.621 1110126.391 -185 1 2 0.000 -957532.940 931713.451 712494.024 -186 1 2 0.000 229736.224 549894.063 1013584.437 -187 1 2 0.000 169472.292 681432.482 843521.640 -188 1 2 0.000 -139249.356 340627.158 -78803.254 -189 1 2 0.000 407326.020 699610.066 117231.383 -190 1 2 0.000 277517.675 -599476.392 931489.404 -191 1 2 0.000 4888.197 974845.112 -851252.563 -192 1 2 0.000 -1228583.988 1122700.806 -293386.131 -193 1 2 0.000 465495.745 1089190.420 -709885.819 -194 1 2 0.000 709610.032 192387.370 -58211.468 -195 1 2 0.000 -1065781.375 837920.885 958854.372 -196 1 2 0.000 -44060.384 -930170.867 278281.702 -197 1 2 0.000 -873649.574 405800.612 -411523.519 -198 1 2 0.000 -121919.149 475717.860 -1143224.054 -199 1 2 0.000 985630.206 161207.509 1189508.130 -200 1 2 0.000 878515.164 -107521.884 -702781.314 -201 1 2 0.000 -604810.971 698114.968 -53245.283 -202 1 2 0.000 -508596.825 -169565.585 277397.595 -203 1 2 0.000 691049.693 676880.238 -992349.002 -204 1 2 0.000 238000.786 256563.673 -119040.127 -205 1 2 0.000 211302.526 1157376.864 -1233770.315 -206 1 2 0.000 -760379.427 1198134.343 -1168442.270 -207 1 2 0.000 -737053.514 191320.463 -785312.344 -208 1 2 0.000 -1148104.652 -425668.554 487503.701 -209 1 2 0.000 391631.057 838107.228 800680.281 -210 1 2 0.000 481261.043 -1204536.141 -954774.303 -211 1 2 0.000 618716.299 200845.638 305662.352 -212 1 2 0.000 986618.211 1201168.304 169602.534 -213 1 2 0.000 -92417.439 827141.242 837106.911 -214 1 2 0.000 -626806.225 806875.488 1144397.650 -215 1 2 0.000 -1023839.928 -519388.682 -86895.624 -216 1 2 0.000 138355.551 408373.665 -1036662.990 -217 1 2 0.000 45727.934 6643.528 -25398.941 -218 1 2 0.000 1035399.569 74439.275 -976561.417 -219 1 2 0.000 274896.284 -114843.246 1124176.069 -220 1 2 0.000 -940304.406 -682128.768 -388554.508 -221 1 2 0.000 -1163214.322 85582.960 -20428.246 -222 1 2 0.000 777159.132 934588.821 55896.024 -223 1 2 0.000 -649683.291 82474.272 476437.618 -224 1 2 0.000 -912740.426 -623191.513 178173.991 -225 1 2 0.000 -386203.046 1123752.620 -183769.391 -226 1 2 0.000 -672615.073 391455.774 -1064802.606 -227 1 2 0.000 411634.159 1149274.739 363202.435 -228 1 2 0.000 -570853.484 -796542.697 -712026.802 -229 1 2 0.000 921483.328 1077609.353 1113042.412 -230 1 2 0.000 -526533.010 656391.196 -813204.691 -231 1 2 0.000 1160807.912 -982410.043 1205048.540 -232 1 2 0.000 312338.139 -251207.168 397236.760 -233 1 2 0.000 -19851.357 642026.650 -808144.341 -234 1 2 0.000 310062.430 -169586.454 -908718.947 -235 1 2 0.000 -841724.535 1052655.091 -659979.395 -236 1 2 0.000 -187222.142 89291.592 447561.964 -237 1 2 0.000 1188542.502 291338.454 1146482.717 -238 1 2 0.000 -756836.559 43780.452 1089108.107 -239 1 2 0.000 -658616.910 -47915.645 450249.938 -240 1 2 0.000 -671885.669 -803831.610 -46916.906 -241 1 2 0.000 -736576.863 -720523.285 -212691.397 -242 1 2 0.000 94542.832 877909.926 1176728.143 -243 1 2 0.000 -322909.033 608558.445 853303.328 -244 1 2 0.000 -760868.653 120056.299 -468.971 -245 1 2 0.000 -1038150.081 -740830.028 115348.215 -246 1 2 0.000 -253027.164 507590.236 -1032650.744 -247 1 2 0.000 893825.946 -584378.173 -306503.517 -248 1 2 0.000 1067336.832 -771692.233 714214.547 -249 1 2 0.000 -176745.945 -963913.292 -330481.486 -250 1 2 0.000 -1131416.779 703959.447 1215934.969 -251 1 2 0.000 508580.515 992523.928 -786528.759 -252 1 2 0.000 -837454.446 -708957.810 359004.451 -253 1 2 0.000 -1168004.704 16117.632 -1062521.274 -254 1 2 0.000 -84440.235 1184119.848 964401.895 -255 1 2 0.000 -1103871.018 -984025.559 -101368.308 -256 1 2 0.000 805830.475 351320.282 -644129.143 -257 1 2 0.000 696446.996 -1144425.329 -731659.861 -258 1 2 0.000 112980.732 -283927.039 1109679.700 -259 1 2 0.000 412466.250 -748299.300 381197.638 -260 1 2 0.000 426267.875 1190389.502 789153.371 -261 1 2 0.000 668583.040 -1106708.462 -1120279.337 -262 1 2 0.000 -231739.344 -821734.278 -1085564.636 -263 1 2 0.000 895921.904 -943018.339 -169871.326 -264 1 2 0.000 532810.247 42260.647 491267.860 -265 1 2 0.000 723986.560 643916.157 -191825.811 -266 1 2 0.000 -1094142.342 729193.450 284582.352 -267 1 2 0.000 -1157083.374 -1223151.312 -724919.296 -268 1 2 0.000 -18612.390 1075970.656 33298.665 -269 1 2 0.000 204147.000 107037.879 -429283.876 -270 1 2 0.000 -1030755.699 -937620.744 737524.907 -271 1 2 0.000 1105337.600 832228.915 1070380.194 -272 1 2 0.000 -917447.970 628862.526 329388.323 -273 1 2 0.000 -1088447.029 643075.234 269847.652 -274 1 2 0.000 -1060446.164 -988863.642 352899.215 -275 1 2 0.000 -537394.754 67293.435 11932.557 -276 1 2 0.000 -1006981.381 -890230.363 348166.237 -277 1 2 0.000 -774399.014 443319.554 -1215472.910 -278 1 2 0.000 1026120.914 774587.449 1153604.045 -279 1 2 0.000 559323.723 -1061018.768 -545782.532 -280 1 2 0.000 1002196.374 -900906.711 -655902.489 -281 1 2 0.000 -540414.753 547472.727 438771.883 -282 1 2 0.000 1048204.055 1003140.975 -1115121.853 -283 1 2 0.000 1006338.169 945546.972 756913.301 -284 1 2 0.000 640859.406 -556055.092 -940179.362 -285 1 2 0.000 -815987.394 -774666.614 1126476.418 -286 1 2 0.000 -365577.841 64938.849 9852.290 -287 1 2 0.000 113113.644 -311889.147 792116.403 -288 1 2 0.000 -774675.186 883932.906 -53961.213 -289 1 2 0.000 -882605.456 885230.473 -650169.246 -290 1 2 0.000 507656.011 -744908.002 982527.084 -291 1 2 0.000 740933.133 -88495.352 -1157328.483 -292 1 2 0.000 -1236012.450 331238.622 747110.943 -293 1 2 0.000 466198.073 -839181.165 -698663.848 -294 1 2 0.000 1012483.145 -1016901.539 -375758.918 -295 1 2 0.000 1043078.710 -615325.696 1149990.197 -296 1 2 0.000 1113928.783 375612.044 -1024152.900 -297 1 2 0.000 111276.514 -543869.936 -521803.690 -298 1 2 0.000 1154082.005 463716.932 -1091278.460 -299 1 2 0.000 310058.010 -888163.952 -588374.330 -300 1 2 0.000 624948.070 -861902.254 -1100081.242 -301 1 2 0.000 -1137591.097 -40502.211 -454675.234 -302 1 2 0.000 49284.814 -48462.476 -240091.506 -303 1 2 0.000 530815.810 391618.407 1107075.943 -304 1 2 0.000 -1102097.428 383391.767 -32042.289 -305 1 2 0.000 878370.222 -419110.772 1123836.095 -306 1 2 0.000 -495862.675 -1238550.408 583537.251 -307 1 2 0.000 -987144.873 -1235577.100 120553.259 -308 1 2 0.000 737785.006 -466897.560 1124487.335 -309 1 2 0.000 -770937.053 951756.940 -16517.577 -310 1 2 0.000 215316.022 301585.874 279403.562 -311 1 2 0.000 986071.897 -582215.876 -29260.054 -312 1 2 0.000 -1226437.680 1216044.738 -677888.005 -313 1 2 0.000 -535542.371 -460722.734 384591.065 -314 1 2 0.000 1012307.080 367824.928 568723.193 -315 1 2 0.000 -1201436.894 1106845.802 -1173215.845 -316 1 2 0.000 -1050476.070 -883499.623 400588.370 -317 1 2 0.000 -717515.634 -669521.556 -963919.114 -318 1 2 0.000 869631.586 -557666.537 497767.132 -319 1 2 0.000 1219901.185 -172821.406 -221614.823 -320 1 2 0.000 -329849.019 66648.518 -699173.549 -321 1 2 0.000 -774505.728 42670.858 -478025.563 -322 1 2 0.000 879804.106 180530.025 -201017.221 -323 1 2 0.000 -932147.748 -770965.408 237118.483 -324 1 2 0.000 645650.600 -521908.076 352597.990 -325 1 2 0.000 73352.255 -581665.176 718712.931 -326 1 2 0.000 -1048701.761 916469.969 -878984.610 -327 1 2 0.000 587335.539 824259.822 665321.293 -328 1 2 0.000 -5236.237 -350895.170 -879970.718 -329 1 2 0.000 295836.844 470487.627 -620992.589 -330 1 2 0.000 -12883.783 -872719.679 1035920.961 -331 1 2 0.000 -1192184.204 1164327.638 -590088.623 -332 1 2 0.000 -514007.730 -116662.822 -1033665.470 -333 1 2 0.000 -1198236.981 -565071.025 -437119.721 -334 1 2 0.000 447795.511 473985.924 -979530.048 -335 1 2 0.000 -469148.437 220990.842 -712535.713 -336 1 2 0.000 436681.967 -822528.472 -117505.793 -337 1 2 0.000 -136930.642 -1019222.740 -258176.013 -338 1 2 0.000 951027.768 971165.668 -187726.391 -339 1 2 0.000 -509797.387 -977683.623 11414.988 -340 1 2 0.000 1231674.487 232503.390 -1152548.732 -341 1 2 0.000 89152.274 -201033.710 790073.680 -342 1 2 0.000 -655120.212 1172895.099 -261440.129 -343 1 2 0.000 -922016.524 -897037.232 576949.938 -344 1 2 0.000 -1058634.683 47244.961 1125652.393 -345 1 2 0.000 1206686.450 -611810.013 -824363.483 -346 1 2 0.000 -282309.587 -121466.216 -1011431.202 -347 1 2 0.000 1040424.894 -411190.178 -964993.899 -348 1 2 0.000 592100.378 482585.442 -70397.041 -349 1 2 0.000 -136022.884 -218587.569 1105351.339 -350 1 2 0.000 597164.733 61505.328 1155169.905 -351 1 2 0.000 652298.308 840018.206 -170444.764 -352 1 2 0.000 -985788.909 -431101.737 326545.803 -353 1 2 0.000 959662.804 -45417.630 1066484.195 -354 1 2 0.000 -1230916.414 53582.584 -836109.767 -355 1 2 0.000 -227636.649 1214663.308 -777666.660 -356 1 2 0.000 -978484.435 430404.952 -203368.348 -357 1 2 0.000 553195.536 1041256.084 570749.677 -358 1 2 0.000 986318.363 1074269.959 -1081767.168 -359 1 2 0.000 536400211.717 274035770.213 -572607951.986 -360 1 2 0.000 -1143447.872 131284.656 460599.903 -361 1 2 0.000 980711.336 -410213.121 -876645.522 -362 1 2 0.000 -1103692.089 -846236.395 15840.893 -363 1 2 0.000 667887.301 928897.139 13949.567 -364 1 2 0.000 741941.455 -755652.240 -836306.000 -365 1 2 0.000 185501.045 1049844.936 498590.142 -366 1 2 0.000 -1044101.452 877348.702 1179989.662 -367 1 2 0.000 731353.561 599235.722 -191229.625 -368 1 2 0.000 -319663.172 -689028.121 -445245.483 -369 1 2 0.000 -111538.116 400481.253 -430228.195 -370 1 2 0.000 1183683.558 206996.827 1024438.653 -371 1 2 0.000 615450.833 1075936.019 -751474.575 -372 1 2 0.000 -824164.435 950706.930 403739.728 -373 1 2 0.000 -401583.277 867746.007 1149070.902 -374 1 2 0.000 751151.174 -1123785.054 -1032775.147 -375 1 2 0.000 -68717.886 -845823.010 -58236.406 -376 1 2 0.000 25947.372 -409701.779 720512.295 -377 1 2 0.000 -278992.626 1063808.021 -123758.740 -378 1 2 0.000 1180076.953 8533.901 894015.174 -379 1 2 0.000 903819.487 -889975.907 1129065.048 -380 1 2 0.000 832648.936 474200.526 723674.445 -381 1 2 0.000 94217.082 452421.625 -594710.413 -382 1 2 0.000 1063975.557 -317789.250 966496.548 -383 1 2 0.000 -567228.366 786212.185 -693102.617 -384 1 2 0.000 1097552.989 109435.747 431180.183 -385 1 2 0.000 572726.171 -665162.139 631127.407 -386 1 2 0.000 -346618.800 -868731.540 651752.553 -387 1 2 0.000 -599968.010 -766180.601 -270098.145 -388 1 2 0.000 10431.547 372001.027 -1232693.852 -389 1 2 0.000 649571.204 759615.576 687354.472 -390 1 2 0.000 515590.398 -912522.095 1152529.649 -391 1 2 0.000 -845624.426 229089.024 -118271.819 -392 1 2 0.000 389726.517 191898.795 908243.913 -393 1 2 0.000 309997.026 692354.129 420720.426 -394 1 2 0.000 -268446.506 -597120.336 -776353.112 -395 1 2 0.000 -309088.183 736481.667 632168.834 -396 1 2 0.000 771438.968 -316205.890 -356030.594 -397 1 2 0.000 -933266.027 -1236667.569 514204.320 -398 1 2 0.000 719458.887 274580.704 -1127001.424 -399 1 2 0.000 -878101.034 622244.858 193505.512 -400 1 2 0.000 21683.460 508370.775 236888.787 -401 1 2 0.000 -869350.318 838150.884 556099.574 -402 1 2 0.000 1191526.122 693086.358 160330.196 -403 1 2 0.000 290281.742 621915.327 716562.457 -404 1 2 0.000 584454.054 814301.335 1022520.886 -405 1 2 0.000 759075.270 -618967.267 1093286.281 -406 1 2 0.000 84510.199 -213988.788 1121993.874 -407 1 2 0.000 402052.411 -913251.106 1187538.654 -408 1 2 0.000 664067.791 754406.089 809364.882 -409 1 2 0.000 813629.464 18521.247 1082030.274 -410 1 2 0.000 -676304.933 1170963.529 371514.951 -411 1 2 0.000 -684607.038 -77849.820 586380.839 -412 1 2 0.000 -688559.731 -812104.194 -475753.006 -413 1 2 0.000 -875859.132 957125.732 608166.570 -414 1 2 0.000 -204751.961 -128530.416 403070.557 -415 1 2 0.000 725289.185 -721291.214 -316182.683 -416 1 2 0.000 795045.042 982886.207 511987.548 -417 1 2 0.000 -364565.905 548247.886 -891195.643 -418 1 2 0.000 -859983.263 1000380.755 -978006.292 -419 1 2 0.000 1159980.681 360679.735 715313.359 -420 1 2 0.000 189885.164 229077.380 990081.065 -421 1 2 0.000 1030566.067 656589.437 -194478.270 -422 1 2 0.000 -427772.364 -728584.670 95301.971 -423 1 2 0.000 -23838.540 -804493.718 567155.265 -424 1 2 0.000 970419.499 935737.038 -438682.131 -425 1 2 0.000 -972399.570 866294.093 52927.687 -426 1 2 0.000 80592.750 747567.858 -1222944.632 -427 1 2 0.000 -184134.881 461086.331 1095305.621 -428 1 2 0.000 -776116.369 121196.700 518170.214 -429 1 2 0.000 1213358.392 592999.241 337712.414 -430 1 2 0.000 -670850.930 -72336.557 816479.452 -431 1 2 0.000 326720.858 -733608.044 614220.237 -432 1 2 0.000 -201780.807 -457724.384 855423.497 -433 1 2 0.000 1098976.213 -817395.047 1133678.925 -434 1 2 0.000 -15131.558 -884176.128 -802108.619 -435 1 2 0.000 1225287.360 301531.154 1027561.255 -436 1 2 0.000 -232192.385 -953026.196 -977507.934 -437 1 2 0.000 -603189.675 480523.539 -1118843.017 -438 1 2 0.000 696197.508 731508.213 -428362.007 -439 1 2 0.000 -574475.408 -53490.951 808664.243 -440 1 2 0.000 -497794.539 -561587.136 -573273.582 -441 1 2 0.000 989021.988 554590.624 -985361.771 -442 1 2 0.000 -90464.299 636125.667 521481.728 -443 1 2 0.000 -189818.169 81402.524 -349052.857 -444 1 2 0.000 -375791.144 1213209.674 -973360.714 -445 1 2 0.000 1123686.161 -370880.440 339514.705 -446 1 2 0.000 679514.499 -1004296.457 -212744.045 -447 1 2 0.000 1158257.138 -937830.279 174663.974 -448 1 2 0.000 -143103.514 -733683.526 786642.491 -449 1 2 0.000 -488415.892 1195843.740 -533030.653 -450 1 2 0.000 728078.942 -579684.525 -34222.079 -451 1 2 0.000 988680.564 -546174.622 -355145.289 -452 1 2 0.000 280851.778 -1060058.859 -519869.594 -453 1 2 0.000 -108996.454 -1208241.073 1005280.560 -454 1 2 0.000 484525.640 -69568.662 -470004.529 -455 1 2 0.000 115140.901 -523874.863 1097168.582 -456 1 2 0.000 639457.813 775623.608 -886032.788 -457 1 2 0.000 947528.662 -538142.396 137196.378 -458 1 2 0.000 728734.932 1065240.972 -1183674.298 -459 1 2 0.000 144172.862 434144.943 970133.157 -460 1 2 0.000 -26739.093 461652.756 423548.691 -461 1 2 0.000 -38639.506 398286.151 -796092.114 -462 1 2 0.000 23384.754 -843857.286 1196882.650 -463 1 2 0.000 699307.920 1093458.726 949532.606 -464 1 2 0.000 728450.269 352319.699 -408740.082 -465 1 2 0.000 1181806.135 -1016180.482 268959.742 -466 1 2 0.000 805104.438 1059189.516 1062138.444 -467 1 2 0.000 88106.656 -486872.456 -800281.259 -468 1 2 0.000 -974751.085 -176501.577 1212870.764 -469 1 2 0.000 -1143989.486 -124024.562 -1138217.689 -470 1 2 0.000 1092492.935 -604864.538 1147113.720 -471 1 2 0.000 621137.592 849203.893 782928.255 -472 1 2 0.000 -335513.200 343379.218 1102334.475 -473 1 2 0.000 1125812.617 507205.655 196430.028 -474 1 2 0.000 -895290.916 640010.506 650193.852 -475 1 2 0.000 560871.329 1018563.649 -1080187.545 -476 1 2 0.000 284428.396 202348.244 -735037.276 -477 1 2 0.000 627668.038 -1190873.409 -897765.862 -478 1 2 0.000 968737.374 1080147.797 -10660.721 -479 1 2 0.000 300323.986 72516.367 331377.894 -480 1 2 0.000 -1143818.316 346175.906 -379587.745 -481 1 2 0.000 -953576.601 1215882.131 -238979.299 -482 1 2 0.000 289140.924 -444465.904 -297502.397 -483 1 2 0.000 246084.882 339108.532 624363.426 -484 1 2 0.000 -1125215.122 950446.776 625976.023 -485 1 2 0.000 304528.197 -228605.108 -277693.191 -486 1 2 0.000 795932.601 1038564.312 1172335.512 -487 1 2 0.000 1062306.450 215722.948 -7644.202 -488 1 2 0.000 1064456.857 192371.902 -787007.973 -489 1 2 0.000 1187568.003 952842.413 -984627.511 -490 1 2 0.000 686991.831 1045618.520 -1062432.626 -491 1 2 0.000 105030.523 105454.943 355280.596 -492 1 2 0.000 -765409.180 980117.396 -999908.531 -493 1 2 0.000 1150035.372 -370913.416 937457.095 -494 1 2 0.000 1081707.385 588781.572 -424362.085 -495 1 2 0.000 299741.933 -1103623.160 -40604.745 -496 1 2 0.000 -377970.284 -713592.091 305385.554 -497 1 2 0.000 -159155.553 -296403.069 1067359.557 -498 1 2 0.000 803129.557 154091.866 93824.254 -499 1 2 0.000 -763550.350 243396.575 404576.328 -500 1 2 0.000 -347540.709 1070690.173 -187432.504 - -Velocities - -1 -0.002 0.011 -0.001 -2 0.015 0.014 0.003 -3 0.008 0.001 -0.006 -4 0.008 -0.001 0.009 -5 -0.004 0.004 0.000 -6 -0.006 -0.009 -0.002 -7 -0.001 0.007 0.009 -8 0.002 -0.005 0.010 -9 0.002 0.009 0.002 -10 -0.007 0.002 -0.001 -11 0.015 0.004 0.002 -12 0.010 -0.006 0.001 -13 0.004 0.000 -0.000 -14 -0.001 -0.004 0.005 -15 0.004 0.009 -0.001 -16 0.008 -0.002 -0.002 -17 0.008 -0.002 -0.010 -18 0.016 0.008 -0.005 -19 0.010 0.004 -0.004 -20 0.000 -0.009 0.005 -21 0.002 0.007 0.008 -22 0.007 -0.007 0.000 -23 -0.004 0.010 0.010 -24 0.022 -0.003 0.008 -25 -0.006 0.005 -0.001 -26 -0.001 0.005 -0.001 -27 0.002 0.002 0.003 -28 0.004 -0.010 -0.006 -29 0.009 -0.021 0.025 -30 -0.017 0.009 -0.008 -31 0.014 0.004 0.004 -32 -0.006 -0.000 -0.008 -33 0.006 0.006 -0.010 -34 -0.013 -0.011 -0.021 -35 -0.001 0.031 0.003 -36 0.000 0.018 0.003 -37 0.007 0.007 0.003 -38 0.003 0.001 0.001 -39 -0.007 0.006 0.013 -40 0.006 0.005 0.001 -41 0.000 0.007 -0.001 -42 -0.008 -0.013 -0.008 -43 0.000 0.008 -0.002 -44 0.002 0.008 0.005 -45 0.003 0.015 -0.006 -46 -0.005 -0.000 0.003 -47 0.008 0.008 -0.009 -48 0.012 0.007 0.001 -49 -108291.392 -55574.313 115480.105 -50 -0.004 0.010 0.003 -51 -0.005 0.001 -0.006 -52 -0.005 0.004 0.005 -53 -0.017 0.009 -0.013 -54 0.011 -0.010 -0.001 -55 0.005 0.014 -0.023 -56 0.006 0.012 -0.013 -57 0.011 0.004 -0.002 -58 -0.003 0.007 0.014 -59 0.002 0.000 -0.004 -60 -0.010 0.010 0.014 -61 0.008 -0.004 -0.010 -62 -0.000 0.019 -0.003 -63 0.008 0.004 0.000 -64 0.002 0.001 -0.007 -65 -0.000 0.008 -0.002 -66 -0.009 0.002 -0.001 -67 0.003 0.002 -0.018 -68 -0.008 0.008 0.004 -69 -0.006 -0.009 -0.002 -70 -0.019 0.007 0.001 -71 0.002 0.001 0.003 -72 0.010 0.016 -0.002 -73 0.003 0.003 -0.020 -74 -0.006 0.006 -0.004 -75 -0.001 0.009 0.002 -76 -0.006 0.005 -0.004 -77 0.011 0.017 -0.011 -78 -0.004 0.014 -0.011 -79 0.002 0.002 0.010 -80 0.002 -0.017 0.018 -81 0.010 0.002 -0.002 -82 -0.006 -0.008 -0.002 -83 0.004 -0.011 -0.012 -84 -0.007 0.012 -0.009 -85 0.010 -0.001 0.009 -86 0.003 -0.001 0.015 -87 -0.003 0.018 -0.004 -88 -0.005 -0.002 0.012 -89 -0.006 -0.004 0.004 -90 -0.002 -0.025 0.001 -91 0.004 0.015 0.004 -92 -0.000 0.004 0.018 -93 0.011 -0.016 0.001 -94 -0.022 0.012 -0.014 -95 0.008 0.002 -0.005 -96 0.001 0.000 -0.004 -97 -0.017 0.002 0.001 -98 -0.002 -0.013 0.021 -99 -0.011 -0.010 -0.004 -100 0.003 0.013 -0.014 -101 -0.007 0.014 0.013 -102 0.023 0.003 0.034 -103 0.007 -0.004 -0.003 -104 -0.000 -0.002 -0.016 -105 -0.006 0.003 -0.019 -106 -0.022 0.007 0.002 -107 -0.016 -0.001 -0.009 -108 0.012 0.003 -0.011 -109 0.002 -0.001 0.003 -110 -0.010 -0.006 -0.003 -111 0.005 0.002 -0.009 -112 -0.011 0.020 -0.005 -113 0.001 -0.012 0.004 -114 0.018 0.008 -0.012 -115 0.027 -0.002 -0.010 -116 -0.009 -0.008 -0.003 -117 -0.004 -0.010 0.004 -118 -0.003 0.011 0.020 -119 0.003 -0.007 0.011 -120 -0.003 0.009 -0.011 -121 -0.006 0.007 -0.005 -122 -0.005 -0.003 -0.004 -123 0.007 0.003 -0.003 -124 0.000 0.022 -0.009 -125 -0.005 -0.000 0.009 -126 0.003 0.006 -0.003 -127 0.014 -0.009 -0.005 -128 0.013 0.016 0.007 -129 0.003 0.008 -0.016 -130 0.003 0.000 0.003 -131 0.005 0.005 0.014 -132 -0.014 0.010 -0.003 -133 0.002 -0.019 0.020 -134 0.012 0.002 -0.014 -135 0.003 0.003 0.003 -136 0.007 -0.001 0.004 -137 0.006 0.008 -0.002 -138 -0.004 -0.000 -0.006 -139 0.010 0.009 0.015 -140 0.000 -0.004 0.001 -141 0.014 -0.001 0.007 -142 0.003 0.003 0.007 -143 0.013 -0.004 0.004 -144 0.020 -0.011 0.002 -145 -0.008 -0.004 -0.013 -146 -0.010 -0.002 -0.009 -147 0.012 