Skip to content

[Prepare perceptual data] RuntimeError: cuDNN error: CUDNN_STATUS_NOT_SUPPORTED #13

@zhhezhhe

Description

@zhhezhhe

Thans for your great work!
When dataroot_LQ has only one image, the code runs OK!
But when I put more images (DIV2K dataset) to the dir of dataroot_LQ: /DIV2K/DIV2K_train_HR, the error occurs.

export CUDA_VISIBLE_DEVICES=4
20-01-15 19:31:02.816 - INFO:   name: DIV2K
  suffix: None
  model: sr
  distortion: sr
  scale: 4
  crop_border: None
  gpu_ids: [4]
  datasets:[
    test_1:[
      name: DIV2K_train_srres
      mode: LQ
      dataroot_GT: None
      dataroot_LQ: DIV2K/DIV2K_train_HR
      phase: test
      scale: 4
      data_type: img
    ]
  ]
  network_G:[
    which_model_G: SRResNet
    in_nc: 3
    out_nc: 3
    nf: 64
    nb: 16
    upscale: 4
    scale: 4
  ]
  path:[
    pretrain_model_G: ../experiments/pretrained_models/mmsr_RankSRGAN_NIQE.pth
    root: /RankSRGAN
    results_root: /RankSRGAN/results/DIV2K
    log: /RankSRGAN/results/DIV2K
  ]
  is_train: False

20-01-15 19:31:02.822 - INFO: Dataset [LQDataset - DIV2K_train_srres] is created.
20-01-15 19:31:02.822 - INFO: Number of test images in [DIV2K_train_srres]: 800
20-01-15 19:31:08.614 - INFO: Network G structure: DataParallel - SRResNet, with parameters: 1,554,499
20-01-15 19:31:08.615 - INFO: SRResNet(
  (conv_first): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (recon_trunk): Sequential(
    (0): ResidualBlock_noBN(
      (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    )
    (1): ResidualBlock_noBN(
      (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    )
    (2): ResidualBlock_noBN(
      (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    )
    (3): ResidualBlock_noBN(
      (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    )
    (4): ResidualBlock_noBN(
      (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    )
    (5): ResidualBlock_noBN(
      (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    )
    (6): ResidualBlock_noBN(
      (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    )
    (7): ResidualBlock_noBN(
      (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    )
    (8): ResidualBlock_noBN(
      (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    )
    (9): ResidualBlock_noBN(
      (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    )
    (10): ResidualBlock_noBN(
      (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    )
    (11): ResidualBlock_noBN(
      (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    )
    (12): ResidualBlock_noBN(
      (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    )
    (13): ResidualBlock_noBN(
      (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    )
    (14): ResidualBlock_noBN(
      (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    )
    (15): ResidualBlock_noBN(
      (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    )
  )
  (LRconv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (upconv1): Conv2d(64, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (upconv2): Conv2d(64, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (pixel_shuffle): PixelShuffle(upscale_factor=2)
  (HRconv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (conv_last): Conv2d(64, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (relu): ReLU(inplace)
)
20-01-15 19:31:08.615 - INFO: Loading model for G [../experiments/pretrained_models/mmsr_RankSRGAN_NIQE.pth] ...
20-01-15 19:31:08.625 - INFO: Model [SRModel] is created.
20-01-15 19:31:08.625 - INFO:
Testing [DIV2K_train_srres]...
Traceback (most recent call last):
  File "test.py", line 55, in <module>
    model.test()
  File "/RankSRGAN/codes/models/SR_model.py", line 102, in test
    self.fake_H = self.netG(self.var_L)
  File "/anaconda3/envs/pytorch_sr/lib/python3.6/site-packages/torch/nn/modules/module.py", line 493, in __call__
    result = self.forward(*input, **kwargs)
  File "/anaconda3/envs/pytorch_sr/lib/python3.6/site-packages/torch/nn/parallel/data_parallel.py", line 150, in forward
    return self.module(*inputs[0], **kwargs[0])
  File "/anaconda3/envs/pytorch_sr/lib/python3.6/site-packages/torch/nn/modules/module.py", line 493, in __call__
    result = self.forward(*input, **kwargs)
  File "/RankSRGAN/codes/models/archs/RankSRGAN_arch.py", line 50, in forward
    out = self.relu(self.pixel_shuffle(self.upconv2(out)))
  File "/anaconda3/envs/pytorch_sr/lib/python3.6/site-packages/torch/nn/modules/module.py", line 493, in __call__
    result = self.forward(*input, **kwargs)
  File "/anaconda3/envs/pytorch_sr/lib/python3.6/site-packages/torch/nn/modules/conv.py", line 338, in forward
    self.padding, self.dilation, self.groups)
RuntimeError: cuDNN error: CUDNN_STATUS_NOT_SUPPORTED. This error may appear if you passed in a non-contiguous input.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions