|
499 | 499 |
|
500 | 500 |
|
501 | 501 | function train_autoencode_clim(settings, mask, ign_growth) |
| 502 | + @random_seed! |
502 | 503 | # This function trains the autoencoder for climatic data |
503 | 504 | # It returns the autoencoded climatic data. |
504 | 505 |
|
|
632 | 633 |
|
633 | 634 |
|
634 | 635 | function predict_autoencoder_clim(settings, mask, scaler_clim_m, ae_clim_m) |
635 | | - |
| 636 | + @random_seed! |
636 | 637 | settings["verbosity"] >= STD && @info("- predicting autoencoded future climatic data for scenario $(settings["scenario"])") |
637 | 638 |
|
638 | 639 | force_other = settings["res"]["fr"]["force_other"] |
|
697 | 698 |
|
698 | 699 |
|
699 | 700 | function trainpredict_autoencode_fixedpxdata(settings, mask) |
| 701 | + @random_seed! |
700 | 702 | # function trainpredict_autoencode_fixedpxdata(settings, mask) |
701 | 703 | # Note: we put together here both soil and elevation data.. perhaps it is better to separate them, as dtm is not really a soil variable, but rather a topographic variable, and the ae doesn't work supergood with it. |
702 | 704 | verbosity = settings["verbosity"] |
@@ -875,6 +877,8 @@ function train_growth_model(settings, ign_growth, xclimh_reduced, xfixedpx_reduc |
875 | 877 | # - the climate var are those of y2 |
876 | 878 | # - the co2 is the average of the y1:y2 years |
877 | 879 |
|
| 880 | + @random_seed! |
| 881 | + |
878 | 882 | # ----------------------------------------------------------------------------- |
879 | 883 | # Getting options.... |
880 | 884 |
|
@@ -1110,4 +1114,5 @@ end |
1110 | 1114 | function define_state(settings, mask) |
1111 | 1115 | # This function defines the state of the region based on the prepared data |
1112 | 1116 | # It is called after the growth model has been trained. |
| 1117 | + @random_seed! |
1113 | 1118 | end |
0 commit comments