0.008 -0.008 -148 -0.005 -0.013 0.004 -149 -0.014 -0.007 0.010 -150 0.001 -0.004 -0.004 -151 0.016 -0.001 0.013 -152 -0.007 0.001 0.015 -153 -0.007 -0.007 0.007 -154 0.008 -0.006 0.010 -155 -0.007 -0.015 -0.014 -156 -0.002 -0.005 0.012 -157 -0.007 0.005 -0.003 -158 0.014 0.006 -0.005 -159 0.020 -0.005 0.007 -160 0.004 0.005 -0.010 -161 -0.021 -0.001 -0.013 -162 -0.015 -0.010 -0.002 -163 -0.009 -0.020 -0.015 -164 0.006 -0.010 -0.011 -165 -0.011 0.002 -0.004 -166 0.013 0.013 0.006 -167 0.004 0.009 0.008 -168 -0.002 -0.018 -0.002 -169 -0.001 -0.001 -0.013 -170 -0.017 0.007 -0.009 -171 -0.002 0.006 -0.001 -172 -0.011 0.004 0.010 -173 0.001 -0.004 0.007 -174 -0.016 0.009 -0.012 -175 -0.010 0.000 0.002 -176 -0.003 -0.001 -0.009 -177 -0.001 -0.003 0.002 -178 0.003 -0.014 -0.007 -179 -0.009 0.000 0.001 -180 -0.002 0.012 0.011 -181 0.006 -0.002 0.002 -182 -0.009 0.010 0.003 -183 -0.015 -0.006 0.004 -184 0.015 -0.004 -0.007 -185 0.002 0.014 0.007 -186 -0.016 0.005 -0.008 -187 -0.003 -0.018 -0.008 -188 -0.004 0.002 -0.013 -189 -0.018 -0.011 0.003 -190 -0.002 0.001 0.008 -191 -0.006 -0.004 0.013 -192 0.021 -0.016 -0.005 -193 0.015 -0.001 -0.009 -194 -0.007 -0.006 -0.007 -195 -0.005 -0.019 -0.005 -196 -0.001 -0.009 -0.005 -197 -0.008 -0.011 0.013 -198 -0.011 -0.006 0.020 -199 0.008 0.009 0.010 -200 -0.004 0.008 0.002 -201 -0.004 -0.004 -0.016 -202 -0.007 0.001 -0.001 -203 0.011 0.002 0.014 -204 -0.006 -0.010 -0.007 -205 -0.011 -0.011 -0.008 -206 0.005 -0.004 -0.004 -207 -0.011 -0.009 -0.005 -208 -0.013 -0.026 0.003 -209 -0.008 0.006 -0.009 -210 -0.014 -0.001 0.007 -211 0.007 0.003 0.004 -212 0.001 -0.009 -0.005 -213 -0.016 0.004 -0.008 -214 -0.002 0.013 0.006 -215 0.012 0.012 -0.016 -216 -0.010 0.012 -0.005 -217 -0.010 -0.004 -0.004 -218 0.006 0.007 -0.005 -219 -0.003 0.004 0.006 -220 0.002 0.014 -0.001 -221 -0.001 0.004 0.002 -222 -0.012 -0.027 0.002 -223 -0.008 0.002 -0.000 -224 0.000 -0.000 0.002 -225 0.014 0.012 0.004 -226 0.003 0.018 0.010 -227 0.007 -0.008 0.019 -228 -0.006 -0.000 0.000 -229 -0.003 0.004 -0.003 -230 0.001 0.025 -0.001 -231 0.011 0.008 0.004 -232 -0.001 -0.005 -0.003 -233 -0.002 0.012 -0.013 -234 -0.012 -0.011 0.008 -235 -0.016 -0.007 -0.024 -236 -0.017 0.010 -0.005 -237 0.005 -0.003 0.000 -238 0.009 -0.021 0.013 -239 0.002 0.020 -0.004 -240 0.000 0.001 0.010 -241 -0.012 0.005 -0.005 -242 -0.008 0.009 -0.007 -243 0.004 -0.003 0.014 -244 0.010 -0.007 0.012 -245 -0.018 0.009 0.009 -246 -0.006 0.005 0.007 -247 0.016 0.005 -0.012 -248 -0.004 -0.010 0.006 -249 -0.002 -0.004 0.011 -250 -0.012 -0.003 0.006 -251 0.018 0.003 0.001 -252 -0.003 -0.011 0.001 -253 -0.004 -0.005 -0.002 -254 -0.019 0.004 0.005 -255 0.003 -0.002 0.001 -256 -0.007 -0.012 -0.017 -257 -0.012 0.002 -0.011 -258 -0.008 0.007 0.002 -259 0.006 -0.005 0.007 -260 -0.012 -0.006 0.011 -261 0.000 -0.002 -0.012 -262 0.000 -0.010 0.007 -263 0.016 -0.006 0.004 -264 -0.013 -0.013 0.004 -265 -0.006 -0.020 0.006 -266 -0.004 -0.004 0.004 -267 -0.008 -0.010 0.015 -268 0.012 0.011 -0.017 -269 0.005 -0.008 -0.004 -270 -0.010 -0.008 -0.006 -271 0.002 -0.007 0.003 -272 0.014 0.012 0.015 -273 -0.007 -0.008 0.012 -274 -0.001 -0.002 0.011 -275 0.004 0.007 -0.009 -276 0.003 -0.001 0.011 -277 0.014 -0.008 -0.017 -278 -0.009 -0.001 -0.008 -279 0.008 -0.014 0.014 -280 -0.002 0.011 -0.008 -281 -0.005 -0.017 0.012 -282 0.007 0.003 -0.007 -283 -0.005 0.005 0.001 -284 -0.011 0.008 0.016 -285 -0.000 -0.003 0.003 -286 0.001 -0.010 0.010 -287 0.004 -0.001 0.006 -288 -0.004 -0.017 -0.006 -289 -0.003 0.000 0.003 -290 0.010 -0.027 0.003 -291 0.001 -0.002 0.011 -292 0.002 -0.005 -0.002 -293 -0.008 0.006 0.006 -294 0.013 -0.004 -0.002 -295 -0.000 0.011 -0.008 -296 -0.003 -0.011 0.002 -297 0.007 0.006 -0.005 -298 -0.013 -0.001 -0.000 -299 -0.012 0.002 -0.009 -300 -0.012 -0.017 -0.002 -301 -0.009 0.006 -0.010 -302 -0.002 0.009 -0.001 -303 -0.018 0.000 0.008 -304 -0.012 -0.019 0.006 -305 -0.005 -0.003 -0.008 -306 0.003 0.003 0.003 -307 0.017 0.013 -0.004 -308 -0.001 -0.002 0.001 -309 0.004 0.005 0.011 -310 0.010 -0.004 0.006 -311 0.000 0.000 0.021 -312 0.004 -0.005 0.003 -313 -0.019 -0.009 0.014 -314 -0.016 0.001 0.005 -315 0.004 -0.010 0.010 -316 0.002 0.015 0.010 -317 -0.004 0.002 -0.004 -318 0.020 0.001 0.001 -319 -0.014 0.001 0.004 -320 0.005 0.014 -0.007 -321 0.005 0.004 -0.009 -322 -0.002 0.011 -0.003 -323 -0.006 -0.016 0.005 -324 0.008 -0.009 0.001 -325 0.010 -0.021 -0.006 -326 -0.021 -0.011 0.001 -327 -0.011 -0.002 0.006 -328 -0.004 0.012 0.001 -329 0.014 0.006 0.004 -330 0.001 0.000 0.014 -331 -0.010 0.003 -0.012 -332 0.005 -0.008 -0.001 -333 0.000 -0.001 -0.007 -334 -0.001 -0.010 0.012 -335 0.003 -0.008 0.014 -336 0.006 -0.010 -0.009 -337 -0.001 -0.004 0.008 -338 -0.011 0.012 -0.001 -339 0.018 0.008 -0.005 -340 0.003 0.010 0.009 -341 0.004 -0.012 0.002 -342 -0.017 0.000 0.015 -343 -0.004 0.001 0.012 -344 -0.007 0.006 0.005 -345 -0.006 0.003 -0.009 -346 0.004 -0.005 0.014 -347 -0.004 0.003 0.008 -348 0.016 0.002 0.004 -349 0.005 0.009 -0.007 -350 0.005 -0.006 0.005 -351 0.008 0.003 -0.012 -352 -0.016 0.011 -0.005 -353 0.004 0.010 0.000 -354 0.007 -0.000 0.010 -355 -0.022 0.004 -0.015 -356 0.009 0.022 0.006 -357 -0.001 0.008 0.004 -358 -0.016 -0.004 0.000 -359 108291.396 55574.317 -115480.101 -360 0.000 0.004 -0.020 -361 0.006 -0.000 -0.003 -362 -0.000 0.000 0.009 -363 0.000 0.001 0.003 -364 0.002 -0.009 -0.001 -365 -0.009 0.002 0.001 -366 -0.010 -0.006 -0.006 -367 -0.002 -0.001 -0.006 -368 -0.003 0.003 -0.001 -369 0.001 0.008 0.001 -370 0.009 0.009 0.002 -371 0.005 0.004 0.012 -372 -0.004 0.009 -0.014 -373 0.015 0.004 0.011 -374 0.008 0.010 -0.009 -375 -0.008 -0.002 -0.006 -376 -0.002 -0.007 -0.004 -377 0.012 0.003 0.004 -378 -0.002 0.001 -0.006 -379 -0.006 -0.013 0.007 -380 -0.011 -0.004 0.007 -381 0.003 -0.012 -0.005 -382 -0.005 0.001 0.001 -383 -0.004 0.001 0.005 -384 -0.016 -0.007 0.004 -385 -0.006 -0.006 0.013 -386 -0.001 0.002 0.013 -387 0.013 0.005 0.004 -388 0.007 0.002 -0.015 -389 0.020 0.004 -0.014 -390 0.003 -0.008 -0.005 -391 0.011 -0.011 -0.020 -392 0.017 -0.012 -0.002 -393 0.006 -0.003 0.014 -394 0.005 0.006 0.000 -395 -0.012 -0.004 0.004 -396 -0.020 -0.004 0.007 -397 -0.004 0.013 -0.003 -398 -0.001 -0.015 0.001 -399 -0.004 0.005 0.004 -400 0.009 -0.012 0.009 -401 0.006 0.001 -0.006 -402 -0.010 -0.004 -0.009 -403 -0.008 -0.007 0.012 -404 0.000 0.005 0.001 -405 -0.005 0.013 -0.008 -406 -0.023 -0.008 -0.013 -407 0.011 0.009 -0.015 -408 0.005 0.007 0.007 -409 0.000 -0.001 0.006 -410 0.003 0.007 -0.003 -411 -0.003 0.016 0.012 -412 -0.006 -0.005 -0.012 -413 0.014 -0.010 -0.001 -414 0.001 -0.006 -0.010 -415 -0.007 0.015 -0.002 -416 0.012 -0.016 -0.002 -417 0.015 0.005 0.011 -418 0.002 0.002 -0.017 -419 0.002 0.006 -0.016 -420 0.004 0.007 -0.026 -421 -0.003 -0.016 -0.004 -422 -0.002 -0.000 0.021 -423 0.004 -0.013 0.004 -424 0.002 -0.014 0.007 -425 -0.002 0.001 0.008 -426 -0.013 -0.018 -0.001 -427 0.012 0.008 0.026 -428 0.007 0.007 0.009 -429 0.014 0.009 -0.011 -430 0.006 0.009 -0.002 -431 0.002 0.012 0.011 -432 -0.004 0.001 0.002 -433 -0.001 0.008 -0.006 -434 0.004 -0.003 -0.008 -435 -0.006 -0.015 -0.013 -436 -0.019 0.014 -0.003 -437 0.005 0.001 0.002 -438 0.001 0.000 -0.006 -439 0.000 0.000 -0.001 -440 -0.004 0.007 -0.005 -441 -0.006 -0.007 0.008 -442 0.002 -0.009 0.002 -443 -0.005 0.002 0.014 -444 -0.002 -0.004 0.007 -445 0.000 -0.005 -0.009 -446 0.019 0.009 -0.001 -447 0.010 0.004 -0.002 -448 0.005 0.002 -0.010 -449 -0.003 -0.008 0.004 -450 0.006 0.013 -0.007 -451 -0.009 -0.009 -0.009 -452 0.026 -0.008 0.010 -453 -0.007 -0.011 -0.012 -454 -0.012 -0.009 0.007 -455 -0.012 0.016 -0.001 -456 -0.002 -0.005 -0.009 -457 -0.008 0.009 0.012 -458 -0.006 0.002 -0.000 -459 -0.006 -0.004 -0.011 -460 -0.016 -0.002 -0.009 -461 -0.007 0.004 -0.003 -462 -0.002 -0.008 0.004 -463 0.008 -0.009 0.012 -464 0.004 -0.019 0.008 -465 0.002 -0.000 -0.006 -466 0.002 0.008 0.003 -467 0.006 -0.010 0.003 -468 -0.011 0.001 0.028 -469 0.002 -0.002 -0.006 -470 0.012 0.002 -0.018 -471 0.009 0.003 -0.014 -472 -0.008 -0.018 -0.003 -473 -0.013 0.003 0.009 -474 -0.003 0.005 -0.019 -475 0.001 -0.000 0.008 -476 -0.007 -0.011 -0.005 -477 -0.013 -0.005 0.001 -478 -0.008 0.010 -0.001 -479 -0.001 -0.017 -0.008 -480 -0.006 -0.013 -0.003 -481 0.012 -0.003 -0.018 -482 0.002 -0.004 -0.005 -483 -0.004 0.002 -0.007 -484 0.006 0.004 -0.004 -485 0.011 0.021 -0.004 -486 0.004 0.002 -0.002 -487 0.004 0.011 0.005 -488 0.007 0.010 -0.009 -489 -0.016 -0.006 0.004 -490 -0.008 0.011 -0.005 -491 0.014 -0.001 -0.006 -492 -0.006 -0.015 0.003 -493 0.000 0.015 0.009 -494 -0.003 -0.008 -0.007 -495 0.010 0.000 -0.007 -496 0.010 0.011 0.012 -497 0.010 0.001 0.002 -498 -0.009 0.001 0.015 -499 0.001 0.006 0.011 -500 -0.003 0.011 0.006 diff --git a/tests/initial.data b/tests/initial.data deleted file mode 100644 index 7a63ae9..0000000 --- a/tests/initial.data +++ /dev/null @@ -1,1014 +0,0 @@ -# LAMMPS data file - -500 atoms -2 atom types - --250.000 250.000 xlo xhi --250.000 250.000 ylo yhi --250.000 250.000 zlo zhi - -Atoms - -1 1 1 0.000 -87.701 -52.476 -178.433 -2 1 1 0.000 55.532 -214.349 -243.676 -3 1 1 0.000 -77.598 194.724 52.797 -4 1 1 0.000 135.153 220.240 116.215 -5 1 1 0.000 -11.879 -4.707 95.665 -6 1 1 0.000 -241.197 107.531 236.102 -7 1 1 0.000 73.135 -33.747 -108.631 -8 1 1 0.000 146.431 142.752 -192.198 -9 1 1 0.000 -109.660 -126.064 -175.248 -10 1 1 0.000 44.867 152.901 -52.053 -11 1 1 0.000 -36.689 -56.264 66.793 -12 1 1 0.000 144.974 -43.316 136.731 -13 1 1 0.000 -177.890 -101.908 -143.224 -14 1 1 0.000 -137.482 187.011 -238.508 -15 1 1 0.000 186.993 155.463 -24.422 -16 1 1 0.000 -75.877 -43.088 -200.207 -17 1 1 0.000 134.147 67.345 10.946 -18 1 1 0.000 94.327 -239.769 116.898 -19 1 1 0.000 110.376 28.108 88.716 -20 1 1 0.000 202.763 -9.955 -217.052 -21 1 1 0.000 -71.994 -138.941 248.268 -22 1 1 0.000 146.967 63.721 182.026 -23 1 1 0.000 -19.807 -225.220 62.524 -24 1 1 0.000 -114.730 201.132 -184.325 -25 1 1 0.000 75.654 190.841 26.219 -26 1 1 0.000 -105.992 -114.992 59.149 -27 1 1 0.000 103.501 179.390 -14.156 -28 1 1 0.000 133.280 37.360 -132.623 -29 1 1 0.000 105.694 -113.296 144.757 -30 1 1 0.000 107.591 -26.133 -242.375 -31 1 1 0.000 -248.845 149.062 -181.903 -32 1 1 0.000 132.029 -192.183 -45.348 -33 1 1 0.000 83.800 70.191 200.908 -34 1 1 0.000 -101.289 12.349 -156.365 -35 1 1 0.000 170.060 -156.896 -86.858 -36 1 1 0.000 140.489 164.374 98.895 -37 1 1 0.000 189.010 -113.179 40.118 -38 1 1 0.000 -127.394 -17.435 143.950 -39 1 1 0.000 -163.939 59.760 -22.084 -40 1 1 0.000 -196.441 93.447 231.414 -41 1 1 0.000 143.749 -75.411 -82.665 -42 1 1 0.000 144.047 212.569 -159.106 -43 1 1 0.000 183.717 188.827 -185.932 -44 1 1 0.000 14.066 30.580 105.543 -45 1 1 0.000 110.712 238.620 164.779 -46 1 1 0.000 52.539 187.476 18.009 -47 1 1 0.000 -190.475 -77.329 -247.777 -48 1 1 0.000 4.890 -30.200 -167.495 -49 1 1 0.000 -200.440 -109.588 126.000 -50 1 1 0.000 128.143 67.464 -146.250 -51 1 1 0.000 -180.434 -25.880 -168.757 -52 1 1 0.000 -203.230 186.578 -35.471 -53 1 1 0.000 -106.219 -237.011 157.686 -54 1 1 0.000 194.288 -91.707 101.345 -55 1 1 0.000 -66.424 -99.974 -140.868 -56 1 1 0.000 -205.280 107.301 -84.241 -57 1 1 0.000 -28.102 -234.731 -122.807 -58 1 1 0.000 95.124 73.641 65.510 -59 1 1 0.000 -149.331 -106.377 120.103 -60 1 1 0.000 147.512 -50.116 210.145 -61 1 1 0.000 126.568 193.332 195.805 -62 1 1 0.000 -105.446 -30.173 102.275 -63 1 1 0.000 174.681 -94.384 -149.620 -64 1 1 0.000 98.583 -236.581 52.248 -65 1 1 0.000 202.588 63.608 10.828 -66 1 1 0.000 147.420 107.403 48.632 -67 1 1 0.000 -85.301 -38.370 -176.295 -68 1 1 0.000 45.967 68.774 -160.986 -69 1 1 0.000 -217.747 186.044 -76.690 -70 1 1 0.000 -62.001 96.952 116.530 -71 1 1 0.000 -164.691 -160.492 -68.635 -72 1 1 0.000 135.437 -196.633 -120.670 -73 1 1 0.000 248.237 102.818 -213.678 -74 1 1 0.000 191.329 76.119 78.126 -75 1 1 0.000 35.381 -111.011 -236.753 -76 1 1 0.000 129.235 -76.614 190.699 -77 1 1 0.000 86.054 34.052 148.620 -78 1 1 0.000 -115.548 188.636 82.284 -79 1 1 0.000 246.199 -198.321 -67.818 -80 1 1 0.000 -26.098 -216.952 104.823 -81 1 1 0.000 -232.686 23.744 -50.193 -82 1 1 0.000 -241.892 -200.331 -76.045 -83 1 1 0.000 75.598 246.123 -153.020 -84 1 1 0.000 -101.520 67.769 -156.651 -85 1 1 0.000 223.854 21.685 -248.342 -86 1 1 0.000 -110.769 -61.302 68.794 -87 1 1 0.000 249.636 10.384 -248.875 -88 1 1 0.000 116.746 50.426 -152.141 -89 1 1 0.000 -45.391 234.088 -166.887 -90 1 1 0.000 -131.242 -197.918 -87.741 -91 1 1 0.000 112.792 -61.840 -93.443 -92 1 1 0.000 -18.112 97.010 147.426 -93 1 1 0.000 67.666 -31.764 -172.248 -94 1 1 0.000 -162.940 155.780 240.666 -95 1 1 0.000 -217.287 241.467 196.730 -96 1 1 0.000 247.150 38.829 -186.049 -97 1 1 0.000 76.889 36.593 -156.602 -98 1 1 0.000 83.535 139.595 137.295 -99 1 1 0.000 -83.316 10.532 186.734 -100 1 1 0.000 -178.020 83.574 163.846 -101 1 2 0.000 -24.121 183.959 83.778 -102 1 2 0.000 78.072 26.624 69.886 -103 1 2 0.000 228.657 -3.071 -141.226 -104 1 2 0.000 -141.574 -225.312 194.070 -105 1 2 0.000 69.323 37.136 -173.745 -106 1 2 0.000 184.152 -56.252 112.513 -107 1 2 0.000 169.606 118.491 -228.990 -108 1 2 0.000 -249.358 -94.591 136.068 -109 1 2 0.000 249.313 -99.843 -155.496 -110 1 2 0.000 -91.189 -162.352 35.599 -111 1 2 0.000 124.241 -65.344 -142.479 -112 1 2 0.000 -133.116 236.940 -101.306 -113 1 2 0.000 -220.903 144.595 -98.769 -114 1 2 0.000 -138.519 -238.510 -28.950 -115 1 2 0.000 232.662 224.164 -97.889 -116 1 2 0.000 -140.174 -117.579 114.990 -117 1 2 0.000 240.947 107.306 95.726 -118 1 2 0.000 -85.149 -50.324 237.731 -119 1 2 0.000 132.486 -36.673 123.858 -120 1 2 0.000 -113.259 -223.307 13.774 -121 1 2 0.000 -197.258 98.174 -12.094 -122 1 2 0.000 74.705 -56.528 170.460 -123 1 2 0.000 -156.962 107.744 -172.081 -124 1 2 0.000 -140.501 -195.942 209.930 -125 1 2 0.000 -155.833 -230.940 184.309 -126 1 2 0.000 -53.160 90.859 -61.678 -127 1 2 0.000 166.443 226.710 197.574 -128 1 2 0.000 -246.110 -202.769 148.209 -129 1 2 0.000 -123.831 -139.236 -80.079 -130 1 2 0.000 -145.040 8.931 38.842 -131 1 2 0.000 4.740 -53.398 39.608 -132 1 2 0.000 -153.504 146.650 155.006 -133 1 2 0.000 -140.275 241.857 -143.877 -134 1 2 0.000 -134.791 200.144 103.806 -135 1 2 0.000 81.065 -133.837 -227.730 -136 1 2 0.000 -102.317 59.941 184.463 -137 1 2 0.000 -44.006 0.958 -47.486 -138 1 2 0.000 146.618 41.755 -53.078 -139 1 2 0.000 -105.485 -88.962 -240.421 -140 1 2 0.000 72.251 -83.802 -185.143 -141 1 2 0.000 207.462 -130.254 -213.640 -142 1 2 0.000 -190.297 -226.256 -52.890 -143 1 2 0.000 95.394 87.032 -123.258 -144 1 2 0.000 52.423 -7.393 -228.757 -145 1 2 0.000 182.883 -158.427 -60.905 -146 1 2 0.000 238.208 -191.917 -188.619 -147 1 2 0.000 0.488 203.173 249.335 -148 1 2 0.000 221.038 158.390 167.610 -149 1 2 0.000 116.509 61.290 179.646 -150 1 2 0.000 151.720 56.349 -85.857 -151 1 2 0.000 50.467 -232.714 226.199 -152 1 2 0.000 73.082 -10.750 199.916 -153 1 2 0.000 105.336 26.472 184.066 -154 1 2 0.000 219.479 214.057 100.168 -155 1 2 0.000 76.068 -166.919 145.020 -156 1 2 0.000 176.756 -122.573 -126.665 -157 1 2 0.000 -222.308 48.884 45.582 -158 1 2 0.000 245.705 227.489 164.723 -159 1 2 0.000 24.846 94.383 188.083 -160 1 2 0.000 51.447 -246.608 -25.916 -161 1 2 0.000 0.844 80.984 104.800 -162 1 2 0.000 92.527 150.709 -168.445 -163 1 2 0.000 181.141 -90.667 -71.023 -164 1 2 0.000 -83.469 -209.322 31.008 -165 1 2 0.000 -185.511 121.452 -33.450 -166 1 2 0.000 -107.339 -97.535 -195.191 -167 1 2 0.000 86.753 19.937 90.965 -168 1 2 0.000 -188.115 -68.163 -23.781 -169 1 2 0.000 -95.545 19.171 -212.829 -170 1 2 0.000 -222.774 105.444 -201.839 -171 1 2 0.000 -88.181 220.964 31.054 -172 1 2 0.000 173.580 -134.929 187.861 -173 1 2 0.000 -8.593 45.027 -130.512 -174 1 2 0.000 206.476 52.775 -87.002 -175 1 2 0.000 41.755 -83.817 63.561 -176 1 2 0.000 201.226 -49.554 184.922 -177 1 2 0.000 -222.362 -144.748 -1.058 -178 1 2 0.000 248.506 4.719 180.574 -179 1 2 0.000 147.318 244.124 -55.352 -180 1 2 0.000 -107.752 186.551 41.095 -181 1 2 0.000 211.412 17.651 122.128 -182 1 2 0.000 -205.259 -137.779 78.109 -183 1 2 0.000 -241.076 107.955 -70.050 -184 1 2 0.000 212.787 38.939 223.806 -185 1 2 0.000 -193.038 187.817 143.630 -186 1 2 0.000 46.331 110.852 204.345 -187 1 2 0.000 34.169 137.393 170.060 -188 1 2 0.000 -28.068 68.668 -15.874 -189 1 2 0.000 82.134 141.051 23.631 -190 1 2 0.000 55.949 -120.854 187.778 -191 1 2 0.000 0.991 196.531 -171.624 -192 1 2 0.000 -247.701 226.350 -59.141 -193 1 2 0.000 93.828 219.579 -143.102 -194 1 2 0.000 143.063 38.791 -11.728 -195 1 2 0.000 -214.854 168.942 193.309 -196 1 2 0.000 -8.882 -187.512 56.106 -197 1 2 0.000 -176.117 81.820 -82.976 -198 1 2 0.000 -24.568 95.910 -230.492 -199 1 2 0.000 198.693 32.490 239.792 -200 1 2 0.000 177.111 -21.684 -141.681 -201 1 2 0.000 -121.925 140.743 -10.718 -202 1 2 0.000 -102.525 -34.185 55.923 -203 1 2 0.000 139.303 136.456 -200.069 -204 1 2 0.000 47.987 51.733 -23.992 -205 1 2 0.000 42.609 233.335 -248.717 -206 1 2 0.000 -153.296 241.545 -235.552 -207 1 2 0.000 -148.577 38.579 -158.313 -208 1 2 0.000 -231.442 -85.788 98.277 -209 1 2 0.000 78.960 168.954 161.425 -210 1 2 0.000 97.035 -242.831 -192.488 -211 1 2 0.000 124.725 40.487 61.617 -212 1 2 0.000 198.899 242.162 34.196 -213 1 2 0.000 -18.615 166.746 168.767 -214 1 2 0.000 -126.361 162.652 230.702 -215 1 2 0.000 -206.416 -104.719 -17.502 -216 1 2 0.000 27.903 82.315 -208.984 -217 1 2 0.000 9.229 1.343 -5.116 -218 1 2 0.000 208.728 15.000 -196.867 -219 1 2 0.000 55.421 -23.156 226.626 -220 1 2 0.000 -189.566 -137.530 -78.331 -221 1 2 0.000 -234.501 17.249 -4.121 -222 1 2 0.000 156.686 188.438 11.267 -223 1 2 0.000 -130.967 16.625 96.049 -224 1 2 0.000 -184.007 -125.634 35.917 -225 1 2 0.000 -77.872 226.534 -37.052 -226 1 2 0.000 -135.600 78.899 -214.672 -227 1 2 0.000 82.978 231.699 73.202 -228 1 2 0.000 -115.077 -160.581 -143.543 -229 1 2 0.000 185.773 217.239 224.390 -230 1 2 0.000 -106.149 132.302 -163.939 -231 1 2 0.000 234.005 -198.059 242.931 -232 1 2 0.000 62.968 -50.638 80.085 -233 1 2 0.000 -3.999 129.419 -162.908 -234 1 2 0.000 62.520 -34.177 -183.204 -235 1 2 0.000 -169.674 212.220 -133.027 -236 1 2 0.000 -37.727 17.991 90.232 -237 1 2 0.000 239.603 58.736 231.128 -238 1 2 0.000 -152.586 8.847 219.549 -239 1 2 0.000 -132.778 -9.680 90.773 -240 1 2 0.000 -135.451 -162.052 -9.468 -241 1 2 0.000 -148.480 -145.261 -42.873 -242 1 2 0.000 19.067 176.976 237.233 -243 1 2 0.000 -65.102 122.687 172.010 -244 1 2 0.000 -153.400 24.210 -0.107 -245 1 2 0.000 -209.270 -149.359 23.245 -246 1 2 0.000 -51.003 102.324 -208.187 -247 1 2 0.000 180.177 -117.814 -61.778 -248 1 2 0.000 215.177 -155.562 143.978 -249 1 2 0.000 -35.629 -194.319 -66.636 -250 1 2 0.000 -228.079 141.920 245.124 -251 1 2 0.000 102.511 200.088 -158.563 -252 1 2 0.000 -168.826 -142.913 72.373 -253 1 2 0.000 -235.463 3.255 -214.200 -254 1 2 0.000 -17.004 238.712 194.416 -255 1 2 0.000 -222.542 -198.375 -20.437 -256 1 2 0.000 162.461 70.838 -129.838 -257 1 2 0.000 140.414 -230.716 -147.490 -258 1 2 0.000 22.785 -57.247 223.707 -259 1 2 0.000 83.146 -150.850 76.842 -260 1 2 0.000 85.947 239.986 159.081 -261 1 2 0.000 134.784 -223.108 -225.834 -262 1 2 0.000 -46.718 -165.650 -218.855 -263 1 2 0.000 180.600 -190.104 -34.250 -264 1 2 0.000 107.427 8.532 99.034 -265 1 2 