|
| 1 | +require import Distr Real List StdBigop ModuleStructure. |
| 2 | +(*---*) import Bigreal.BRA. |
| 3 | + |
| 4 | +clone import ModuleStructure.Proc. |
| 5 | + |
| 6 | +section. |
| 7 | + |
| 8 | +declare module P <: Proc. |
| 9 | + |
| 10 | +local module P2 = { |
| 11 | + proc sampleFrom (d : (r * (glob P)) distr) = { |
| 12 | + var r; |
| 13 | + r <$ d; |
| 14 | + return r; |
| 15 | + } |
| 16 | +}. |
| 17 | + |
| 18 | +local lemma gen_fact &m a (l : (r * (glob P)) list): uniq l |
| 19 | + => Pr[ P.p(a) @ &m : (res , (glob P)) \in l ] |
| 20 | + = big predT (fun (x : (r * (glob P))) => |
| 21 | + Pr[P.p(a) @ &m: res=x.`1 /\ (glob P) = x.`2]) |
| 22 | + l. |
| 23 | +proof. |
| 24 | +move: l; apply list_ind => /= [|x l p1 [x_nin uniq_l]]. |
| 25 | +- by rewrite Pr[mu_false] big_nil. |
| 26 | +rewrite Pr[mu_disjoint] 1:/# big_cons {1}/predT /= (p1 uniq_l). |
| 27 | +congr. |
| 28 | +rewrite Pr[mu_eq] /#. |
| 29 | +qed. |
| 30 | + |
| 31 | +lemma reflection : |
| 32 | + exists (D : (glob P) -> a -> (r * glob P) distr), |
| 33 | + forall &m po a, mu (D (glob P){m} a) po = Pr[P.p(a) @ &m : po (res, glob P)]. |
| 34 | +proof. |
| 35 | +pose PR := fun (g : glob P) (a : a) (x : r * glob P) => |
| 36 | + choicebd (fun p => forall &m, (glob P){m} = g => |
| 37 | + Pr[P.p(a) @ &m : res=x.`1 /\ (glob P) = x.`2 ] = p). |
| 38 | +pose D := (fun (g : glob P) (a : a) => mk (PR g a)). |
| 39 | +exists D. |
| 40 | +move => &m po a. |
| 41 | +have PRP: (PR (glob P){m}) a = fun (x : (r * (glob P))) |
| 42 | + => Pr[P.p(a) @ &m: res = x.`1 /\ (glob P) = x.`2 ]. |
| 43 | +- apply fun_ext => x. |
| 44 | + have /=chs:=choicebdP (fun p => |
| 45 | + Pr[P.p(a) @ &m : res = x.`1 /\ (glob P) = x.`2] = p). |
| 46 | + rewrite chs. |
| 47 | + - by exists (Pr[P.p(a) @ &m : res = x.`1 /\ (glob P) = x.`2]). |
| 48 | + rewrite /PR. |
| 49 | + congr. |
| 50 | + apply fun_ext => p. |
| 51 | + rewrite eq_iff; split => [/#|<- &n gl_eq]. |
| 52 | + byequiv (_: ={arg, glob P} ==> ={res, glob P})=> //; 1:sim; smt(). |
| 53 | +have distr_PR: isdistr (PR (glob P){m} a). |
| 54 | +- have : (forall (s : ((r * (glob P)) list)), uniq s => |
| 55 | + big predT (PR (glob P){m} a) s <= 1%r). |
| 56 | + + rewrite PRP. |
| 57 | + apply list_ind => /=[|x l q1 q2]. |
| 58 | + * by rewrite big_nil. |
| 59 | + by rewrite -(gen_fact &m a (x :: l)) 2:Pr[mu_le1]; 1:apply q2. |
| 60 | + move => fact1. |
| 61 | + have: (forall (x : r * (glob P)), 0%r <= PR (glob P){m} a x). |
| 62 | + + by move => x; rewrite PRP /= Pr[mu_ge0]. |
| 63 | + by move => fact2; split. |
| 64 | +have <-: Pr[ P2.sampleFrom((D (glob P){m} a)) @ &m : po res ] |
| 65 | + = mu (D (glob P){m} a) po. |
| 66 | +- byphoare (_ : d = (D (glob P){m} a) ==> _) => //. |
| 67 | + proc; rnd; auto => &hr /=. |
| 68 | +byequiv => //. |
| 69 | +conseq (_: _ ==> res{1}.`1 = res{2} /\ res{1}.`2 = (glob P){2}); 1:smt(). |
| 70 | +bypr (res{1}) (res, glob P){2} => // &1 &2 aa [->][gl_eq ->]. |
| 71 | +have <-: Pr[P.p(a) @ &m : res = aa.`1 /\ (glob P) = aa.`2] |
| 72 | + = Pr[P.p(a) @ &2 : (res , glob P) = aa]. |
| 73 | +- byequiv (_: ={arg, glob P} ==> ={res, glob P})=> //; 1:sim; smt(). |
| 74 | +byphoare (_ : d = (D (glob P){m} a) ==> _) => //. |
| 75 | +proc; rnd; skip => &hr /= -> />. |
| 76 | +rewrite muK //#. |
| 77 | +qed. |
| 78 | + |
| 79 | +lemma reflection_glob : exists (D : (glob P) -> a -> (glob P) distr), |
| 80 | + forall &m po a, mu (D (glob P){m} a) po = Pr[P.p(a) @ &m : po (glob P)]. |
| 81 | +proof. |
| 82 | +elim reflection => /> D DP. |
| 83 | +exists (fun ga i => dmap (D ga i) (fun (x : r * (glob P)) => x.`2)) => /> &m po a. |
| 84 | +by rewrite -(DP &m (fun (x : r * (glob P)) => po x.`2) a) dmapE. |
| 85 | +qed. |
| 86 | + |
| 87 | +lemma reflection_res : exists (D : (glob P) -> a -> r distr), |
| 88 | + forall &m po a, mu (D (glob P){m} a) po = Pr[P.p(a) @ &m : po res ]. |
| 89 | +proof. |
| 90 | +elim reflection => /> D DP. |
| 91 | +exists (fun ga i => dmap (D ga i) (fun (x : r * (glob P)) => x.`1)) => /> &m po a. |
| 92 | +by rewrite -(DP &m (fun (x : r * (glob P)) => po x.`1) a) dmapE. |
| 93 | +qed. |
| 94 | + |
| 95 | +end section. |
0 commit comments