@@ -38,31 +38,40 @@ conda create -n octo python=3.10
3838conda activate octo
3939conda install nvidia/label/cuda-11.8.0::cuda --no-channel-priority
4040conda install conda-forge::cudnn=8.9
41+ # octo dependencies
42+ pip install git+https://github.com/octo-models/octo.git@241fb3514b7c40957a86d869fecb7c7fc353f540
43+ pip install -r agents/utils/fixed_octo_requirements.txt
4144# for gpu support:
4245pip install --upgrade " jax[cuda11_pip]==0.4.20" -f https://storage.googleapis.com/jax-releases/jax_cuda_releases.html
4346```
4447
4548Verify that the jax installation was successful and that jax finds your gpu.
46- Open a python terminal in the same conda env and type
49+ Open a python shell in the same conda env and type
4750``` python
4851from jax.lib import xla_bridge
49- # this should output gpu if the installation was successful
52+ # this should output " gpu" if the gpu installation was successful
5053print (xla_bridge.get_backend().platform)
5154```
5255
53- Install Octo and dependencies:
54- ``` shell
55- pip install -r agents/utils/fixed_octo_requirements.txt
56- pip install git+https://github.com/octo-models/octo.git
57- ```
5856
5957Install the agents library on top:
6058``` shell
61- pip install git+https://github.com/octo-models/octo .git
59+ pip install git+https://github.com/juelg/agents .git
6260```
6361
6462For more details, see the [ Octo github page] ( https://github.com/octo-models/octo ) .
6563
64+ #### Troubleshooting
65+ If pip conplains about dependency issues than it might have happened that torch somehow slipped in.
66+ Check if you have any torch packages installed by
67+ ``` shell
68+ pip freeze | grep torch
69+ # if any, uninstall them e.g.
70+ pip uninstall arm_pytorch_utilities
71+ pip uninstall pytorch-seed
72+ pip uninstall pytorch_kinematics
73+ ```
74+
6675### OpenVLA
6776To use OpenVLA, create a new conda environment:
6877``` shell
@@ -81,15 +90,23 @@ pip install "flash-attn==2.5.5" --no-build-isolation
8190
8291Install OpenVLA
8392``` shell
84- pip install git+https://github.com/openvla/openvla.git
93+ pip install git+https://github.com/openvla/openvla.git@46b752f477cc5773cc1234b2e82c0e2130e4e890
94+ ```
95+
96+ Install the agents library on top:
97+ ``` shell
98+ pip install git+https://github.com/juelg/agents.git
8599```
86100
87101For more details, see the [ OpenVLA github page] ( https://github.com/openvla/openvla ) .
88102
89103## Usage
90104To start an agents server use the ` start-server ` command where ` kwargs ` is a dictionary of the constructor arguments of the policy you want to start e.g.
91105``` shell
92- python -m agents start-server octo --host localhost --port 8080 --kwargs ' {"checkpoint_path": "hf://Juelg/octo-base-1.5-finetuned-maniskill", "checkpoint_step": 60000, "horizon": 1, "unnorm_key": []}'
106+ # octo
107+ python -m agents start-server octo --host localhost --port 8080 --kwargs ' {"checkpoint_path": "hf://Juelg/octo-base-1.5-finetuned-maniskill", "checkpoint_step": None, "horizon": 1, "unnorm_key": []}'
108+ # openvla
109+ python -m agents start-server openvla --host localhost --port 8080 --kwargs ' {"checkpoint_path": "Juelg/openvla-7b-finetuned-maniskill", "device": "cuda:0", "attn_implementation": "flash_attention_2", "unnorm_key": "maniskill_human:7.0.0", "checkpoint_step": 40000}'
93110```
94111
95112There is also the ` run-eval-during-training ` command to evaluate a model during training, so a single checkpoint.
0 commit comments