0.000 145.961 129.832 -38.677 -266 1 2 0.000 -220.573 147.008 57.367 -267 1 2 0.000 -233.257 -246.575 -146.157 -268 1 2 0.000 -3.764 216.902 6.730 -269 1 2 0.000 41.151 21.587 -86.539 -270 1 2 0.000 -207.789 -189.014 148.689 -271 1 2 0.000 222.832 167.782 215.783 -272 1 2 0.000 -184.970 126.765 66.388 -273 1 2 0.000 -219.422 129.651 54.389 -274 1 2 0.000 -213.783 -199.351 71.133 -275 1 2 0.000 -108.342 13.559 2.415 -276 1 2 0.000 -203.009 -179.468 70.179 -277 1 2 0.000 -156.131 89.380 -245.020 -278 1 2 0.000 206.873 156.156 232.572 -279 1 2 0.000 112.750 -213.885 -110.043 -280 1 2 0.000 202.043 -181.632 -132.221 -281 1 2 0.000 -108.941 110.386 88.443 -282 1 2 0.000 211.309 202.228 -224.799 -283 1 2 0.000 202.880 190.616 152.592 -284 1 2 0.000 129.207 -112.108 -189.554 -285 1 2 0.000 -164.501 -156.168 227.093 -286 1 2 0.000 -73.701 13.102 1.976 -287 1 2 0.000 22.799 -62.875 159.683 -288 1 2 0.000 -156.168 178.216 -10.873 -289 1 2 0.000 -177.928 178.461 -131.075 -290 1 2 0.000 102.332 -150.145 198.072 -291 1 2 0.000 149.370 -17.838 -233.326 -292 1 2 0.000 -249.180 66.782 150.618 -293 1 2 0.000 93.993 -169.183 -140.855 -294 1 2 0.000 204.102 -205.001 -75.750 -295 1 2 0.000 210.283 -124.059 231.844 -296 1 2 0.000 224.569 75.734 -206.469 -297 1 2 0.000 22.426 -109.649 -105.189 -298 1 2 0.000 232.674 93.485 -219.999 -299 1 2 0.000 62.519 -179.054 -118.606 -300 1 2 0.000 126.001 -173.740 -221.772 -301 1 2 0.000 -229.327 -8.171 -91.652 -302 1 2 0.000 9.937 -9.779 -48.401 -303 1 2 0.000 107.030 78.949 223.177 -304 1 2 0.000 -222.169 77.310 -6.465 -305 1 2 0.000 177.082 -84.489 226.572 -306 1 2 0.000 -99.968 -249.692 117.637 -307 1 2 0.000 -199.023 -249.103 24.308 -308 1 2 0.000 148.737 -94.123 226.693 -309 1 2 0.000 -155.424 191.867 -3.341 -310 1 2 0.000 43.397 60.804 56.321 -311 1 2 0.000 198.790 -117.374 -5.919 -312 1 2 0.000 -247.251 245.157 -136.664 -313 1 2 0.000 -107.945 -92.872 77.518 -314 1 2 0.000 204.095 74.152 114.648 -315 1 2 0.000 -242.211 223.148 -236.528 -316 1 2 0.000 -211.776 -178.127 80.748 -317 1 2 0.000 -144.646 -134.976 -194.320 -318 1 2 0.000 175.296 -112.426 100.348 -319 1 2 0.000 245.944 -34.841 -44.681 -320 1 2 0.000 -66.502 13.422 -140.945 -321 1 2 0.000 -156.143 8.598 -96.360 -322 1 2 0.000 177.369 36.384 -40.522 -323 1 2 0.000 -187.913 -155.409 47.798 -324 1 2 0.000 130.154 -105.206 71.082 -325 1 2 0.000 14.777 -117.241 144.897 -326 1 2 0.000 -211.395 184.769 -177.203 -327 1 2 0.000 118.417 166.171 134.122 -328 1 2 0.000 -1.052 -70.751 -177.401 -329 1 2 0.000 59.626 94.843 -125.195 -330 1 2 0.000 -2.598 -175.939 208.826 -331 1 2 0.000 -240.331 234.723 -118.948 -332 1 2 0.000 -103.628 -23.511 -208.384 -333 1 2 0.000 -241.562 -113.916 -88.115 -334 1 2 0.000 90.276 95.565 -197.483 -335 1 2 0.000 -94.583 44.559 -143.660 -336 1 2 0.000 88.028 -165.810 -23.680 -337 1 2 0.000 -27.604 -205.469 -52.056 -338 1 2 0.000 191.736 195.773 -37.844 -339 1 2 0.000 -102.792 -197.107 2.306 -340 1 2 0.000 248.300 46.863 -232.360 -341 1 2 0.000 17.969 -40.516 159.276 -342 1 2 0.000 -132.054 236.453 -52.721 -343 1 2 0.000 -185.872 -180.841 116.299 -344 1 2 0.000 -213.412 9.518 226.924 -345 1 2 0.000 243.271 -123.343 -166.181 -346 1 2 0.000 -56.917 -24.482 -203.917 -347 1 2 0.000 209.751 -82.898 -194.549 -348 1 2 0.000 119.350 97.286 -14.196 -349 1 2 0.000 -27.426 -44.076 222.844 -350 1 2 0.000 120.382 12.405 232.874 -351 1 2 0.000 131.493 169.343 -34.349 -352 1 2 0.000 -198.717 -86.920 65.836 -353 1 2 0.000 193.462 -9.166 215.001 -354 1 2 0.000 -248.157 10.803 -168.568 -355 1 2 0.000 -45.869 244.869 -156.761 -356 1 2 0.000 -197.269 86.747 -41.004 -357 1 2 0.000 111.524 209.907 115.058 -358 1 2 0.000 198.856 216.575 -218.082 -359 1 2 0.000 -199.809 -109.264 125.327 -360 1 2 0.000 -230.517 26.462 92.876 -361 1 2 0.000 197.703 -82.698 -176.727 -362 1 2 0.000 -222.502 -170.600 3.185 -363 1 2 0.000 134.645 187.262 2.809 -364 1 2 0.000 149.572 -152.329 -168.597 -365 1 2 0.000 37.405 211.645 100.513 -366 1 2 0.000 -210.478 176.877 237.889 -367 1 2 0.000 147.442 120.805 -38.546 -368 1 2 0.000 -64.440 -138.910 -89.760 -369 1 2 0.000 -22.486 80.728 -86.734 -370 1 2 0.000 238.619 41.721 206.522 -371 1 2 0.000 124.068 216.903 -151.508 -372 1 2 0.000 -166.146 191.651 81.407 -373 1 2 0.000 -80.974 174.932 231.639 -374 1 2 0.000 151.422 -226.563 -208.196 -375 1 2 0.000 -13.845 -170.514 -11.734 -376 1 2 0.000 5.233 -82.588 145.257 -377 1 2 0.000 -56.256 214.458 -24.953 -378 1 2 0.000 237.903 1.720 180.238 -379 1 2 0.000 182.214 -179.404 227.610 -380 1 2 0.000 167.872 95.602 145.885 -381 1 2 0.000 18.991 91.219 -119.887 -382 1 2 0.000 214.500 -64.067 194.843 -383 1 2 0.000 -114.348 158.498 -139.733 -384 1 2 0.000 221.280 22.069 86.921 -385 1 2 0.000 115.466 -134.089 127.221 -386 1 2 0.000 -69.877 -175.136 131.379 -387 1 2 0.000 -120.965 -154.465 -54.455 -388 1 2 0.000 2.096 74.992 -248.494 -389 1 2 0.000 130.932 153.133 138.583 -390 1 2 0.000 103.939 -183.955 232.352 -391 1 2 0.000 -170.487 46.195 -23.824 -392 1 2 0.000 78.551 38.699 183.102 -393 1 2 0.000 62.489 139.581 84.802 -394 1 2 0.000 -54.123 -120.384 -156.512 -395 1 2 0.000 -62.300 148.477 127.440 -396 1 2 0.000 155.541 -63.742 -71.782 -397 1 2 0.000 -188.140 -249.323 103.665 -398 1 2 0.000 145.043 55.370 -227.202 -399 1 2 0.000 -177.019 125.438 39.007 -400 1 2 0.000 4.362 102.498 47.748 -401 1 2 0.000 -175.265 168.969 112.115 -402 1 2 0.000 240.219 139.729 32.331 -403 1 2 0.000 58.528 125.384 144.446 -404 1 2 0.000 117.824 164.157 206.137 -405 1 2 0.000 153.033 -124.795 220.412 -406 1 2 0.000 17.060 -43.132 226.204 -407 1 2 0.000 81.041 -184.118 239.420 -408 1 2 0.000 133.870 152.080 163.160 -409 1 2 0.000 164.026 3.735 218.129 -410 1 2 0.000 -136.345 236.056 74.900 -411 1 2 0.000 -138.013 -15.710 118.201 -412 1 2 0.000 -138.806 -163.713 -95.899 -413 1 2 0.000 -176.585 192.964 122.606 -414 1 2 0.000 -41.279 -25.905 81.269 -415 1 2 0.000 146.224 -145.426 -63.740 -416 1 2 0.000 160.268 198.163 103.217 -417 1 2 0.000 -73.511 110.520 -179.674 -418 1 2 0.000 -173.372 201.673 -197.147 -419 1 2 0.000 233.847 72.706 144.222 -420 1 2 0.000 38.277 46.175 199.624 -421 1 2 0.000 207.763 132.383 -39.203 -422 1 2 0.000 -86.236 -146.881 19.191 -423 1 2 0.000 -4.810 -162.171 114.333 -424 1 2 0.000 195.633 188.657 -88.445 -425 1 2 0.000 -196.032 174.642 10.662 -426 1 2 0.000 16.261 150.726 -246.542 -427 1 2 0.000 -37.134 92.946 220.785 -428 1 2 0.000 -156.471 24.426 104.453 -429 1 2 0.000 244.597 119.539 68.093 -430 1 2 0.000 -135.248 -14.592 164.603 -431 1 2 0.000 65.864 -147.906 123.815 -432 1 2 0.000 -40.675 -92.277 172.450 -433 1 2 0.000 221.553 -164.793 228.553 -434 1 2 0.000 -3.055 -178.245 -161.695 -435 1 2 0.000 247.022 60.804 207.168 -436 1 2 0.000 -46.791 -192.142 -197.060 -437 1 2 0.000 -121.606 96.871 -225.559 -438 1 2 0.000 140.351 147.470 -86.351 -439 1 2 0.000 -115.813 -10.784 163.026 -440 1 2 0.000 -100.350 -113.221 -115.565 -441 1 2 0.000 199.391 111.811 -198.655 -442 1 2 0.000 -18.239 128.251 105.128 -443 1 2 0.000 -38.262 16.408 -70.382 -444 1 2 0.000 -75.757 244.585 -196.234 -445 1 2 0.000 226.532 -74.763 68.455 -446 1 2 0.000 136.970 -202.473 -42.887 -447 1 2 0.000 233.492 -189.069 35.214 -448 1 2 0.000 -28.855 -147.911 158.596 -449 1 2 0.000 -98.461 241.088 -107.462 -450 1 2 0.000 146.773 -116.877 -6.892 -451 1 2 0.000 199.325 -110.099 -71.587 -452 1 2 0.000 56.593 -213.698 -104.814 -453 1 2 0.000 -21.966 -243.568 202.674 -454 1 2 0.000 97.691 -14.016 -94.759 -455 1 2 0.000 23.224 -105.628 221.188 -456 1 2 0.000 128.916 156.369 -178.613 -457 1 2 0.000 191.028 -108.497 27.646 -458 1 2 0.000 146.917 214.748 -238.626 -459 1 2 0.000 29.071 87.527 195.587 -460 1 2 0.000 -5.375 93.070 85.396 -461 1 2 0.000 -7.783 80.289 -160.488 -462 1 2 0.000 4.716 -170.112 241.285 -463 1 2 0.000 140.971 220.448 191.412 -464 1 2 0.000 146.850 71.046 -82.409 -465 1 2 0.000 238.248 -204.860 54.228 -466 1 2 0.000 162.305 213.522 214.122 -467 1 2 0.000 17.756 -98.143 -161.338 -468 1 2 0.000 -196.497 -35.583 244.484 -469 1 2 0.000 -230.628 -25.001 -229.457 -470 1 2 0.000 220.232 -121.941 231.274 -471 1 2 0.000 125.211 171.195 157.851 -472 1 2 0.000 -67.631 69.243 222.232 -473 1 2 0.000 226.974 102.248 39.591 -474 1 2 0.000 -180.485 129.020 131.097 -475 1 2 0.000 113.070 205.341 -217.771 -476 1 2 0.000 57.347 40.804 -148.177 -477 1 2 0.000 126.550 -240.072 -180.988 -478 1 2 0.000 195.304 217.745 -2.148 -479 1 2 0.000 60.546 14.637 66.813 -480 1 2 0.000 -230.585 69.801 -76.521 -481 1 2 0.000 -192.251 245.123 -48.160 -482 1 2 0.000 58.288 -89.600 -59.971 -483 1 2 0.000 49.614 68.361 125.878 -484 1 2 0.000 -226.848 191.604 126.199 -485 1 2 0.000 61.381 -46.108 -55.978 -486 1 2 0.000 160.455 209.370 236.343 -487 1 2 0.000 214.154 43.478 -1.546 -488 1 2 0.000 214.585 38.771 -158.650 -489 1 2 0.000 239.427 192.097 -198.503 -490 1 2 0.000 138.504 210.784 -214.180 -491 1 2 0.000 21.159 21.261 71.630 -492 1 2 0.000 -154.299 197.605 -201.582 -493 1 2 0.000 231.845 -74.790 188.981 -494 1 2 0.000 218.073 118.705 -85.543 -495 1 2 0.000 60.417 -222.488 -8.179 -496 1 2 0.000 -76.208 -143.870 61.553 -497 1 2 0.000 -32.096 -59.755 215.176 -498 1 2 0.000 161.919 31.064 18.899 -499 1 2 0.000 -153.931 49.063 81.551 -500 1 2 0.000 -70.061 215.838 -37.792 - -Velocities - -1 -0.002 0.011 -0.001 -2 0.015 0.014 0.003 -3 0.008 0.001 -0.006 -4 0.008 -0.001 0.009 -5 -0.004 0.004 0.000 -6 -0.006 -0.009 -0.002 -7 -0.001 0.007 0.009 -8 0.002 -0.005 0.010 -9 0.002 0.009 0.003 -10 -0.007 0.002 -0.001 -11 0.015 0.004 0.002 -12 0.010 -0.006 0.001 -13 0.004 0.000 -0.000 -14 -0.001 -0.004 0.005 -15 0.004 0.009 -0.001 -16 0.008 -0.002 -0.002 -17 