Skip to content

Commit 46e1275

Browse files
committed
fix lintr checks
1 parent b326f34 commit 46e1275

File tree

1 file changed

+52
-75
lines changed

1 file changed

+52
-75
lines changed

episodes/simple-analysis.Rmd

Lines changed: 52 additions & 75 deletions
Original file line numberDiff line numberDiff line change
@@ -59,57 +59,44 @@ df <- base::subset(
5959
6060
# uses the incidence function from the incidence2 package to compute the
6161
# incidence data
62-
df_incid <- incidence2::incidence(
63-
df,
64-
date_index = "date",
65-
groups = "sex"
66-
) %>%
62+
df_incid <- incidence2::incidence(df, date_index = "date", groups = "sex") %>%
6763
filter(sex != "unknown")
6864
6965
# fit a curve to the incidence data. The model chosen is the negative binomial
7066
# distribution with a significance level (alpha) of 0.05.
7167
fitted_curve_nb <-
7268
df_incid %>%
7369
nest(.key = "data") %>%
74-
mutate(
75-
model = lapply(
76-
data,
77-
function(x) MASS::glm.nb(count ~ date_index, data = x)
78-
)
79-
)
70+
mutate(model = lapply(
71+
X = data,
72+
FUN = function(x)
73+
MASS::glm.nb(count ~ date_index, data = x)
74+
))
8075
8176
intervals <-
82-
fitted_curve_nb %>%
83-
mutate(result = Map(
84-
function(data, model) {
85-
data %>%
86-
ciTools::add_ci(
87-
model,
88-
alpha = 0.05,
89-
names = c("lower_ci", "upper_ci")
90-
) %>%
91-
as_tibble()
92-
},
93-
data,
94-
model
95-
)) %>%
96-
select(sex,result) %>%
97-
unnest()
77+
fitted_curve_nb %>%
78+
mutate(result = Map(function(data, model) {
79+
data %>%
80+
ciTools::add_ci(model,
81+
alpha = 0.05,
82+
names = c("lower_ci", "upper_ci")) %>%
83+
as_tibble()
84+
}, data, model)) %>%
85+
select(sex, result) %>%
86+
unnest()
9887
9988
# plot fitted curve
10089
plot(df_incid, angle = 45) +
101-
ggplot2::geom_line(
102-
ggplot2::aes(date_index, y = pred),
103-
data = intervals,
104-
inherit.aes = FALSE
105-
) +
106-
ggplot2::geom_ribbon(
107-
ggplot2::aes(date_index, ymin = lower_ci, ymax = upper_ci),
108-
alpha = 0.2,
109-
data = intervals,
110-
inherit.aes = FALSE,
111-
fill = "#BBB67E"
112-
) +
90+
ggplot2::geom_line(ggplot2::aes(date_index, y = pred),
91+
data = intervals,
92+
inherit.aes = FALSE) +
93+
ggplot2::geom_ribbon(
94+
ggplot2::aes(date_index, ymin = lower_ci, ymax = upper_ci),
95+
alpha = 0.2,
96+
data = intervals,
97+
inherit.aes = FALSE,
98+
fill = "#BBB67E"
99+
) +
113100
ggplot2::labs(x = "Date", y = "Cases")
114101
```
115102

@@ -126,45 +113,35 @@ Repeat the above analysis using Poisson distribution.
126113
fitted_curve_poisson <-
127114
df_incid %>%
128115
nest(.key = "data") %>%
129-
mutate(
130-
model = lapply(
131-
data,
132-
function(x) glm(count ~ date_index, data = x, family = poisson)
133-
)
134-
)
116+
mutate(model = lapply(data, function(x)
117+
glm(
118+
count ~ date_index, data = x, family = poisson
119+
)))
135120
136121
intervals <-
137-
fitted_curve_poisson %>%
138-
mutate(result = Map(
139-
function(data, model) {
140-
data %>%
141-
ciTools::add_ci(
142-
model,
143-
alpha = 0.05,
144-
names = c("lower_ci", "upper_ci")
145-
) %>%
146-
as_tibble()
147-
},
148-
data,
149-
model
150-
)) %>%
151-
select(sex,result) %>%
152-
unnest()
122+
fitted_curve_poisson %>%
123+
mutate(result = Map(function(data, model) {
124+
data %>%
125+
ciTools::add_ci(model,
126+
alpha = 0.05,
127+
names = c("lower_ci", "upper_ci")) %>%
128+
as_tibble()
129+
}, data, model)) %>%
130+
select(sex, result) %>%
131+
unnest()
153132
154133
# plot fitted curve
155134
plot(df_incid, angle = 45) +
156-
ggplot2::geom_line(
157-
ggplot2::aes(date_index, y = pred),
158-
data = intervals,
159-
inherit.aes = FALSE
160-
) +
161-
ggplot2::geom_ribbon(
162-
ggplot2::aes(date_index, ymin = lower_ci, ymax = upper_ci),
163-
alpha = 0.2,
164-
data = intervals,
165-
inherit.aes = FALSE,
166-
fill = "#BBB67E"
167-
) +
135+
ggplot2::geom_line(ggplot2::aes(date_index, y = pred),
136+
data = intervals,
137+
inherit.aes = FALSE) +
138+
ggplot2::geom_ribbon(
139+
ggplot2::aes(date_index, ymin = lower_ci, ymax = upper_ci),
140+
alpha = 0.2,
141+
data = intervals,
142+
inherit.aes = FALSE,
143+
fill = "#BBB67E"
144+
) +
168145
ggplot2::labs(x = "Date", y = "Cases")
169146
```
170147

@@ -225,7 +202,7 @@ library(ggplot2)
225202
df_incid %>%
226203
mutate(
227204
rolling_average = data.table::frollmean(count, n = 7L, align = "right")
228-
) %>%
205+
) %>%
229206
plot(border_colour = "white", angle = 45) +
230207
ggplot2::geom_line(ggplot2::aes(x = date_index, y = rolling_average)) +
231208
ggplot2::labs(x = "Date", y = "Cases")
@@ -243,7 +220,7 @@ Compute and visualize the monthly moving average of cases on `df_incid`?
243220
df_incid %>%
244221
mutate(
245222
rolling_average = data.table::frollmean(count, n = 30L, align = "right")
246-
) %>%
223+
) %>%
247224
plot(border_colour = "white", angle = 45) +
248225
ggplot2::geom_line(ggplot2::aes(x = date_index, y = rolling_average)) +
249226
ggplot2::labs(x = "Date", y = "Cases")

0 commit comments

Comments
 (0)