0.008 -0.002 -0.010 -18 0.016 0.008 -0.005 -19 0.010 0.004 -0.005 -20 0.000 -0.010 0.005 -21 0.002 0.007 0.008 -22 0.007 -0.007 0.000 -23 -0.004 0.010 0.010 -24 0.022 -0.003 0.008 -25 -0.006 0.005 -0.001 -26 -0.001 0.005 -0.001 -27 0.002 0.002 0.003 -28 0.004 -0.010 -0.006 -29 0.009 -0.021 0.026 -30 -0.017 0.009 -0.008 -31 0.014 0.004 0.004 -32 -0.006 -0.000 -0.008 -33 0.006 0.006 -0.010 -34 -0.013 -0.011 -0.021 -35 -0.001 0.031 0.003 -36 0.000 0.018 0.003 -37 0.007 0.007 0.003 -38 0.003 0.001 0.001 -39 -0.007 0.006 0.013 -40 0.007 0.005 0.001 -41 0.000 0.007 -0.001 -42 -0.008 -0.013 -0.008 -43 0.000 0.008 -0.002 -44 0.002 0.008 0.005 -45 0.003 0.015 -0.007 -46 -0.005 -0.000 0.003 -47 0.008 0.008 -0.009 -48 0.012 0.007 0.001 -49 0.002 -0.003 -0.001 -50 -0.005 0.010 0.003 -51 -0.005 0.001 -0.006 -52 -0.005 0.004 0.005 -53 -0.018 0.009 -0.013 -54 0.011 -0.010 -0.001 -55 0.005 0.014 -0.024 -56 0.006 0.012 -0.013 -57 0.011 0.004 -0.002 -58 -0.003 0.007 0.014 -59 0.002 0.000 -0.004 -60 -0.010 0.010 0.014 -61 0.008 -0.004 -0.010 -62 -0.000 0.019 -0.003 -63 0.008 0.004 0.000 -64 0.002 0.001 -0.007 -65 -0.000 0.008 -0.002 -66 -0.009 0.002 -0.001 -67 0.003 0.002 -0.018 -68 -0.008 0.008 0.004 -69 -0.006 -0.009 -0.002 -70 -0.019 0.007 0.001 -71 0.002 0.001 0.003 -72 0.010 0.016 -0.002 -73 0.003 0.003 -0.020 -74 -0.006 0.006 -0.004 -75 -0.001 0.010 0.002 -76 -0.006 0.005 -0.004 -77 0.011 0.017 -0.011 -78 -0.004 0.014 -0.011 -79 0.003 0.002 0.010 -80 0.002 -0.017 0.018 -81 0.010 0.002 -0.002 -82 -0.006 -0.008 -0.002 -83 0.004 -0.011 -0.013 -84 -0.007 0.012 -0.009 -85 0.011 -0.001 0.009 -86 0.003 -0.001 0.015 -87 -0.003 0.018 -0.004 -88 -0.005 -0.002 0.012 -89 -0.006 -0.004 0.004 -90 -0.002 -0.025 0.001 -91 0.004 0.015 0.004 -92 -0.000 0.004 0.018 -93 0.011 -0.016 0.001 -94 -0.023 0.012 -0.014 -95 0.008 0.002 -0.005 -96 0.001 0.000 -0.004 -97 -0.017 0.002 0.001 -98 -0.002 -0.013 0.022 -99 -0.011 -0.010 -0.004 -100 0.003 0.014 -0.014 -101 -0.007 0.014 0.013 -102 0.023 0.003 0.034 -103 0.007 -0.004 -0.003 -104 -0.000 -0.002 -0.016 -105 -0.006 0.003 -0.019 -106 -0.022 0.007 0.002 -107 -0.016 -0.001 -0.009 -108 0.012 0.003 -0.011 -109 0.002 -0.001 0.003 -110 -0.010 -0.006 -0.003 -111 0.005 0.002 -0.009 -112 -0.011 0.020 -0.005 -113 0.001 -0.012 0.004 -114 0.018 0.008 -0.012 -115 0.027 -0.002 -0.010 -116 -0.009 -0.008 -0.003 -117 -0.004 -0.010 0.004 -118 -0.003 0.011 0.020 -119 0.003 -0.007 0.011 -120 -0.003 0.009 -0.011 -121 -0.006 0.007 -0.005 -122 -0.005 -0.003 -0.004 -123 0.007 0.003 -0.003 -124 0.000 0.022 -0.009 -125 -0.005 -0.000 0.009 -126 0.003 0.006 -0.003 -127 0.014 -0.009 -0.005 -128 0.013 0.016 0.007 -129 0.003 0.008 -0.016 -130 0.003 0.000 0.003 -131 0.005 0.005 0.014 -132 -0.014 0.010 -0.003 -133 0.002 -0.019 0.020 -134 0.012 0.002 -0.014 -135 0.003 0.003 0.003 -136 0.007 -0.001 0.004 -137 0.006 0.008 -0.002 -138 -0.004 -0.000 -0.006 -139 0.010 0.009 0.015 -140 0.000 -0.004 0.001 -141 0.014 -0.001 0.007 -142 0.003 0.003 0.007 -143 0.013 -0.004 0.004 -144 0.020 -0.011 0.002 -145 -0.008 -0.004 -0.014 -146 -0.010 -0.002 -0.009 -147 0.012 0.008 -0.008 -148 -0.005 -0.013 0.004 -149 -0.014 -0.007 0.010 -150 0.001 -0.004 -0.004 -151 0.016 -0.001 0.013 -152 -0.007 0.001 0.015 -153 -0.007 -0.007 0.007 -154 0.008 -0.006 0.010 -155 -0.007 -0.015 -0.014 -156 -0.002 -0.005 0.012 -157 -0.007 0.005 -0.003 -158 0.014 0.006 -0.005 -159 0.020 -0.005 0.007 -160 0.004 0.005 -0.010 -161 -0.021 -0.001 -0.013 -162 -0.015 -0.010 -0.002 -163 -0.009 -0.020 -0.015 -164 0.006 -0.010 -0.011 -165 -0.011 0.002 -0.004 -166 0.013 0.013 0.006 -167 0.004 0.009 0.008 -168 -0.002 -0.018 -0.002 -169 -0.001 -0.001 -0.013 -170 -0.017 0.007 -0.009 -171 -0.002 0.006 -0.001 -172 -0.011 0.004 0.010 -173 0.001 -0.004 0.007 -174 -0.016 0.009 -0.012 -175 -0.010 0.000 0.002 -176 -0.003 -0.002 -0.009 -177 -0.001 -0.004 0.002 -178 0.003 -0.014 -0.007 -179 -0.009 0.000 0.001 -180 -0.002 0.012 0.011 -181 0.006 -0.002 0.002 -182 -0.009 0.010 0.004 -183 -0.015 -0.006 0.004 -184 0.016 -0.004 -0.007 -185 0.002 0.015 0.007 -186 -0.017 0.005 -0.008 -187 -0.003 -0.018 -0.008 -188 -0.004 0.002 -0.013 -189 -0.018 -0.011 0.003 -190 -0.002 0.001 0.008 -191 -0.006 -0.004 0.014 -192 0.021 -0.016 -0.005 -193 0.015 -0.001 -0.010 -194 -0.007 -0.006 -0.007 -195 -0.005 -0.019 -0.005 -196 -0.001 -0.009 -0.005 -197 -0.009 -0.011 0.013 -198 -0.011 -0.006 0.020 -199 0.008 0.009 0.010 -200 -0.004 0.008 0.002 -201 -0.004 -0.004 -0.016 -202 -0.007 0.001 -0.001 -203 0.011 0.002 0.014 -204 -0.006 -0.010 -0.007 -205 -0.011 -0.011 -0.008 -206 0.005 -0.004 -0.004 -207 -0.011 -0.009 -0.005 -208 -0.013 -0.026 0.003 -209 -0.008 0.007 -0.009 -210 -0.014 -0.001 0.007 -211 0.007 0.003 0.004 -212 0.001 -0.009 -0.005 -213 -0.016 0.004 -0.008 -214 -0.002 0.013 0.006 -215 0.012 0.012 -0.016 -216 -0.010 0.012 -0.005 -217 -0.010 -0.004 -0.004 -218 0.006 0.007 -0.005 -219 -0.003 0.004 0.006 -220 0.002 0.014 -0.001 -221 -0.001 0.004 0.002 -222 -0.012 -0.027 0.002 -223 -0.008 0.002 -0.000 -224 0.000 -0.000 0.002 -225 0.014 0.012 0.005 -226 0.003 0.018 0.010 -227 0.007 -0.008 0.019 -228 -0.006 -0.000 0.000 -229 -0.003 0.005 -0.003 -230 0.001 0.026 -0.001 -231 0.011 0.008 0.004 -232 -0.001 -0.005 -0.003 -233 -0.003 0.012 -0.013 -234 -0.012 -0.011 0.008 -235 -0.016 -0.007 -0.024 -236 -0.017 0.010 -0.005 -237 0.005 -0.003 0.000 -238 0.009 -0.021 0.013 -239 0.002 0.020 -0.004 -240 0.000 0.001 0.010 -241 -0.012 0.005 -0.005 -242 -0.008 0.009 -0.007 -243 0.004 -0.003 0.014 -244 0.010 -0.007 0.013 -245 -0.018 0.009 0.009 -246 -0.006 0.005 0.007 -247 0.016 0.005 -0.012 -248 -0.004 -0.010 0.006 -249 -0.002 -0.004 0.011 -250 -0.012 -0.003 0.006 -251 0.018 0.003 0.001 -252 -0.003 -0.011 0.001 -253 -0.004 -0.005 -0.002 -254 -0.019 0.004 0.005 -255 0.004 -0.002 0.001 -256 -0.007 -0.013 -0.018 -257 -0.012 0.002 -0.011 -258 -0.008 0.007 0.002 -259 0.006 -0.005 0.007 -260 -0.012 -0.006 0.011 -261 0.000 -0.002 -0.012 -262 0.000 -0.010 0.007 -263 0.016 -0.006 0.004 -264 -0.013 -0.013 0.004 -265 -0.006 -0.020 0.006 -266 -0.004 -0.004 0.004 -267 -0.009 -0.010 0.015 -268 0.012 0.011 -0.018 -269 0.005 -0.009 -0.004 -270 -0.010 -0.008 -0.006 -271 0.002 -0.007 0.003 -272 0.014 0.012 0.016 -273 -0.007 -0.008 0.012 -274 -0.001 -0.002 0.011 -275 0.004 0.007 -0.009 -276 0.003 -0.001 0.011 -277 0.014 -0.008 -0.017 -278 -0.009 -0.001 -0.008 -279 0.008 -0.014 0.014 -280 -0.002 0.011 -0.008 -281 -0.005 -0.017 0.012 -282 0.007 0.003 -0.007 -283 -0.005 0.005 0.001 -284 -0.011 0.008 0.016 -285 -0.000 -0.003 0.003 -286 0.001 -0.010 0.010 -287 0.004 -0.001 0.006 -288 -0.005 -0.017 -0.006 -289 -0.003 0.000 0.003 -290 0.010 -0.027 0.003 -291 0.001 -0.002 0.011 -292 0.002 -0.005 -0.002 -293 -0.008 0.006 0.006 -294 0.013 -0.004 -0.002 -295 -0.000 0.011 -0.008 -296 -0.003 -0.011 0.002 -297 0.007 0.006 -0.006 -298 -0.014 -0.001 -0.000 -299 -0.012 0.002 -0.010 -300 -0.012 -0.017 -0.002 -301 -0.009 0.006 -0.010 -302 -0.002 0.009 -0.001 -303 -0.019 0.000 0.008 -304 -0.012 -0.019 0.006 -305 -0.005 -0.003 -0.009 -306 0.003 0.003 0.003 -307 0.017 0.013 -0.004 -308 -0.001 -0.002 0.001 -309 0.004 0.005 0.011 -310 0.010 -0.004 0.006 -311 0.000 0.000 0.021 -312 0.004 -0.005 0.003 -313 -0.019 -0.009 0.015 -314 -0.016 0.001 0.005 -315 0.004 -0.010 0.010 -316 0.002 0.015 0.010 -317 -0.004 0.002 -0.004 -318 0.020 0.001 0.001 -319 -0.014 0.001 0.004 -320 0.005 0.014 -0.007 -321 0.005 0.004 -0.009 -322 -0.002 0.011 -0.003 -323 -0.006 -0.016 0.005 -324 0.008 -0.009 0.001 -325 0.010 -0.021 -0.006 -326 -0.021 -0.011 0.001 -327 -0.011 -0.002 0.006 -328 -0.004 0.012 0.001 -329 0.014 0.006 0.004 -330 0.001 0.000 0.014 -331 -0.011 0.003 -0.012 -332 0.005 -0.008 -0.001 -333 0.000 -0.001 -0.007 -334 -0.001 -0.010 0.012 -335 0.003 -0.008 0.014 -336 0.006 -0.010 -0.009 -337 -0.001 -0.004 0.008 -338 -0.011 0.012 -0.001 -339 0.018 0.008 -0.005 -340 0.003 0.010 0.009 -341 0.004 -0.012 0.002 -342 -0.017 0.000 0.015 -343 -0.004 0.001 0.012 -344 -0.007 0.006 0.005 -345 -0.006 0.003 -0.009 -346 0.004 -0.005 0.014 -347 -0.004 0.003 0.008 -348 0.016 0.002 0.004 -349 0.005 0.009 -0.007 -350 0.005 -0.006 0.005 -351 0.009 0.003 -0.012 -352 -0.016 0.011 -0.005 -353 0.004 0.010 0.000 -354 0.007 -0.000 0.010 -355 -0.022 0.004 -0.015 -356 0.009 0.022 0.006 -357 -0.001 0.008 0.004 -358 -0.016 -0.004 0.000 -359 0.002 0.008 0.005 -360 0.000 0.005 -0.020 -361 0.006 -0.000 -0.003 -362 -0.000 0.000 0.009 -363 0.000 0.001 0.003 -364 0.002 -0.009 -0.001 -365 -0.009 0.002 0.001 -366 -0.010 -0.006 -0.006 -367 -0.002 -0.001 -0.006 -368 -0.003 0.003 -0.001 -369 0.001 0.008 0.001 -370 0.009 0.009 0.002 -371 0.005 0.004 0.013 -372 -0.004 0.009 -0.014 -373 0.015 0.004 0.011 -374 0.009 0.010 -0.009 -375 -0.008 -0.002 -0.006 -376 -0.002 -0.007 -0.004 -377 0.012 0.003 0.004 -378 -0.002 0.001 -0.006 -379 -0.006 -0.013 0.007 -380 -0.011 -0.004 0.007 -381 0.003 -0.012 -0.005 -382 -0.005 0.001 0.001 -383 -0.004 0.001 0.005 -384 -0.016 -0.007 0.004 -385 -0.006 -0.006 0.013 -386 -0.001 0.002 0.013 -387 0.013 0.005 0.004 -388 0.007 0.002 -0.015 -389 0.020 0.004 -0.014 -390 0.003 -0.008 -0.005 -391 0.011 -0.011 -0.020 -392 0.017 -0.012 -0.002 -393 0.006 -0.004 0.015 -394 0.005 0.006 0.000 -395 -0.012 -0.004 0.004 -396 -0.020 -0.004 0.007 -397 -0.004 0.013 -0.003 -398 -0.001 -0.015 0.001 -399 -0.004 0.005 0.004 -400 0.009 -0.012 0.009 -401 0.006 0.001 -0.006 -402 -0.010 -0.004 -0.009 -403 -0.008 -0.007 0.012 -404 0.000 0.005 0.001 -405 -0.005 0.013 -0.008 -406 -0.023 -0.008 -0.013 -407 0.012 0.009 -0.015 -408 0.005 0.007 0.007 -409 0.000 -0.001 0.006 -410 0.003 0.007 -0.003 -411 -0.003 0.016 0.012 -412 -0.006 -0.005 -0.012 -413 0.014 -0.010 -0.001 -414 0.001 -0.006 -0.010 -415 -0.007 0.015 -0.002 -416 0.012 -0.016 -0.002 -417 0.015 0.005 0.011 -418 0.002 0.002 -0.017 -419 0.002 0.006 -0.017 -420 0.004 0.007 -0.026 -421 -0.003 -0.016 -0.004 -422 -0.002 -0.000 0.021 -423 0.004 -0.013 0.004 -424 0.002 -0.014 0.007 -425 -0.002 0.001 0.009 -426 -0.013 -0.018 -0.001 -427 0.012 0.008 0.026 -428 0.007 0.007 0.009 -429 0.014 0.009 -0.011 -430 0.006 0.009 -0.002 -431 0.002 0.012 0.011 -432 -0.004 0.001 0.002 -433 -0.001 0.008 -0.006 -434 0.004 -0.003 -0.008 -435 -0.006 -0.015 -0.013 -436 -0.019 0.014 -0.003 -437 0.005 0.001 0.002 -438 0.001 0.000 -0.006 -439 0.000 0.000 -0.001 -440 -0.004 0.007 -0.005 -441 -0.006 -0.007 0.008 -442 0.002 -0.009 0.002 -443 -0.005 0.002 0.014 -444 -0.002 -0.004 0.007 -445 0.000 -0.005 -0.009 -446 0.019 0.009 -0.001 -447 0.010 0.004 -0.002 -448 0.005 0.002 -0.011 -449 -0.003 -0.008 0.004 -450 0.006 0.013 -0.007 -451 -0.009 -0.009 -0.009 -452 0.026 -0.008 0.010 -453 -0.007 -0.011 -0.012 -454 -0.012 -0.009 0.007 -455 -0.012 0.016 -0.001 -456 -0.002 -0.005 -0.009 -457 -0.008 0.009 0.012 -458 -0.006 0.002 -0.000 -459 -0.006 -0.004 -0.011 -460 -0.016 -0.002 -0.009 -461 -0.007 0.004 -0.003 -462 -0.002 -0.008 0.004 -463 0.009 -0.009 0.012 -464 0.004 -0.019 0.008 -465 0.002 -0.000 -0.006 -466 0.002 0.008 0.003 -467 0.006 -0.010 0.003 -468 -0.011 0.001 0.029 -469 0.002 -0.002 -0.006 -470 0.012 0.002 -0.018 -471 0.009 0.003 -0.015 -472 -0.008 -0.018 -0.003 -473 -0.013 0.003 0.009 -474 -0.003 0.005 -0.019 -475 0.001 -0.000 0.008 -476 -0.007 -0.011 -0.005 -477 -0.013 -0.005 0.001 -478 -0.008 0.010 -0.001 -479 -0.001 -0.017 -0.008 -480 -0.006 -0.013 -0.003 -481 0.012 -0.003 -0.018 -482 0.002 -0.004 -0.005 -483 -0.004 0.002 -0.007 -484 0.006 0.004 -0.004 -485 0.011 0.021 -0.004 -486 0.004 0.002 -0.002 -487 0.004 0.011 0.005 -488 0.007 0.010 -0.009 -489 -0.016 -0.006 0.004 -490 -0.008 0.011 -0.005 -491 0.014 -0.001 -0.006 -492 -0.006 -0.016 0.003 -493 0.000 0.015 0.009 -494 -0.003 -0.008 -0.007 -495 0.010 0.000 -0.007 -496 0.010 0.011 0.012 -497 0.010 0.001 0.002 -498 -0.010 0.001 0.016 -499 0.001 0.006 0.011 -500 -0.003 0.011 0.006 diff --git a/tests/initialize/test.ipynb b/tests/initialize/test.ipynb deleted file mode 100644 index 44b21ca..0000000 --- a/tests/initialize/test.ipynb +++ /dev/null @@ -1,62 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Atom positions:\n", - "[[-1.15270975 1.25033545 0.39460297]\n", - " [ 2.10225087 -2.12285757 -2.43760443]\n", - " [ 0.86169508 -0.77310475 -0.74742818]\n", - " [ 0.81255861 2.26285536 1.76611306]\n", - " [-0.31367217 -1.55867269 -2.71347742]]\n" - ] - } - ], - "source": [ - "import sys, os, git\n", - "current_path = os.getcwd()\n", - "git_repo = git.Repo(current_path, search_parent_directories=True)\n", - "git_path = git_repo.git.rev_parse(\"--show-toplevel\")\n", - "sys.path.append(git_path+\"/python-codes/\")\n", - "\n", - "from InitializeSimulation import InitializeSimulation\n", - "\n", - "self = InitializeSimulation(number_atoms=[2, 3],\n", - " epsilon=[0.1, 1.0], # kcal/mol\n", - " sigma=[3, 6], # A\n", - " atom_mass=[1, 1], # g/mol\n", - " box_dimensions=[20, 20, 20], # A\n", - " )\n", - "print(\"Atom positions:\")\n", - "print(self.atoms_positions)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.4" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/tests/input.lammps b/tests/input.lammps deleted file mode 100644 index 8e82d47..0000000 --- a/tests/input.lammps +++ /dev/null @@ -1,55 +0,0 @@ -# LAMMPS input file - -include variable.lammps - -# main parameters -units real -dimension 3 -atom_style full -pair_style lj/cut 10 # /coul/long -#kspace_style ewald 1e-4 -boundary p p p - -read_data initial.data -include PARM.lammps - -neigh_modify every 5 - -thermo ${thermo_minimize} -dump mydmp all custom ${dumping_minimize} lammps-output/dump.md.lammpstrj id type x y z vx vy vz -min_style sd -minimize 1.0e-10 1.0e-10 ${minimization_steps} ${minimization_steps} -min_style cg -undump mydmp -reset_timestep 0 - -velocity all create ${temp} 4928459 -fix mynve all nve -fix mytber all temp/berendsen ${temp} ${temp} ${tau_temp} -if "${pber} == 1" then "fix mypber all press/berendsen iso ${press} ${press} ${tau_press} modulus 1" -timestep ${time_step} - -thermo ${thermo} -dump mydmp all custom ${dump} lammps-output/dump.md.lammpstrj id type x y z vx vy vz - -variable Ecoul equal ecoul -variable Evdwl equal evdwl -variable Epot equal pe -variable Ekin equal ke -variable Etot equal v_Epot+v_Ekin -variable volume equal vol -variable pressure equal press -variable temperature equal temp -variable mass equal mass(all) -variable density equal v_mass/v_volume/6.022e23*(1e8)^3 # g/cm3 -fix myat1 all ave/time ${thermo} 1 ${thermo} v_Epot file lammps-output/Epot.dat -fix myat2 all ave/time ${thermo} 1 ${thermo} v_Ekin file lammps-output/Ekin.dat -fix myat3 all ave/time ${thermo} 1 ${thermo} v_Etot file lammps-output/Etot.dat -fix myat4 all ave/time ${thermo} 1 ${thermo} v_Ecoul file lammps-output/Ecoul.dat -fix myat5 all ave/time ${thermo} 1 ${thermo} v_Evdwl file lammps-output/Evdwl.dat -fix myat6 all ave/time ${thermo} 1 ${thermo} v_pressure file lammps-output/pressure.dat -fix myat7 all ave/time ${thermo} 1 ${thermo} v_temperature file lammps-output/temperature.dat -fix myat8 all ave/time ${thermo} 1 ${thermo} v_volume file lammps-output/volume.dat -fix myat9 all ave/time ${thermo} 1 ${thermo} v_density file lammps-output/density.dat - -run ${maximum_steps} diff --git a/tests/prepare/test.ipynb b/tests/prepare/test.ipynb deleted file mode 100644 index 0984629..0000000 --- a/tests/prepare/test.ipynb +++ /dev/null @@ -1,69 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Reference energy:\n", - "0.1\n", - "Reference distance:\n", - "3\n", - "array_epsilon_ij:\n", - "[ 1. 5.5 5.5 5.5 5.5 5.5 5.5 10. 10. 10. ]\n", - "array_sigma_ij:\n", - "[1. 1.5 1.5 1.5 1.5 1.5 1.5 2. 2. 2. ]\n" - ] - } - ], - "source": [ - "import sys, os, git\n", - "current_path = os.getcwd()\n", - "git_repo = git.Repo(current_path, search_parent_directories=True)\n", - "git_path = git_repo.git.rev_parse(\"--show-toplevel\")\n", - "sys.path.append(git_path+\"/python-codes/\")\n", - "\n", - "from Prepare import Prepare\n", - "\n", - "self = Prepare(number_atoms=[2, 3],\n", - " epsilon=[0.1, 1.0], # kcal/mol\n", - " sigma=[3, 6], # A\n", - " atom_mass=[1, 1], # g/mol\n", - " )\n", - "print(\"Reference energy:\")\n", - "print(self.reference_energy)\n", - "print(\"Reference distance:\")\n", - "print(self.reference_distance)\n", - "print(\"array_epsilon_ij:\")\n", - "print(self.array_epsilon_ij)\n", - "print(\"array_sigma_ij:\")\n", - "print(self.array_sigma_ij)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.4" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/tests/run.ipynb b/tests/run.ipynb deleted file mode 100644 index 95a9be5..0000000 --- a/tests/run.ipynb +++ /dev/null @@ -1,248 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import sys, os, git, time\n", - "\n", - "current_path = os.getcwd()\n", - "git_repo = git.Repo(current_path, search_parent_directories=True)\n", - "git_path = git_repo.git.rev_parse(\"--show-toplevel\")\n", - "sys.path.append(git_path+\"/python-codes/\")\n", - "\n", - "from InitializeSimulation import InitializeSimulation\n", - "from Utilities import Utilities\n", - "from Outputs import Outputs\n", - "from MolecularDynamics import MolecularDynamics\n", - "from MonteCarlo import MonteCarlo\n", - "\n", - "import numpy as np" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "ename": "TypeError", - "evalue": "object.__init__() takes exactly one argument (the instance to initialize)", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", - "\u001b[1;32m/home/simon/Git/MDCourse/python-codes/tests/run.ipynb Cell 2\u001b[0m line \u001b[0;36m1\n\u001b[0;32m----> 1\u001b[0m \u001b[39mself\u001b[39m \u001b[39m=\u001b[39m MonteCarlo(number_atoms\u001b[39m=\u001b[39;49m[\u001b[39m100\u001b[39;49m, \u001b[39m400\u001b[39;49m],\n\u001b[1;32m 2\u001b[0m epsilon\u001b[39m=\u001b[39;49m[\u001b[39m0.1\u001b[39;49m, \u001b[39m1.0\u001b[39;49m], \u001b[39m# kcal/mol\u001b[39;49;00m\n\u001b[1;32m 3\u001b[0m sigma\u001b[39m=\u001b[39;49m[\u001b[39m3\u001b[39;49m, \u001b[39m6\u001b[39;49m], \u001b[39m# A\u001b[39;49;00m\n\u001b[1;32m 4\u001b[0m atom_mass\u001b[39m=\u001b[39;49m[\u001b[39m1\u001b[39;49m, \u001b[39m1\u001b[39;49m], \u001b[39m# g/mol\u001b[39;49;00m\n\u001b[1;32m 5\u001b[0m \u001b[39m# atom_charge=[0], # in elementary charge units\u001b[39;49;00m\n\u001b[1;32m 6\u001b[0m Lx\u001b[39m=\u001b[39;49m\u001b[39m500\u001b[39;49m, \u001b[39m# A\u001b[39;49;00m\n\u001b[1;32m 7\u001b[0m Ly\u001b[39m=\u001b[39;49m\u001b[39m500\u001b[39;49m, \u001b[39m# A\u001b[39;49;00m\n\u001b[1;32m 8\u001b[0m Lz\u001b[39m=\u001b[39;49m\u001b[39m500\u001b[39;49m, \u001b[39m# A\u001b[39;49;00m\n\u001b[1;32m 9\u001b[0m minimization_steps\u001b[39m=\u001b[39;49m\u001b[39m0\u001b[39;49m,\n\u001b[1;32m 10\u001b[0m maximum_steps\u001b[39m=\u001b[39;49m\u001b[39m0\u001b[39;49m,\n\u001b[1;32m 11\u001b[0m desired_temperature\u001b[39m=\u001b[39;49m\u001b[39m100\u001b[39;49m,\n\u001b[1;32m 12\u001b[0m desired_pressure\u001b[39m=\u001b[39;49m\u001b[39m1\u001b[39;49m,\n\u001b[1;32m 13\u001b[0m thermo \u001b[39m=\u001b[39;49m \u001b[39m250\u001b[39;49m,\n\u001b[1;32m 14\u001b[0m dump \u001b[39m=\u001b[39;49m \u001b[39m250\u001b[39;49m, \n\u001b[1;32m 15\u001b[0m \u001b[39m#tau_temp = 100, # fs\u001b[39;49;00m\n\u001b[1;32m 16\u001b[0m \u001b[39m#tau_press= 1000, # fs\u001b[39;49;00m\n\u001b[1;32m 17\u001b[0m time_step\u001b[39m=\u001b[39;49m\u001b[39m1\u001b[39;49m, \u001b[39m# fs\u001b[39;49;00m\n\u001b[1;32m 18\u001b[0m seed\u001b[39m=\u001b[39;49m\u001b[39m219817\u001b[39;49m,\n\u001b[1;32m 19\u001b[0m data_folder \u001b[39m=\u001b[39;49m \u001b[39m\"\u001b[39;49m\u001b[39mmccode-output/\u001b[39;49m\u001b[39m\"\u001b[39;49m)\n\u001b[1;32m 20\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mrun()\n\u001b[1;32m 21\u001b[0m \u001b[39m# run lammps for comparison\u001b[39;00m\n\u001b[1;32m 22\u001b[0m \u001b[39m#os.system(\"/home/simon/Softwares/lammps-2Aug2023/src/lmp_serial -in input.lammps > /dev/null\")\u001b[39;00m\n", - "File \u001b[0;32m~/Git/MDCourse/python-codes/python-codes/MonteCarlo.py:27\u001b[0m, in \u001b[0;36mMonteCarlo.__init__\u001b[0;34m(self, maximum_steps, displace_mc, mu, *args, **kwargs)\u001b[0m\n\u001b[1;32m 25\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mdisplace_mc \u001b[39m=\u001b[39m displace_mc\n\u001b[1;32m 26\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mmu \u001b[39m=\u001b[39m mu\n\u001b[0;32m---> 27\u001b[0m \u001b[39msuper\u001b[39;49m()\u001b[39m.\u001b[39;49m\u001b[39m__init__\u001b[39;49m(\u001b[39m*\u001b[39;49margs, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n\u001b[1;32m 29\u001b[0m \u001b[39m#self.cut_off /= self.reference_distance\u001b[39;00m\n\u001b[1;32m 30\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mdisplace_mc \u001b[39mis\u001b[39;00m \u001b[39mnot\u001b[39;00m \u001b[39mNone\u001b[39;00m:\n", - "File \u001b[0;32m~/Git/MDCourse/python-codes/python-codes/InitializeSimulation.py:24\u001b[0m, in \u001b[0;36mInitializeSimulation.__init__\u001b[0;34m(self, number_atoms, Lx, Ly, Lz, epsilon, sigma, atom_mass, seed, desired_temperature, desired_pressure, *args, **kwargs)\u001b[0m\n\u001b[1;32m 10\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39m__init__\u001b[39m(\u001b[39mself\u001b[39m,\n\u001b[1;32m 11\u001b[0m number_atoms,\n\u001b[1;32m 12\u001b[0m Lx,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 22\u001b[0m \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mkwargs,\n\u001b[1;32m 23\u001b[0m ):\n\u001b[0;32m---> 24\u001b[0m \u001b[39msuper\u001b[39;49m()\u001b[39m.\u001b[39;49m\u001b[39m__init__\u001b[39;49m(\u001b[39m*\u001b[39;49margs, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n\u001b[1;32m 26\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mnumber_atoms \u001b[39m=\u001b[39m number_atoms\n\u001b[1;32m 27\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mLx \u001b[39m=\u001b[39m Lx\n", - "File \u001b[0;32m~/Git/MDCourse/python-codes/python-codes/Utilities.py:16\u001b[0m, in \u001b[0;36mUtilities.__init__\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 13\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39m__init__\u001b[39m(\u001b[39mself\u001b[39m,\n\u001b[1;32m 14\u001b[0m \u001b[39m*\u001b[39margs,\n\u001b[1;32m 15\u001b[0m \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mkwargs):\n\u001b[0;32m---> 16\u001b[0m \u001b[39msuper\u001b[39;49m()\u001b[39m.\u001b[39;49m\u001b[39m__init__\u001b[39;49m(\u001b[39m*\u001b[39;49margs, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n", - "File \u001b[0;32m~/Git/MDCourse/python-codes/python-codes/Outputs.py:23\u001b[0m, in \u001b[0;36mOutputs.__init__\u001b[0;34m(self, thermo, dump, thermo_minimize, dumping_minimize, data_folder, *args, **kwargs)\u001b[0m\n\u001b[1;32m 21\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mdump \u001b[39m=\u001b[39m dump\n\u001b[1;32m 22\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mdata_folder \u001b[39m=\u001b[39m data_folder\n\u001b[0;32m---> 23\u001b[0m \u001b[39msuper\u001b[39;49m()\u001b[39m.\u001b[39;49m\u001b[39m__init__\u001b[39;49m(\u001b[39m*\u001b[39;49margs, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n\u001b[1;32m 25\u001b[0m \u001b[39mif\u001b[39;00m os\u001b[39m.\u001b[39mpath\u001b[39m.\u001b[39mexists(\u001b[39mself\u001b[39m\u001b[39m.\u001b[39mdata_folder) \u001b[39mis\u001b[39;00m \u001b[39mFalse\u001b[39;00m:\n\u001b[1;32m 26\u001b[0m os\u001b[39m.\u001b[39mmkdir(\u001b[39mself\u001b[39m\u001b[39m.\u001b[39mdata_folder)\n", - "\u001b[0;31mTypeError\u001b[0m: object.__init__() takes exactly one argument (the instance to initialize)" - ] - } - ], - "source": [ - "self = MonteCarlo(number_atoms=[100, 400],\n", - " epsilon=[0.1, 1.0], # kcal/mol\n", - " sigma=[3, 6], # A\n", - " atom_mass=[1, 1], # g/mol\n", - " # atom_charge=[0], # in elementary charge units\n", - " Lx=500, # A\n", - " Ly=500, # A\n", - " Lz=500, # A\n", - " minimization_steps=0,\n", - " maximum_steps=0,\n", - " desired_temperature=100,\n", - " desired_pressure=1,\n", - " thermo = 250,\n", - " dump = 250, \n", - " #tau_temp = 100, # fs\n", - " #tau_press= 1000, # fs\n", - " time_step=1, # fs\n", - " seed=219817,\n", - " data_folder = \"mccode-output/\")\n", - "self.run()\n", - "# run lammps for comparison\n", - "#os.system(\"/home/simon/Softwares/lammps-2Aug2023/src/lmp_serial -in input.lammps > /dev/null\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Case 1" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "-6.30730313864524e-22 0.114\n" - ] - } - ], - "source": [ - "ti = time.time()\n", - "\n", - "def calculate_r(self, position_i, positions_j):\n", - " \"\"\"Calculate the shortest distance between position_i and positions_j.\n", - " # to fix : use the MDAnalysis option\n", - " \"\"\"\n", - " rij = (np.remainder(position_i - positions_j\n", - " + self.box_size/2., self.box_size) - self.box_size/2.)\n", - " return np.linalg.norm(rij, axis=1)\n", - "\n", - "energy_potential = 0\n", - "for position_i, sigma_i, epsilon_i in zip(self.atoms_positions,\n", - " self.atoms_sigma,\n", - " self.atoms_epsilon):\n", - " r = self.calculate_r(position_i, self.atoms_positions)\n", - " sigma_j = self.atoms_sigma\n", - " epsilon_j = self.atoms_epsilon\n", - " sigma_ij = np.array((sigma_i+sigma_j)/2)\n", - " epsilon_ij = np.array((epsilon_i+epsilon_j)/2)\n", - " energy_potential_i = np.sum(4*epsilon_ij[r>0]*(np.power(sigma_ij[r>0]/r[r>0], 12)-np.power(sigma_ij[r>0]/r[r>0], 6)))\n", - " energy_potential += energy_potential_i\n", - "\n", - "tf = time.time()\n", - "print(energy_potential/2, np.round(tf-ti,3))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Case 2" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "import matplotlib.pyplot as plt\n", - "import MDAnalysis as mda\n", - "from MDAnalysis import analysis\n", - "from MDAnalysis.analysis import distances" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "-6.307298880441376e-22 0.018\n" - ] - } - ], - "source": [ - "epsilon_ij = []\n", - "for i in range(self.total_number_atoms):\n", - " for j in range(i + 1, self.total_number_atoms):\n", - " epsilon_i = self.atoms_epsilon[i]\n", - " epsilon_j = self.atoms_epsilon[j]\n", - " epsilon_ij.append((epsilon_i+epsilon_j)/2)\n", - "epsilon_ij = np.array(epsilon_ij)\n", - "sigma_ij = []\n", - "for i in range(self.total_number_atoms):\n", - " for j in range(i + 1, self.total_number_atoms):\n", - " sigma_i = self.atoms_sigma[i]\n", - " sigma_j = self.atoms_sigma[j]\n", - " sigma_ij.append((sigma_i+sigma_j)/2)\n", - "sigma_ij = np.array(sigma_ij)\n", - "\n", - "box = np.array([self.box_size[0], self.box_size[1], self.box_size[2], 90, 90, 90])\n", - "\n", - "ti = time.time()\n", - "\n", - "r_ij = mda.analysis.distances.self_distance_array(self.atoms_positions, box)\n", - "\n", - "energy_potential = np.sum(4*epsilon_ij*(np.power(sigma_ij/r_ij, 12)-np.power(sigma_ij/r_ij, 6)))\n", - "\n", - "tf = time.time()\n", - "print(energy_potential, np.round(tf-ti,3))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[166.66666666666666, 166.66666666666666, 166.66666666666666, 90, 90, 90]" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[166.66666667, 166.66666667, 166.66666667],\n", - " [ 90. , 90. , 90. ]])" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.vstack([box_size, box_geometry])" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.4" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/tests/run.py b/tests/run.py deleted file mode 100644 index 6250df2..0000000 --- a/tests/run.py +++ /dev/null @@ -1,60 +0,0 @@ -#!/usr/bin/env python -# coding: utf-8 - -# In[ ]: - - -from InitializeSimulation import InitializeSimulation -from Utilities import Utilities -from Outputs import Outputs -from MolecularDynamics import MolecularDynamics -from MonteCarlo import MonteCarlo - - -# In[ ]: - - -import numpy as np - - -# In[ ]: - - -self = MolecularDynamics(number_atoms=[300, 100], - epsilon=[1, 1], - sigma=[1, 5], - atom_mass= [1, 1], - Lx=30, - Ly=30, - Lz=30, - minimization_steps = 20, - maximum_steps=2000, - desired_temperature=300, - thermo = 100, - dump = 100, - tau_temp = 100, - tau_press= 1000, - time_step=1, - seed=219817, - ) -self.run() - - -# In[ ]: - - -x = MonteCarlo(number_atoms=[10, 2], - epsilon=[1, 0.1], - sigma=[1, 4], - atom_mass= [1, 1], - Lx=20, - Ly=20, - Lz=20, - maximum_steps=1000, - displace_mc = 0.5, - seed=6987, - dump = 10, - thermo = 10, - ) -x.run() - diff --git a/tests/variable.lammps b/tests/variable.lammps deleted file mode 100644 index 9b87a07..0000000 --- a/tests/variable.lammps +++ /dev/null @@ -1,14 +0,0 @@ -# LAMMPS variable file - -variable thermo equal 250 -variable dump equal 250 -variable thermo_minimize equal 25 -variable dumping_minimize equal 10 -variable time_step equal 1.0 -variable minimization_steps equal 0 -variable maximum_steps equal 0 -variable temp equal 100.0 -variable tau_temp equal 100.0 -variable press equal 0.9999999999999999 -variable tau_press equal 999.9999999999999 -variable pber equal 1